
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ
НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ
ІНСТИТУТ ПІСЛЯДИПЛОМНОГО НАВЧАННЯ

Кафедра інженерії програмного забезпечення

ДОПУСТИТИ ДО ЗАХИСТУ
Завідувач кафедри

Сидоров М.О.
„____”________2013р.

ДИПЛОМНИЙ ПРОЕКТ

(ПОЯСНЮВАЛЬНА ЗАПИСКА)

ВИПУСКНИКА ОСВІТНЬО-КВАЛІФІКАЦІЙНОГО РІВНЯ
„СПЕЦІАЛІСТ ”

Тема: Засіб керування оптимізацією програм

Виконав: Мельниченко В. А.

Керівник: к.т.н., доц. Авраменко О.А

Нормоконтролер к.т.н., доц. Радішевскьий М.Ф.

Київ-2013

1

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ

Інститут післядипломної освіти

Кафедра інженерії програмного забезпечення

Напрям (спеціальність): 7.05010301 «Програмне забезпечення систем»

ЗАТВЕРДЖУЮ

Завідувач кафедри

 Сидоров М.О.

“____”___________2013 р.

ЗАВДАННЯ

на виконання дипломного проекту

Мельниченка Володимира Анатолійовича
(призвіще, ім’я, по батькові)

1. Тема дипломного проекту: « Засіб керування оптимізацією програм »
затверджена наказом ректора від “04” березня 2013 р. № 487/ст
2. Термін виконання проекту: з 25.03.13 по 23.06.13
3. Вихідні данні до проекту: програмний засіб виконання оптимізацій ви-

користовуючи анотації з вихідного коду програми
4. Зміст пояснювальної записки (перелік питань, що підлягають

розробці): аналіз існуючих технік оптимізації; техніка керування оптимізацією
програм; реалізація засобу керування оптимізацією програм

5. Перелік обов’язкового графічного (ілюстрованого) матеріалу:
Структурна схема програмного засобу; Схема спільної роботи компонентів;

Алгоритм обробки анотацій; Види сумісного користування даними; Приклад викори -
стання відкладених обчислень; Анотації

Календарний план-графік

№пор. Етапи виконання дипломного

проекту

Термін виконання Примітка

1 Ознайомлення з літературою 25.03.2013 -

10.04.2013
2 Робота над розділом «Аналіз існую-

чих технік оптимізації»

10.04.2013 -

23.04.2013
3 Робота над розділом «Техніка керува-

ння оптимізацією програм»

23.04.2013 -

07.05.2013
4 Розробка логічної програми 07.05.2013 -

15.05.2013
5 Розробка засобу керування оптиміза-

цією програм

15.05.2013 -

02.06.2013
6 Оформлення пояснювальної записки

дипломної роботи

02.06.2013 -

12.06.2013
7 Підготовка графічних матеріалів 12.06.2013 -

20.06.2013
8 Підготовка доповіді для захисту ди-

пломної роботи

20.06.2013 -

25.06.2013

Дата видачі завдання « 25 » березня 2013р.

Керівник дипломної роботи Авраменко О.А.

Завдання прийняв до виконання Мельниченко В. А.

РЕФЕРАТ

Пояснювальна записка до дипломного проекту " Засіб керування

оптимізацією програм": 83 с., 11 рис., 3 табл., 2 додатка, 17 літературних дже-

рел.

АНОТАЦІЇ, АВТОМАТИЧНІ РОЗМІРКОВУВАННЯ, МІНМАЛЬНА

МОДЕЛЬ, ПРЕДМЕТНО-ОРІЄНТОВАНІ ОПТИМІЗАЦІЇ, МЕТАОБЧИСЛЕН-

НЯ, ПРИЙНЯТТЯ РІШЕНЬ, ФУНКЦІОНАЛЬНІ ПРОГРАМИ, LLVM, CLASP,

ASP,.

Об'єкт розробки — оптимізація програм на функціональних мовах про-

грамування

Мета роботи – підвищення ефективності роботи програмного забезпече-

ння шляхом впровадження додаткових оптимізацій

Метод дослідження — спостереження за результатами впливу різних ти-

пів оптимізації

Встановлено, що цілу низку технік оптимізацій, що зазвичай виконую-

ться вручну, можно замінити авто-перетвореннями вихідного кода, також авто-

матично визначаючи контексти, в яких їх застосування є корисним,

Результати дипломного проектування: рекомендується викори-

стовувати при реалізації складних систем, що складаються з багатьох незалеж-

них компонентів.

Прогнозні припущення щодо розвитку об'єкта дослідження — викори-

стання дослідженої методики у поєднанні з даними динамічного аналізу, ви-

значая характеристики поведінки програми у різних станах. Крім того, пер-

спективно використовувати методику при оцінюванні метрик програми та

якості архітектури.

 ЗМІСТ

ВСТУП..7

РОЗДІЛ 1. АНАЛІЗ ІСНУЮЧИХ ТЕХНІК ОПТИМІЗАЦІЇ ПРОГРАМ............8

1. 1. Типи оптимізацій...8

Обмеження, властиві ручній оптимізації програм.......................................9

1.2. Оптимізація функціональних мов...12

РОЗДІЛ 2. ТЕХНІКА КЕРУВАННЯ ОПТИМІЗАЦІЄЮ ПРОГРАМ................38

2.1. Загальні принципи..38

2.2. Анотації у вихідному коді..41

2.3. Логічні розмірковування використовуючи анотації............................44

2.4. Оптимізації контейнерів даних...47

РОЗДІЛ 3. РЕАЛІЗАЦІЯ ЗАСОБУ КЕРУВАННЯ ОПТИМІЗАЦІЄЮ ПРО-

ГРАМ...62

3.1. Загальна структура транслятору...63

3.2. Опис лексичного та синтаксичного аналізаторів................................65

3.3. Семантичний аналізатор..68

3.4. Обробка анотацій..70

3.5. Демонстрація використання..72

Висновки..75

ВИСНОВКИ...76

Додаток А. РЕАЛІЗОВАНА ПІДМНОЖИНА СИНТАКСИСУ HASKELL У

НОТАЦІЇ BNF..77

ДОДАТОК Б. ЛОГІЧНА ПРОГРАМА АЛГОРИТМУ ВИБОРУ РЕАЛІЗАЦІЙ

КОНТЕЙНРІВ ДАНИХ...79

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ:...82

ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ

ЛП — логічна програма

ПЗ — програмне забеспечення

ПП — породжуюче программування

ФВП – функції вищого порядку

ФМ — функціональні мови програмування

ASP — Answer Set Programming

ВСТУП

У даній роботі розглядаються методи ефективного застосування ви-

сокорівневих оптимізацій програмного коду, і крім того, важливою метою є

якісне роспізнавання ситуацій, коли ці оптимізації потрібно застосовувати.

Суть високорівневих оптимізацій полягає в тому, щоб автоматично під-

тримувати два різних представлення однієї і теж програми. Це власне сам ви-

хідний код програми, який составляє програмист, намагаючись зробити його

наочним, вираженим у термінах проблемної області, узагальненим,

структурованим тощо, а інше представлення — це код, отриманий у ре-

зультаті автоматичних перетворень, який зберігає лише еквівалентність по

відношенню до оригінального коду, проте більш ефективний і придатний до

компіляції. Це представлення в багатьох аспектах більш конкретизоване, воно

можливо містить інформацію о явним керуванні пам'яттю та іншими

ресурсами, тим самим звільнючи програміста від зайвої роботи.

Основна ідея полягає в тому, щоб конструювати це представлення не на

загальних підставах, а навпаки, використовуючи усю доступную інформацію,

будувати его спеціалізуючи для конкретного контексту виконання. Усю потрі-

бну для цього інформацію автоматично не вдається зібрати, тому в даній

роботі розглядаються способи допомогти автоматичному аналізу, надавая

додаткову інформацію у вигляді анотацій, що вносить програміст до вихідно-

го коду.

У розділі I розглядаються теоретичні обґрунтування, у розділі II роз-

глядаються принципи конкретних видів перетворень вихідного коду, а у роз-

ділі III наведений опис реалізації виконання перетворень на підставі обробки

анотацій.

РОЗДІЛ 1. АНАЛІЗ ІСНУЮЧИХ ТЕХНІК ОПТИМІЗАЦІЇ

ПРОГРАМ

1. 1. Типи оптимізацій

Оптимізація - це спосіб перетворення програми з метою одержання

більш оптимального програмного коду, зберігаючи його функціональні мож-

ливості.

Таке перетворення покращує «якість» коду. Як правило, під «покращен-

ням» розуміють більш швидке виконання (або запуск) або зменшення вимог

до пам'яті. Крім того, у зв'язку з широким розповсюдженням портативних

пристроїв, метою може ставитися використання програмою меншої кількості

енергії.

У сучасних компіляторах виділяється окрема фаза для оптимізації про-

грами. У цій фазі автоматично проводиться маса спеціалізованих технік

аналізу і перетворення, сконцентрованих на різних аспектах програми і

проводяться вони на різних рівнях.

Зазвичай виділяють групи автоматичних, машинних технік оптимізації

такі як: локальні, що проводяться в рамках одного виразу або всередині однієї

процедури; процедурні, що проводяться на рівні процедури, наприклад

оптимізація хвостовій рекурсії тощо.; міжпроцедурні, що аналізують відразу

декілька процедур у зв'язці.

Тим не менше, всі ці операції є низькорівневими в тому сенсі, що вони

працюють з цілком певним, заданим набором абстракцій: блоки, шляхи ви-

конання, цикли, умови, виклики функцій.

Лист

НАУ 13 08 06 000 ПЗ

 Розроб. Мельниченко

 Керівник. Авраменко О.А

 Н. Контр. Радішевський

 Зав.Каф. Сидоров М.О.

Аналіз існуючих технік
оптимізації програм

Листів

7.05010301

Кафедра ІПЗ

8

У зв'язку з цим, незважаючи на різноманітність застосовуваних технік,

на добре розроблені та ефективні способи аналізу та їх реалізації, про-

грамісту тим не менш доводиться вручну додатково оптимізувати програму,

вносячи поліпшення, пов'язані з специфічними для цієї програми абстракція-

ми, відповідними до предметної області.

Обмеження, властиві ручній оптимізації програм

У зв'язку з досить швидким здешевленням обчислювальної техніки,

укупі із зростанням обчислювальних потужностей і, додатково, з розвитком

перспектив «хмарних» обчислень, в багатьох мовах програмування і

парадигмах розробки ПЗ проявляється певна тенденція. Від-ходить зміщення

акценту з розробки швидких і ефективних програм у бік підвищення

наочності коду, забезпечення безпеки, легкості підтримки, модульності, і мо-

жливості незалежної розробки окремих компонентів і можливо найголовніше

- швидкості розробки програм.У деяких випадках прагнення виробляти ефе-

ктивний вихідний код вступає в протиріччя з іншими цілями, що стоять перед

командою розробників.

 Як видно з рис. 1.1, часто ефективністю вихідного коду жертвують, на-

приклад, на догоду швидкого циклу розробки. Диаграма відображає реальну-

ситуацію при розробці проекта, коли існує багато часто суперечливих цілей

та обмежень, що треба дотримати. Багато методологій розробки ПО багато

уваги приділяють далеким від оптимізації цілям.

9

Рис 1.1. Наочне уявлення про типові протиріччя між цілями, що стоять

перед командою розробників програмного проекту.

Виходячи з цих причин, пріоритетність оптимізації кінцевого про-

грамного продукту знижується, і нижче будуть розглянуті окремі ситуації, де

це особливо проявляється.

• Високорівневі мови. Високорівневі мови завойовують все більшу

популярність. Їх основна перевага - приховування від розробника

окремих аспектів реалізації програми і компонентів, і відповідно, вони

дають можливість зосередитися на вирішенні власне поставленого зав-

дання. Натомість, ці мови жертвують продуктивністю, т. к. змушені

проводити перевірки коректності програми вже в стадії виконання (у

разі динамічних мов), або вибирають часто вже не ефективні, задані «за

замовчуванням» стратегії роботи тих чи інших компонентів (фу-

нціональном мови). Високорівневі мови часто вибирають для прототи-

пування, складання «першої версії» програми, тому що розробка ви-

10

Швидкість розробки

Безопасність коду

Легкість підтримки

Структурованість

робляється набагато швидше і простіше. Тому високорівневими мовами

користується безліч непрограмістів: інженерів, вчених, дослідників та

інш. - Охочих не витрачаючи багато зусиль скласти програму для своїх

потреб, проводячи розрахунки або автоматизуючи свої дії на комп'юте-

рі. Відповідно, питань оптимізації приділяється мало уваги, тому що

такі мови просто не надають можливості ретельно оптимізувати код, і з

іншого боку не-професійні користувачі просто не володіють достатнім

обсягом спеціальних знань для цього.

• Рефакторинг та підтримка. При оптимізації програми найчастіше

порушуються багато архітектурних принципів, погіршується ясність,

наочність і «прозорість» коду. Так як багато технік оптимізації

засновані на інформації про внутрішні деталі реалізації об'єктів та їх

взаємодії один з одним, то на етапі оптимізації їх поведінку і реалізація

жорстко фіксуються, з тим, щоб домогтися спільного використання

структур даних і внутрішніх алгоритмів, а також для інтенсивного ке-

шування. Виходячи з цього, оптимізований код важко підтримувати,

практично не можливо вносити зміни і проводити рефакторінг. Як

наслідок, фазу оптимізацію залишають наостанок, як останню фазу

розробки, виконувану, коли програма вже написана і працює.Тому, для

програм які протягом усього свого життєвого циклу постійно піддаю-

ться змінам, така фаза взагалі часто не настає.

У цих, і багатьох інших ситуаціях застосування «класичної» оптимізації, що

проводиться вручну, ускладнено, і на допомогу можуть прийти більш

«інтелектуальні» методи автоматичної оптимізації, що враховують викори-

стовувані в конкретній програмі нестандартні абстракції і специфіку предмет-

ної області.

11

1.2. Оптимізація функціональних мов

1.2.1. Переваги використання функціональних мов

Одне із значних місць у дослідженнях з теоретичного програмування

займає функціональне програмування. Ведуться протягом уже трьох десяти-

літь розробки в цій області останнім часом мають стійку тенденцію до роз-

ширення як в академічних, так і в промислових організаціях.

Виконання програми на функціональній мові, кажучи неформально,

полягає у виклику функції, аргументами якої є результати інших функцій (фу-

нкції першого порядку) чи власне функції (функції вищого порядку), які в

свою чергу також можуть бути суперпозиціями в загальному випадку

довільної глибини.

З точки зору програміста, основна частина програми складається з

сукупності визначень функцій, як правило, рекурсивних. Така особливість

притягальна тим, що отримувані програми є свого роду ієрархічними специ-

фікаціями.

Приклад знаходження списку з порядком елементів зворотним до за-

даному:

reverse' [] = []

reverse' [x] = [x]

reverse' xs = last xs : reverse' (init xs)

Тут вказується скоріше не точний алгоритм побудови зворотнього спи-

ску, а відносини між прямим і зворотнім списками. Крім того, в явному ви-

гляді вказані часткові випадки, що дає більше інформації для, наприклад,

інструментів тестування.

Внаслідок того, що функціональна парадигма програмування є різнови-

дом і природною реалізацією декларативного підходу, такого важливого на рі-

12

вні архітектури ПЗ, можна очікувати, що об'єднання двох споріднених техно-

логій дасть додаткові синергетичні переваги .

Нижче будуть показані деякі особливості використання в цьому зрізі

саме функціонального підходу.

Структурність

Так як ПЗ стає все більш і більш складним, потрібно приділяти все

більшу увагу забезпеченню якісного структурування вихідного коду.

Очевидно, що добре структуровані програми легко писати, налагоджу-

вати, удосконалювати і підтримувати, крім того, це дає можливість оформити

колекцію незалежних компонентів, які можуть бути згодом повторно викори-

стані в інших проектах, зменшуючи майбутні витрати.

Багато дослідників погоджуються з тим, що ФМП надають в чомусь

більш послідовну і кращу підтримку модульності, ніж імперативні мови.

Приклад алгоритму скалярного добутку двох векторів:

dotProduct :: [a]->[a]->a

dotProduct = (sum .) . zipWith (*)

Таким чином, нова операція повністю визначена у вигляді супер-пози-

ції вже існуючих - це прояв здатності гнучко комбінувати вже існуючі функції

для досягнення потрібного результату.

У рамках імперативного підходу виникає необхідність розробляються

абстракції і ділити програму на компоненти, які обмежені взаємодією один з

одним в рамках спочатку заданих абстракцій. На відміну від цього, два

інструменти з арсеналу ФМП зокрема пропонують особливий внесок у про-

блему забезпечення модульності: це функції вищого порядку (ФВП) і відкла-

дені обчислення.

13

ФВП пропонують можливість легко абстрагувати необхідну частину

коду створивши функцію вищого порядку, роблячи програму більш декла-

ративною і зрозумілою.

Відкладені обчислення дають можливість оперувати «нескінченними»

структурами даних, пропонуючи потужну техніку і своєрідні додаткові

способи декомпозиції програм, дозволяючи, наприклад, ізолювати

«генератори» даних від «споживачів» даних.

Деякі дослідники вважають відкладені обчислення найбільш потужним

і перспективним способом забезпечення модульності і інкапсуляціі.

Приклад використання відкладених обчислень у вигляді функції

повертаючої чотири найменших ел-та у списку:

topFour:: [Int]->[Int]

topFour list = take 4 (sort list)

Цей приклад демонструє логічне відділення коду, який виробляє дані

(генератора, в даному випадку - функції sort, від коду, який цими даними

користується, в даному випадку функції (take 4), яка використовує лише

перші 4 елементи отриманого списку. «Ледачий» обчислень виявляється в то-

му, що не виробляється повної сортування списку, а тільки в обсязі достат-

ньому для знаходження потрібних 4 елементів.

Таким чином можна писати більш абстрактні програми, не побоюю-

чись падіння продуктивності.

Перенесення і використання цієї техніки в нефункціональних мовах

досить ускладнено, через те, що відкладені обчислення базуються на неви-

значеному порядку виконання, які, очевидно призведуть до непередбачуваних

наслідків для функцій залежних (і впливаючих) на якийсь стан, контекст ви-

конання.

14

 Декларативність

Насамперед ця властивість випливає з притаманною визначенню функ-

цій декларативності, що дозволяє писати програми в термінах того, що треба

робити, а не як це робиться.

У цьому аспекті важливо згадати властивість «чистоти» (referential

transparency). Це властивість позначає, що якщо в тексті програми, припусти-

мо зустрічається визначення y = f (x), тоді скрізь, де зустрічається «y», цю

змінну можна синтаксично замінити на f (x) без втрати працездатності

алгоритму.

Невизначеність в порядку обчислень і «чистота» спонукають пред-

ставляти алгоритм у декларативному вигляді, у вигляді зв'язку між даними і

формального опису завдання замість занадто жорстко заданого конкретного

алгоритму і порядку обчислень.

Саме тому функціональні мови розглядаються як засоби декларативно-

го програмування.

Для прикладу, нижче наведено програма вирішення простої системи

квадратних нерівностей:

roots:: [Int]

roots = [x | x <-[0..], x^2 > 3, x^2 < 11]

Ця програма повертає список рішень і демонструє декларативність

написання: зазначена область допустимих значень (ОДЗ) коренів системи і

виписані нерівності.

Використання «контрактів»

«Контракт» - це перелік умов, які компоненти висувають один іншому

для збільшення надійності і сумісності при спільній роботі. Як вже було

15

сказано, програму на ФМП можна розглядають як перелік специфікацій, що

часто однозначно визначає необхідні контракти.

Додатково, можливість використовувати «порівняння за зразком» до-

зволяє гарантувати обов'язкову перевірку зазначеного таким чином

«контракту». Варто додати, що «порівняння за зразком» має аналогії з «реф-

лексією» - технікою, що має важливе значення в сучасному проектуванні

Наочність

Можливо найбільш формальним визначенням того, що таке на-

наочність програми – здатність у вихідному коді висловити «наміри» про-

граміста, що є основним акцентом в «інтенсіональном» програмуванні.

Оформлення програми у вигляді комбінації деяких функцій вищого

порядку укупі з функціями, що визначають особливі спеціалізації для виріше-

ння необхідної задачі, надає зручні способи висловити довільні абстрактні

принципи та ідеї закладені в реалізації багатьох алгоритмів.

Тут простежується аналогія з «розширюваними» мовами, фактично

ФМП дозволяють розширювати синтаксис новими конструкціями управління,

там де це прийнятно.

Описаний підхід, а також декларативна природа програм і використан-

ня «контрактів» дають досить багато можливостей для написання наочного

коду.

 Легкість конфігурування (параметризація)

Передача в якості аргументу функції іншої функції надає можливість гнучко-

го налаштування роботи та поведінки деякого компоненту. Часто такі

аргументи називають «стратегіями», керуючими окремими аспектами роботи

компонента.

 Короткий приклад, який ілюструє цей принцип проявляється наприклад в на-

16

ступній програмі, що повертає список тільки простих чисел:

onlyPrimes:: [Int]

onlyPrimes = filter isPrime [1..100]

Тут filter це функція вищого порядку, фільтруюча список по заданому

предикату. Фактично предикат, в даному випадку isPrime є стратегією, що

вказує конкретну поведінку компонента.

Формальні перетворення

Функціональні програми придатні для формального аналізу та маніпу-

лювання.

Внаслідок того, що ми можемо звернутися до звичайного математи-

чному апарату, т. к. виходячи з властивості «чистоти» можна замінювати екві-

валентні вирази, знаючи що алгоритм не згубить працездатність через

некоректні «побічні» ефекти, формальне маніпулювання функціональними

програмами виконується відносно просто і при встановленні їх властивостей

(верифікація), і при перетворенні програм у більш ефективні форми, з метою

їх оптимізації.

Надійність

Як вже зазначалося, властивість «чистоти» і редукована семантика функ-

ціональних мов дозволяють значно легше проводити формальні докази

коректності алгоритмів. У той час як імперативні мови вимагають розмі-

рковування в розширених численнях, такі як предикати Дейкстри або найсла-

бші передумови Хоара.

Декларативність і наочність, використання «контрактів» і веріфіцірує-

мость - є найважливішими передумовами для забезпечення надійності ПЗ.

17

Паралелізм

Дуже важлива властивість. Через відсутність "побічних ефектів" про-

грами написані на ФМП, часто навіть без додаткових зусиль програміста при-

родним чином можна распаралелівать. З урахуванням сучасних багатопро-

цесорних і кластерних архітектур апаратного забезпечення, існує гостра по-

треба в мовах з потенціалом до автоматичного планування паралельного ви-

конання програм.

Оптимізація

Відкладені обчислення дозволяють уникати непотрібних обчислень, за-

циклення або помилок, пов'язаних з роботою зі складними залежностями між

даними і обчислюючи тільки те, що потрібно в конкретній ситуації. Га-

рантована елімінація «зайвих» обчислень дозволяє спрощувати складність

алгоритмів.

При такому підході обчислювальна складність залежить вже не стільки

від природи алгоритму, скільки від його використання, від того, які дані і в

якому порядку необхідно отримати.

Кожна з цих властивостей обумовлено притаманною функціональним

мовам математичною природою: конструкції функціональних програм є

просто функціями, математичними функціями, що описують перетворення

вхідних значень у вихідні і не стосуються контексту, в якому вони за-

стосовуються.

Все це робить функціональне програмування вельми привабливим як у

теоретичному, так і в практичному аспектах. Тому, в останні роки ведеться

велика кількість методів розробки та аналізу програмного забеспечення на

функціональних мовах.

18

1.2.2. Оптимізуючі метаобчислення для програм на функ-

ціональних мовах

Метаобчислення - це розділ програмування, присвячений розробці

методів аналізу та перетворення програм за рахунок реалізації конструкти-

вних метасистем (метапрограм) над програмами. У метаобчисленні в першу

чергу включають теорію суперкомпіляціі та близькі методи і засоби. При-

ставка "мета" вказує на те, що програма в метаобчисленнях розглядається як

об'єкт аналізу та / або перетворення. Таким чином, метапрограми працюють

над іншими програмами, контролюють, аналізують або імітують їх роботу [5,

6].

До основних, фундаментальних метаобчисленням зазвичай відносять:

• Спеціалізація програм

• Композиція програм

• Інверсія програм

 Спеціалізація програм — це породження за універсальною програмою

з низкою параметрів спеціалізованої програми, коли значення частини

параметрів відомі і фіксовані.

Формально, це можна записати у вигляді: f (x,y)→ f A (y) =f (A,y) , де f A (y)

спеціалізована програма приймаюча на вхід один аргумент .

При спеціалізації відома інформація поширюється по тексту програми і

використовується для її оптимізації та підняття ефективності в багато разів.

Практичну користь від хороших засобів спеціалізації неможливо переоціни-

ти. Програмісти багаторазово створюють версії програм на різні випадки жи-

ття через те, що універсальні програми не влаштовують їх по ефективності.

Більше того, виявляється, самовикористання спеціалізатора дозволяє вирішу-

вати незвичайні завдання, наприклад, перетворення інтерпретатора в компіля-

19

тор.

Композиція програм — це породження за двома (або декільком) підпро-

грамам, передавальним результати однієї в якості аргументів іншої, більш

ефективної програми.

Формально композицію можна виразити таким чином:

f (x) ,f (y)→ f g (x) =f (g (x)) , де f g (x) - композитна програма

Композитна програма або виконує ту ж роботу взагалі без формування

проміжних даних («за один прохід»), або містить оптимізовані версії вихі-

дних підпрограм з урахуванням того, що вони працюють в контексті один

одного. Композиція програм є узагальненням спеціалізації, оскільки

f A (y)=f (g (y) ,y)=f (g (x)) =f g (x) , де g (y)=A .

Ефекти від її застосування були б ще більш різноманітні, ніж від спеці-

алізації.

Инверсія програм — алгоритм, за програмою, що реалізує деяку функ-

цію, що породжує програму, що реалізовує зворотну функцію, тобто за значе-

нням першої програми видає відповідний аргумент.

Формально виражається наступною формулою:

f (x) ,y=f (x)→ f −1 (y) =x .

Цінність інверсії програм у тому, що дуже часто зворотний функцію

задати набагато легше, ніж ту, яку потрібно запрограмувати. Повноцінна

інверсія програм - дуже складне завдання; зараз вона успішно вирішується

лише для деяких класів програм. Інверсія фактично лежить в основі логічно-

го програмування.

Крім цих трьох завдань можна запропонувати ще багато операцій над

програмами, які хотілося б виконувати. Але дослідження показують, що бага-

то з них несподівано зводяться до цих трьох, їх комбінаціям, взаємною за-

20

стосуванню і самовикористанню. Тому вони є головними тестовими завдан-

нями метаобчислень. Прогрес за методами їх рішення відразу дасть результа-

ти і для інших завдань.

Одна з найбільш перспективних ідей в теорії метаобчислень є

суперкомпіляція.

Суперкомпіляція - як підвид метаобчислень, заснована на мета-

системному переході, тобто переході від самої програми до її узагальненої

версії, де замість конкретних параметрів вказані змінні, кіт. можуть приймати

будь-яке значення. У термінології теорії суперкомпіляціі такі змінні, а також

описувані ними безлічі можливих значень називаються конфігураціями.

Суперкомпілятор намагається виконати таку узагальнену програму, не-

зважаючи на те, що в ній не містяться конкретні параметри. При досягненні,

наприклад, керуючих конструкцій, коли необхідно вибрати ту чи іншу гілку

подальшого виконання залежно від конкретного значення умови, метаобчи-

слення проводяться паралельно у всіх можливих розгалуженнях.

Процес обчислення програми на будь-якій мові - це покрокові пере-

творення станів абстрактної машини-виконавиці цієї мови. Правила цих пере-

творень визначають семантику мови. Послідовність станів, які проходить

процес, утворюють шлях обчислень.

За наявності в узагальненій програмі керуючих конструкцій, породжує-

ться потенційно нескінченне дерево всіх можливих шляхів ви-чисельний. Де

коренем такого дерева є початкова конфігурація, а кожна вершина - можлива

конфігурація на певному етапі ви-чисельний. Таке дерево ще називають

деревом процесів, підкреслюючи той факт, що процесам обчислень відповід-

ають шляху в дереві від кореня до будь-якої іншої вершини.

Так-як дерево процесів будується так, щоб конфігурації включали в се-

бе всі можливі стани, а дуги враховували всі можливі розгалуження, то завдя-

ки цьому можна сказати, що дерево процесів «містить у собі» всі можливі

21

процеси обчислень.

Таким чином, виявляється, що дерево процесів містить у собі всю необ-

хідну інформацію для обчислень, і, щоб виконати процес, вже не потрібно

звертатися до вихідної програмі. Це означає, що дерево процесів можна

інтерпретувати як програму, еквівалентну вихідної.

У дерева процесів лише один недолік - у загальному випадку воно

нескінченно. Тому проводяться спеціальні кроки щодо його перетворення, та-

кі як: зациклення, розсічення конфігурацій і узагальнення конфігурацій. В ре-

зультаті дерево перетвориться в кінцевий граф. Причому, кінцівку графа

досягається за рахунок зациклення, а розсічення та узагальнення допомага-

ють приводити конфігурації до виду, придатному для зациклення.

Одержаний кінцевий граф конфігурацій і є залишковою програмою,

еквівалентної вихідної і є результатом суперкомпіляціі.

Можливість згорнути потенційно нескінченне дерево в кінцевий граф,

залежить від якості узагальнень конфігурацій.

Узагальнення - це найскладніша частина методу суперкомпіляціі і

основний напрямок досліджень. Запропоновано декілька цікавих і практи-

чних методів узагальнення, але тема далеко не закрита і не буде ніколи закри-

та, оскільки має справу з алгоритмічно нерозв'язним завданням.

Таким чином, метавичісленія, і зокрема суперкомпіляція - дозволяють

проводити нетривіальні оптимізують перетворення програм. Важливою від-

мінністю від інших видів оптимізації є можливість виокремлювати з вихідно-

го коду програми додаткову інформацію, спиратися при оптимізації на

семантику програми.

У теорії метаобчислень досягнуті лише часткові успіхи, т. к. ряд зав-

дань в загальному випадку алгоритмічно нерозв'язний, тому повністю авто-

матичне проведення метаобчислень можливо тільки над вузьким класом про-

грам.

22

1.2.3. Використання принципів породжуючого програмування для

оптимізації

Ідея формально описати необхідну програму і залишити розробити її

відповідний вихідний код комп'ютера - завжди інтригувала багатьох дослі-

дників в галузі інженерії програмного забезпечення. Хоча б тому, що

породжує підхід забезпечує коректність коду обумовленої побудовою і швид-

кий (і дешевий) цикл розробки. Нижче буде коротко розглянута методологія,

сконцентрована на вирішенні цього завдання, а так само взаємозв'язок з про-

грамною оптимізацією.

Породжуюче програмування - парадигма технології розробки ПЗ,

заснована на моделюванні сімейств програмних систем, таких, що по

конкретних технічним вимогам можна автоматично отримати спеціалізований

і оптимізований проміжний або кінцевий продукт з елементарних, бага-

торазово використовуваних компонентів реалізації за допомогою бази знань

про конфігураціях.

Породжуюче програмування фокусує увагу на сімействах програмних

систем, а не на унікальних продуктах. Елементи сімейства не будуються з ну-

ля, вони генеруються на основі загальної породжує моделі (generative domain

model), тобто моделі сімейства яка володіє трьома складовими:

• засобами визначення членів сімейства (доменна модель)

• компонентами реалізації (implementation components), з яких

може бути зібраний кожен член сімейства - тобто конкретна

програма

• базою знань про конфігурації (configuration knowledge). від-

ображає специфікацію для члена сімейства і кінцевого

продукту.

Класичною аналогією такого підходу є автомобільна промисловість: є

23

система з продажу машин, є компоненти,із яких збираються машини і є

конфігураційна база знань, визначальна, як збирати автомобілі, відповідно з

конкретним замовленням.

Термінологія, описові характеристики, використовувані для визначення

членів сімейства, називається простором задачі (problem space), тоді як

компоненти реалізації разом з можливими конфігураціями формують простір

рішень (solution space).

Рис. 1.2. Діаграма відносин концепцій породжуючого програмування

Дана методологія бачить наступну проблему поточної технології роз-

робки ПЗ: проблема в тому. що в той момент коли ми припиняємо конкрети-

зацію програмної системи, ми не знаємо, як її отримали. Велика частина

знань з проектування втрачається, і це робить програмне супроводження

складним і дорогим. У породжує програмуванні намагаються відобразити в

програмній формі максимум знань про виробництво.

Виробничі знання включають в себе не тільки конфігураційні знання,

але також і вимірювальний інструментарій, методики тестування та планува-

ння, діагностику помилок, підтримку налагодження, візуальне представлення

програми та ін Всі ці різні аспекти відображають всю специфіку предметної

24

Простір
завдання Знання про конфігурації Простір

рішень

області і упаковані в багато разів використовувані бібліотеки, які називаються

активними бібліотеками.

Важливою ідей є заміна фіксованих мов програмування на активні

бібліотеки мовних абстракцій. Фіксовані мови програмування (наприклад, C

+ + або java) змушують використовувати певний зафіксований набір мовних

абстракцій, в той час як активні бібліотеки дозволяють використовувати набір

абстракцій, оптимально сконфігурованих для певної задачі. Вони дозволяють

забезпечити справжню мультипарадігменную і предметно орієнтовану під-

тримку програмування.

 Породжуючі доменні моделі

Породжуюче програмування забезпечує автоматизацію виробництва

проміжних і кінцевих продуктів: компонентів і додатків.

Рис 1.3. Ілюстрація доменної моделі

25

Формальні
специфікації Генератор Кінцевий

продукт

Пул стандартних�компонентів

Необхідними умовами досягнення цієї мети є моделювання сімейств

продуктів. Проектування засобів «замовлення» цих продуктів (тобто їх

специфікації); забезпечення компонентів реалізації, з яких проводиться збірка

продуктів, встановлення відображення від специфікацій продуктів до

конкретних збірок компонентів реалізації, а також реалізація цього від-

ображення за допомогою генераторів. «Продуктами», автоматичне виробни-

цтво яких можна таким чином організувати, може бути все, що завгодно - від

класів або процедур до цілих систем або підсистем.

Архітектура сімейства продуктів необхідна для введення взаємозамін-

них компонентів ПЗ. Тоді стане можливим швидко і легко визначити - чи від-

повідає компонент вимогам системи чи ні. Таким чином, необхідні зусилля в

бік великої архітектурної стандартизації в різних областях після чого ідея

програмних компонентів рушить з місця.

 Знання про конфігурації

Знання про конфігурації встановлюють неприпустимі поєднання ха-

рактеристик (деякі характеристики комбінувати не можна), налаштування за

замовчуванням (якщо у додатку не визначені ті чи інші характеристики, вони

замінюються допустимими умовчаннями), залежно за замовчуванням (роз-

рахунок деяких «параметрів за замовчуванням» може проводитися з урахува-

нням інших характеристик), правила конструювання (деякі сполучення ха-

рактеристик перетворюються на певні поєднання компонентів реалізації) і

правила оптимізації (одні поєднання компонентів реалізації можуть виявити-

ся краще за інших).

26

 Знання про конфігурації визначають:

• неможливі комбінації характеристик систем

• налаштування за замовчуванням

• залежності за замовчуванням

• оптимізацію

• конструкторські знання, що фіксують відповідність налаштувань

компонентів налаштувань характеристик

Таким чином, в рамках породжуючого програмування необхідно

прагнути втілити всі конфігураційні знання у програмній формі.

Простір завдання

У простір завдання входять прикладні поняття і характеристики, за

допомогою яких розробники прикладного програмного забезпечення можуть

висловлювати свої потреби.

У простір завдання входить декілька типів характеристик.

• Конкретні характеристики. Конкретна характеристика точно від-

повідає якомусь одному (можливо, параметризованому) компоненту;

наприклад, сортування реалізується безпосередньо за допомогою

компонента сортування.

• Аспектні характеристики. Аспектах характеристика відповідає

аспекту в тому його розумінні, який притаманний аспектноорі-

ентованному програмуванню. Аспект - це вид модульності, що

впливає на безліч інших компонентів; аспектом, зокрема, є декла-

ративне опис синхронізації декількох комнонентів. Аспекти припу-

скають переплітання коду, тобто розміщення коду аспектів в безлічі

компонентів.

27

• Абстрактні характеристики. Абстрактні характеристики не можна

реалізувати безпосередньо. Їх реалізація здійснюється через від-

повідні поєднання компонентів і аспектів. Прикладами абстрактних

характеристик є вимоги до робочих характеристик - зокрема,

оптимізація, спрямована на досягнення швидкодії, звільнення

пам'яті або досягнення точності.

На малюнку 1.4 наведено приклад того, як могли б задаватися характеристики

для вибору конкретної бажаної реалізації контейнера (колекції) з набору

стандартних:

Рис 1.4. Приклад простору завдання для вибору контейнера об'єктів

28

 Особливості проектування в рамках породжуючого програмування

На даний момент найбільш ефективними технологіями для досягнення

повторного використання ПЗ вважаються каркаси (frameworks) і компоненти.

На жаль жоден з популярних ОО методів аналізу та проектування не підтри-

мує їх розробку в достатній мірі. Для того, що б добитися істотного ступеня

повторного використання компонентів слід використовувати прийняту в

породжуючого програмування двоетапність циклу розробки:

• один для проектування та реалізації породжуючої доменної моделі. Це

розробка «для повторного використання».

• інший - для використання породжуючої моделі при виробництві

конкретної системи. Це розробка підсумкових програм з повторним ви-

користанням вже готових компонентів.

Обидва процеси відмінні від процесу розробки унікальної системи, та-

кого як, наприклад, уніфікований процес RUP. Мета розробки «для повторно-

го використання» - сімейство систем, а не одиночна система, тому розробка

«для повторного використання» повинна бути орієнтованих на надання пере-

ваг від повторного використання коштів на систематичній основі.

Варто ще раз підкреслити, що найбільш важливою властивістю циклу

розробки «для повторного використання» є орієнтованість на сімейства си-

стем.

При розробці «для повторного використання» виділяють кілька фаз, та-

кі як domain analysis і domain design.

Фаза «domain analysis»

Перший крок полягає у визначенні області дії зацікавленого сімейства

систем, тобто у вирішенні питання: які характеристики повинні бути включе-

29

ні, а які ні. Це вимагає аналізу зацікавлених у проекті осіб та їх цілей по-

точної і потенційної ситуації на ринку, прогнозування технології і т.д. Дуже

важливо правильно визначити область дії сімейства або предметну область,

це дозволить уникнути таких узагальнень, де важливі характеристики і

змінювані параметри легко втратити, а зайві завести, внаслідок чого може

значно підвищитися ціна розробки і супроводу.

Наступний крок у циклі розробки - визначення загальних і зміню-

вальних характеристик членів сімейства і залежностей між змінними характе-

ристиками. Результатом цього аналізу стане документоване використання ха-

рактеризуючих моделей (feature models), у яких є ряд переваг перед іншими

нотаціями моделювання (UML). По-перше, характеристичні моделі явно

представляють змінюючи параметри і залежності між ними. Це подання

забезпечує базис для виробництва категорій компонентів реалізації, придат-

них для сімейства систем, засоби для визначення членів сімейства, а також

знання о конфігураціях. По-друге, характеристичні моделі розрізняють мінли-

вість в межах члена сімейства і мінливість між різними членами сімейства.

Таким чином, уникається впровадження "роздутих" компонентів або каркасів

в "роздуті" додатки. Це загальна проблема сучасних компонентних і

каркасних технологій, де механізм реалізації мінливості всередині програми

(так званий динамічний поліморфізм) також використовується для завдання

мінливості між додатками. І нарешті, характеристичні моделі забезпечують

незалежні від реалізації засоби представлення мінливості, які дозволяють

зберігати рішення про механізми мінливості поза моделлю аналізу. Це і від-

різняє дану модель від сучасних ОО нотацій, таких як UML: під час малюван-

ня діаграми класів UML ви повинні вирішити, чи треба використовувати

спадкування, агрегацію, параметризацію класів або інші механізми реалізації

для подання даного змінного параметра.

30

Характеристична модель може бути представлена у вигляді характе-

ристичної діаграми, т.б у вигляді дерева, де кореневий вузол відображає голо-

вні концепти і кожен інший вузол відображає одну з його характеристик. Ре-

бра зв'язуючі вузли, відображають залежності між характеристиками. Нижче

наведені різновиди таких залежностей:

• Обов'язкова характеристика

• Опціональна характеристика

• Альтернативна характеристика, тобто з групи подібних характеристик

може бути обрана лише одна

• «Або» - характеристка, тобто з групи подібних характеристик можуть

бути обрані декілька, або навіть всі, характеристики

Головна перевага таких діаграм в тому, що це дає можливість відкласти

визначення того, як саме дана варіативність буде реалізована. Кожна характе-

ристика, кожен вузол - це можливий аспект варіактивності. На цій фазі не по-

трібно вказувати як дана характеристика повинна бути реалізована, напри-

клад це може бути як успадкування, так і параметризрвані успадкування або

статична параметризація. Фактично, варіативність буде реалізваона порі-

зному на різних рівнях. У підсумку, використання хараткерістіческіх діаграм

дає можливість проектувальнику аналізувати предметну область без конкрет-

них деталей реалізації.

Фаза «domain design»

Грунтуючись на характеристичних моделях, ми проектуємо породжую-

чу доменну модель для сімейства, що включає засоби специфікації членів сі-

мейства, загальну архітектуру, яка містить категорії компонентів реалізації, а

також знання і конфігурації відображають специфікацію члена в набір

компонентів реалізації, які реалізують даний член. У результаті ми реалізуємо

31

модель, засновану на компонентах і породжують технологіях.

Вся необхідна для цього інформація підготовляється на стадії «domain

analysis» і повинна бути закодована в предметнооріентірованій мові (DSL).

Генерація коду діє відповідно з цією специфікацією і виробляє вихідний код

компонентів, а так само їх компоновку.

Опис формальної специфікації вимагає певних дій, крім власне склада-

ння характеристичної діаграми:

• Визначення головної функціональності на характеристичній діаграмі.

Це майбутні категорії компонентів або інтерфейси

• Перерахувати компоненти розділені по категоріях, кожен компо-

нент реалізує загальний інтерфейс категорії.

• Визначити залежності, специфікувати необхідні інтерфейси

• Спроектувати рівні архітектури, всі компоненти можна відсортувати

ієрархічно, такий порядок вкаже де є можливість застосувати делегування

Традиційні методи об'єктно-орієнтованого аналізу і проектування, такі

як OOSE, ОМТ і навіть поточна версія RUP, зорієнтовані на розробку оди-

ночних систем і не пристосовані для створення сімейств систем.

Враховуючи, що породжує програмування переслідує саме цю мету,

перераховані методи визнаються непридатними для розробки програмних

засобів багаторазового застосування, бо для цього потрібно орієнтація на

групи систем, а не на окремі системи.

У цьому контексті можна навести такі недоліки традиційних методів

об'єктно-орієнтованого аналізу і проектування, що стосуються їх технологі-

чного процесу і нотацій моделювання.

• Відсутність відмінностей між розробкою «для повторного використан-

ня» і розробкою з повторний використанням. Для реалізації принципу

багаторазового застосування потрібно розбиття процесу розробки

об'єктно програмного забезпечення на розробку «для повторного ви-

32

користання» (тобто інженерію предметної області) і розробку з по-

вторним використанням (прикладну інженерію). Областю розробки

«для повторного використання» має бути сімейство систем; лише в цьо-

му випадку по-є можливість виробництва компонентів багаторазового

застосування. Процес розробки з повторним використанням повинен

бути організований таким чином, щоб у ньому могли бути задіяні по-

вторно використовувані засоби, створені в ході розробки «для по-

вторного використання». Сучасні процеси об'єктно аналізу і проектува-

ння не відрізняються такими якостями Ці можна з деякою натяжкою

уподібнити лише прикладної інженерії з випадковим (замість си-

стематичного) вживанням повторно використовуваних засобів.

• Відсутність етапу визначення предметної області. Оскільки методи

об'єктнооррінтованого аналізу і проектування, орієнтовані на розробку

одиночних систем, вони не передбачають визначення предметної

області - етапу, на якому проводиться відбір цільової групи систем.

Крім того, ці методи спрямовані на задоволення запитів «того самого»

покупця одиночній системи; при цьому аналіз кола людей, зацікавлених

у появі даної групи систем (і включає потенційних покупців), не

проводиться.

• Відсутність відмінностей між моделюванням мінливості в рамках

однієї програми і між кількома додатками. У сучасних об'єктнооріє-

нтованих нотаціях не проводиться ніяких відмінностей між мінливістю

всередині програми - наприклад, мінливістю об'єктів в часі або за-

стосуванням різних варіантів об'єкта в різних місцях приниження - і

мінливістю між додатками, тобто мінливістю, що поширюється на різні

програми, призначені для різних користувачів і контекстів застосуван-

ня. Більше того, ті механізми реалізації, які в об'ектноорієнтованному

програмуванні призначені для реалізації мінливості всередині додатків

33

(наприклад, динамічний поліморфізм), задіюються і для забезпе-чення

мінливості між додатками. Наслідком такої практики є поява «роз-

дутих» компонентів і каркасів, з яких виходять «роздуті» додатка.

• Відсутність засобів моделювання мінливості, незалежних від реалізації.

Крім усього іншого, сучасні об'єктноорієнтован нотації не підтримують

незалежне від реалізації моделювання мінливості - наприклад,

складаючи діаграму класів UML, доводиться вирішувати, як краще

представити

даний змінючий параметр - шляхом успадкування, агрегації, параметризації

класів або за допомогою якого-небудь іншого механізму реалізації.

Простір рішень

Простір рішень, у свою чергу, складається з компонентів реалізації але

всіх можливих комбінаціях. Компоненти реалізації розробляються в розраху-

нку на максимальну сполучуваність (мета домогтися якомога більшої кі-

лькості можливих поєднань компонентів), мінімальну надмірність (випадків

дублювання коду має бути якомога менше) і граничне збільшення можли-

востей повторного використання.

При проектуванні простору завдання повинен дотримуватися один важ-

ливий принцип; згідно йому, коли ви запитуєте-якої компонент в породжує

щей бібліотеці, у вас як у прикладного програміста повинна бути можливість

вказати саме той рівень деталізації, який вам потрібен. Ситуація, при якій ви

змушені вдаватися до занадто сильною деталізації, неприйнятна в результаті

цього ваш клієнтський код стане занадто залежним від реалізації даної бібліо-

теки. Проте у вас повинна бути можливість вказувати деталі або навіть

пропонувати власні реалізації тих чи інших аспектів, якщо в цьому виникне

необхідність. Такий ступінь гнучкості стає можливою завдяки наявності

34

замовчувань, залежностей за замовчуванням і жорстких обмежень (тобто не-

припустимих поєднань характеристик).

Поділ на простору завдання і рішень забезпечує можли-ність їх від-

носно самостійного розвитку. Зокрема, в простір рішень можна вводити нові

компоненти або покращувати існуючі і якщо вони при пом продовжують

забезпечувати функціональні можливості, що визначаються простором завда-

ння, ніяких змін у клієнтський код вносити буде потрібно. Справа в тому, що

клієнтський код замовляє системи та компоненти засобами мови простору

завдання; за відображення специфікацій завдання на конфігурації нових

компонентів відповідає генератор. Отже, для того щоб впровадити новий

компонент, потрібно всього лише внести зміни в генератор. Далі, ми можемо

розвивати існуючі предметнооріентірованние мови про-стору завдання і

навіть розробляти нові. Цільові компоненти повинні забезпечувати необхідні

функціональні можливості, проте абсолютно необов'язково, щоб оптимальна

сполучуваність і мінімальна хати-точність були присутні в них із самого поча-

тку-з часом їх можна удосконалювати, не порушуючи простір завдання.

 Генерація коду

Генератор - це програма, перетворююча високорівневу спеціфікацію у

відповідне більше низькорівневе подання. Прикладами можуть бути просто

компілятори, або RMI компілятори, CORBA IDL компілятори і багато інших.

Зараз, майже кожен засіб UML моделдірованія або GUI конструктор забезпе-

чують автоматичну кодогенерацію. Концепція генераторів досить популярна,

тому що дозволяє:

• Висловлювати в специфікації системи «наміри» проектувальника,

справді, описи «намірів» легко розуміти, аналізувати, перевіряти, і під-

35

тримувати, тобто вони володіють всіми добрими якостями. Вони мо-

жуть бути виражені в DSL і оброблені генератором.

• Зміщення верифікації з рівня вихідного коду до рівня специфікацій, т. я.

код, вироблений генератором коректний з побудови, і як мінімум части-

на верифікаційного процесу може бути зміщена на специфікацію,

значно зменшуючи складність цієї фази. Для того, щоб цього досягти

коректність самих генераторів повинна бути строго доведено методами

формального аналізу, це одна з причин високої вартості і складності

розробки генераторів.

• Можливість досягнення ефективної реалізації. Генерація результуючого

коду зазвичай вельми ефективна. Допольнительно, генератори можуть

проводити можливо досить складні проміжні трансформації коду.

• Модулярізація. Так як генератори оперують певною кількістю невели-

ких, налаштованих компонентів, результуючий код виходить модульним

і з низьким ступенем зв'язності, які легко підтримувати, розуміти і по-

вторно використовувати.

Генерація є важливою частиною методології породжуючого програмуван-

ня. Тут під генерацією розуміється трансляція високорівневої специфіка-

ції, вираженої в термінах доменної моделі, або простору завдання у від-

повідну низькорівневу реалізацію в просторі рішень.

Справді, хоча рефакторінг ПЗ визнається як необхідний етап протягом

всього життєвого циклу програми, фактично конкретні приклади вдалого по-

стійного застосування рефакторинга досить рідкісні. Головна причина в тому,

що архітектурні, високорівневі характеристики розкидані по всьому про-

грамному коду, тому серйозні зміни зазвичай занадто ускладнені, щоб

проводитися. Часто практично неможливо проводити зміни у внутрішньому

дизайні ПЗ.

36

На відміну від цього, при породжує програмуванні, достатньо вносити

зміни до високорівневі специфікації, а генератор заново згенерує підсумковий

код. Таким чином це дає більше можливостей для ефективного рефакторінга

та розвитку.

Висновки

Описаний підхід пропонує інфраструктуру генерації програми з го-

тових компонентів, з метою надання можливості повторного використання

вже написаного вихідного коду. Важливим аспектом цього підходу є методика

виділення формального опису бажаних характеристик майбутньої програми

(формальних специфікацій) і знань про конфігурації, тобто інформації про те,

як і які компоненти можна комбінувати, домагаючись бажаного результату.

Так як в даній роботі розглядаються оптимізації, пов'язані з взаємодією

компонентів, то ймовірний тісний зв'язок між принципами такої оптимізації і

принципами породжуючого програмування. І такий зв'язок є: виявилося дуже

зручно багато ідей ПП використовувати для, здавалося б, іншої області - для

оптимізації. Детально ця тема розкрита в розділі II.

37

РОЗДІЛ 2. ТЕХНІКА КЕРУВАННЯ ОПТИМІЗАЦІЄЮ

ПРОГРАМ

2.1. Загальні принципи

У цій роботі розглядаються техніки, що представляють собою, у відмін-

ність від низькорівневих оптимізацій, зазвичай реалізованих у сучасних

компіляторах, більш абстрактний рівень компонентної оптимізації, пов'язаної

з агрегуванням і спільною взаємодією різних незалежних компонентів

усередині однієї програми.

Як правило, стандартні компоненти написані й підтримуються без

врахування того середовища в якому вони працюють у рамках кінцевої кліє-

нтської програми, тому просте їх комбінування зазвичай малоефективне й

затратно по швидкодії і пам'яті.

Особливо велику роль відіграє цей недолік у системах автоматично

генеруючих код, наприклад, в описаній раніше парадигмі породжуючого про-

грамування(ПП), а також для мов високого рівня, що просто не надають про-

грамісту можливість «ретельно» налаштувати використовувані компоненти.

Зазвичай, при розробці програм, оптимізації такого рівня проводяться

вручну програмістом, що, як було показано вище(у розділі 1.1), має ряд недо-

ліків.

У цій роботі, досліджується можливий підхід до розв'язку цієї про-

блеми, при якому пропонується використовувати автоматичні перетворення,

використовуючи додаткову інформацію, впроваджену вручну програмістом у

вихідний код у вигляді «анотацій» програми, що описують її властивості.

Лист

НАУ 13 08 06 000 ПЗ

 Розроб. Мельниченко

 Керівник. Авраменко О.А

 Н. Контр. Радішевський

 Зав.Каф. Сидоров М.О.

 Техніка керування
оптимізацією
програм

Листів

7.05010301

Кафедра ІПЗ

38

Виражаючи в такому вигляді додаткові «знання» про компоненти й інші

абстракції, що використовуються у програмі, можна досягти виконання

предметно-орієнтованих спеціальних оптимізацій властивих конкретній про-

грамі. Крім того, доповнюючи інформацію, вилучену з окремих компонентів,

з інформацією про контекст їх використання в клієнтській програмі, про те,

як вони один з одним скомпоновані й спільно взаємодіють, дозволяє більш

оптимально їх об'єднати й скомпонувати.

Основною ідеєю таких оптимізацій є автоматична модифікація й

«сполучення», припасування компонентів взаємодіючих один з одним для

досягнення більшої ефективності.

Підставою для цього є інформація про те, які саме компоненти один з

одним взаємодіють у даній конкретній програмі.

Оскільки на етапі розробки компонента не відомо в яких умовах він бу-

де працювати, неможливо заздалегідь урахувати й застосувати частину

оптимізацій.

Отримана вже на етапі розробки конкретного, «клієнтського» коду (але

не раніше!) інформація про те, які компоненти в ньому використовуються,

відкриває можливість поліпшити продуктивність даної конкретної комбінації

компонентів.

Така можливість є важливим кроком убік розробки програм за допомо-

гою автоматичного вибору й комбінування стандартних компонентів. Інакше

кажучи, оптимізації рівня компонентів є досить важливою необхідною

умовою для розробки в парадигмі породжуючого програмування (ПП).

Крім того, описані оптимізації є різновидом «спеціалізації» — особли-

вої техніки перетворення програм.

Як було вже описано в розділі 1.2.2, у теорії метаобчислень спеціаліза-

ція» використовується для того, щоб оптимізувати код конкретної функції на

підставі інформації про заздалегідь відомі значення деяких її параметрів. У

39

даному трактуванні це «спеціалізація» на підставі інформації про оточення:

про те які і як саме компоненти один з одним взаємодіють.

Тобто, такий механізм дає програмісту більш повний контроль над ви-

конанням оптимізацій, доповнює компілятор предметно-орієнтованими

оптимізаціями, що властиві конкретній програмі, і дає можливість більш ефе-

ктивно використовувати сторонні компоненти.

Рис 2.1. Сумісна робота компонентів

На рис 2.1 наведена илюстрація, що пояснює принципі та переваги по-

єднання компонентів. Сумісна робота компонентів має на увазі спільне ви-

користаня даними або іншими ресурсами.

40

AA

BB CC

DD EE

Сумісна робота
компонентів

компоненти

2.2. Анотації у вихідному коді

Анотації — це будь-які метадані, додаткова інформація, що зв'язується

з об'єктами використовуваними в програмі, або з ділянками коду, конструкці-

ями й структурними блоками програми.

Взагалі, будь-який компілятор, обробляючи вихідний код створює й ви-

користовує «внутрішні» анотації, перевіряючи різні семантичні обмеження та

ін. Очевидно, що типізація в мовах програмування сама по собі є заданим фі-

ксованим набором анотацій, що використовуються для статичної перевірки

коректного використання об'єктів у програмі. Крім того, анотації широко за-

стосовуються в системах автоматичного доказу коректності програм, тестува-

ння і т.п.

Але всім цим широко розповсюдженим прикладам використання

властивий цілий ряд недоліків і обмежень:

• Фіксований, жорстко заданий визначений набір анотацій. Неможли-

вість розширення або перевизначення, приводить до того, що не мо-

жна описати й відзначити додаткові бажані властивості об'єкта. Як-

що розглянути приклад із системою типів, то для багатьох ти-

пізованих мов неможливо описати алгебраїчний тип даних (АТД),

використовуючи стандартні мовні засоби .

• Неявне використання. Компілятори на різних етапах роботи зби-

рають різні види метаінформації, наприклад для кращої оптимізації,

але роблять це приховано й неявно, використовуючи внутрішні

структури. Це призводить до неможливості проконтролювати й

втрутитися в процес збору й обліку таких анотацій. Це недолік

проявляється подвійно, наприклад компілятор «не побачив», не роз-

пізнав можливість застосування деяких оптимизацій там де це мож-

ливо (як приклад, відома техніка оптимізації «хвостової рекурсії»)

41

або навпаки застосував невірну, «поспішну» оптимізацію (як при-

клад, проблема з невірною елімінацією незмінних змінних у циклі).

Крім того, інформація зібрана в одній фазі втрачається в іншій

• Повна автоматизація. Зазвичай метаінформація збирається й

обробляється повністю автоматично, наприклад для автоматичного

доказу коректності програми. Це тягне проблеми пов'язані з тим, що

в складних випадках метаінформацію або не вдається зібрати, або

вона невірно визначається. Це може виражатися наприклад у си-

нтаксичних помилках, а скоріше в синтаксичних обмеженнях (на-

приклад неможливість рекурсивного визначення нового типу).

• Фіксована область застосування. Це означає, що метаінформація ви-

користовується лише для деяких, дуже обмежених цілей, наприклад

для семантичної перевірки відповідностей змінних і т.п. У про-

граміста немає можливості утилізувати зібрані метадані про про-

граму для якихось інших цілей, не передбачених компілятором або

аналізатором. Як приклад можна відзначити, що додаткові семанти-

чні обмеження, можливі при використанні «фантомних» типів або

використовуючи «залежні» типи, неможливо описати в менш бага-

тих системах типізації.

• Обмеженість засобів використання. Так наприклад механізм анота-

цій введений у сучасних промислових ЯП дозволяє зв'язувати анота-

ції з об'єктами, але не з структурними ділянками коду. Крім цього,

анотація, що зв'язується з об'єктом не передбачає впливи на зміни

інших анотацій.

Тому під «анотаціями» у даній роботі розуміється механізм позбавле-

ний цих недоліків. Саме за допомогою таких перевизначених, розширених

анотацій і передбачається досліджувати можливість уведення оптимизацій рі-

42

вня компонентів. В подальшому, анотації обробляються системою автомати-

чних розмірковувань, тому запропонований синтаксис схожий на програми

мови Пролог: тобто у формі предикатів та функціональних символів.

Детальний опис граматики анотацій у BNF-формі наведений у розділі 3.2.

Нижче наведений приклад використання анотації:

any:: a->Bool->[a]->Bool

-- saturated(True)

any pred list = foldl (\res->\x-> res || x) False

 list

Це приклад стандартної функції any, що приймае на вхід список даних,

та шукає в ньому елементи, що задовольняють умові pred. При цьому, функ-

ція повертає позитивний результат, якщо хоча б один елемент був знайдений,

та негативний — в протилежному випадку. Наведений алгоритм неефекти-

вний, бо навіть якщо задовільний елемент був знайдений, функція усе одно

повинна пробігти по усьому списку.

Виділений середній рядок є анотацією, що передає додаткову інформа-

цію властиву цьому спеціальному випадку поєднанню стандартної функції

foldl та функціі, що обробляє список елементів: а саме те, що функція отри-

мавши значення True вже его не змінить ні при яких значеннях аргументу,

тобто вона насичується(saturated). Тому, ця анотація свідчить о можливості

дострокового переривання пошуку після того, як перший задовільний

елемент був знайдений.

Якщо анотація не містить назву змінної, то вважається, що вона від-

носиться до функції біля якої вона визначена. В цьому проявляється сутність

анотацій як метаобчислень — вони оперують елементами програми, функція-

ми, деклараціями, змінними тощо.

43

2.3. Логічні розмірковування використовуючи анотації.

Для того, щоб уникнути зазначених раніше недоліків властивих ти-

повим засобам анотування пропонується додержуватись принципів логічного

програмування.

Логічне програмування — це парадигма написання програм для

розв'язку завдань, які можуть бути описані в термінах об'єктів (або власти-

востей об'єктів) і відносин між ними.

Такий вибір цілком природний для анотацій, тому що вони в сутності й

описують різні властивості й відносини між програмними об'єктами. Декла-

ративну природу підкреслює той факт, що нас цікавить лише те, які саме ано-

тації пов'язані із програмою, але не спосіб і послідовність їх збору.

У теоретичному плані логічне програмування звичайно зв'язують із

формальною логікою, наприклад логікою предикатів або логікою першого

порядку. Варто відзначити, що стосовно до анотацій, на практиці виявилось

дуже зручно користуватись апаратом модальної логіки, а точніше її різнови-

дом - деонтичною логікою, про що докладно буде описано нижче.

Семантично програми в логічному стилі можна розглядати як опис

деякої логічної теорії, тобто як ряд аксіом і теорем у рамках цієї теорії. Ви-

конання таких програм відповідно розглядається як висновок доказу заданих

теорем.

Програми в логічній парадигмі складаються з оголошень трьох різних

типів:

• Оголошення деяких фактів (або аксіом) про об'єкти й відносинах

між ними. Цьому відповідають початкові атомарні відомості, мета-

дані зазначені програмістом.

• Визначення деяких правил про об'єкти й відносин між ними. Цьому

відповідають відомості про те, як анотації різних об'єктів зв'язані

один з одним, опис властивостей вкладеності, спадкування,

44

замовчування, правил поширення, та ін. якостей анотацій.

• Формулювання запитів (або теорем, цілей) про об'єкти й відносини.

Цьому відповідають твердження, виконуваність яких потрібно пере-

вірити. За результатами таких перевірок можуть виконуватись дії

вказані програмістом, що призводить до зміни поведінки або реалі-

зації конкретних компонентів.

Цей підхід не обмежує програміста фіксованим набором можливих ві-

домостей і властивостей, які він може вказати. Йому надається можливість

вказувати про програмні конструкції стільки додаткових відомостей, скільки

буде необхідно. Керуючи в явному вигляді атомарними відомостями, а також

правилами зв'язків між анотаціями, програміст може гнучко втручатися в

процес збору й аналізу анотацій, домагаючись бажаного результату. І нарешті,

додаючи нові анотації-твердження програміст може виразити додаткові обме-

ження, що накладаються на семантику різних об'єктів, тим самим довільно

розширюючи область застосування анотацій, незалежно від підтримки з боку

використовуваного компілятора.

Вертаючись до питання оптимізування, можна помітити, що зазначені

властивості анотацій дозволяють застосувати їх для опису нових технік

оптимизацій, невідомих компіляторові, а так само для опису ситуацій, коли

такі оптимізації можна застосувати (або навпаки, ситуацій, у яких їх

заборонено застосовувати).

Не обмежуючись визначеним набором доступних анотацій, програміст

може вказувати високорівневі відомості стосовно компонентів або ще більш

великих архітектурних блоків, що дає можливість застосовувати оптимізації

довільного рівня абстракції.

При розробці деякого компонента, можна врахувати й описати ряд

оптимизацій, які спрацюють тільки при виникненні певних ситуацій, у

45

певних контекстах. Але самі визначення таких контекстів можуть опиратися

на інформацію одержану набагато пізніше, вже на етапі використання цього

компонента в клієнтській програмі.

2.3.1. Використання ASP модулю прийняття рішень для виконання

логічних розмірковувань.

Для збору, аналізу, і автоматичних розмірковувань над анотаціями був

обраний модуль прийняття рішень, що підтримує ASP (Answer Set

Programming) підхід.

ASP — це особливий різновид декларативного, логічного програмуван-

ня, зосереджений на знаходженні мінімальної стабільної моделі для набору

зазначених фактів/правил. Це пов'язане з теоретико-модельною семантикою

(model-theoretic semantics) логічних програм. На практиці це позначає, що

ASP вирішувач намагається знайти мінімальний набір значень параметрів

повністю задовольняючих усім обмеженням і вимогам логічної програми.

Оскільки таких наборів може бути декілька (або нескінченно багато), алгори-

тми ASP аналізаторів схожі з алгоритмами нелінійного програмування й мо-

жуть орієнтуватися на задані фітнес-функції, що вказують ступінь придат-

ності даного конкретного набору параметрів.

Алгоритми ASP забезпечують більш багату підтримку, ніж класичні

Пролог-машини, коректно обробляючи ситуації, у яких резолюція пролог-

машини заходить у глухий кут, а також підтримує немонотонну логіку, класи-

чне заперечення, замовчування, диз'юнкцію тощо.

46

2.4. Оптимізації контейнерів даних

У цьому розділі розглянутий приклад високорівневої оптимізації,

пов'язаної з автоматичним вибором найбільш прийнятних структур для збері-

гання даних, використовуваних спільно різними частинами програми.

Кожна програма складається з набору логічно окремих, ізольованих

компонентів, взаємодіючих один з одним за допомогою обміну вхідними/ви-

хідними даними, найчастіше спискової природи: різноманітними масивами,

колекціями тощо. Для роботи з ними розроблено безліч різновидів контейне-

рів колекцій, з різними властивостями, характеристиками, обмеженнями й

оптимізованими під конкретні способи застосування.

У рамках одного компонента, на етапі розробки є можливість вибрати

найбільш прийнятну реалізацію, на підставі інформації про те, як і де викори-

стовуються внутрішні дані.

Зовсім інша ситуація при взаємодії зовсім різних компонентів, напи-

саних незалежно один від одного. Оскільки компоненти нічого не знають

один про одне, і про те, із чим їм доведеться взаємодіяти, для максимальної

спільності, програмісти прагнуть спроектувати їх так, щоб вони отримували

на вхід або повертали найбільш прості структури, які легко обробити й в

інших компонентах, втрачаючи в такий спосіб перевагу багатьох дуже ефе-

ктивних спеціалізованих реалізацій.

Автоматичний вибір реалізацій контейнерів, з урахуванням прагнення

найбільш повно відповідати специфіці різних компонентів — гарний приклад

застосування анотацій.

Насправді, тут буде потрібно, з одного боку, декларативно описати

властивості й можливості різних реалізацій (примітивні факти, у термінах ло-

гічного програмування), а з іншого — у яких випадках (контекстах) вони мо-

жуть застосовуватися (цілі або теореми, у термінах ЛП), а також описати ха-

47

рактер взаємодії компонент (propagation rules, правила взаємозв'язку між рі-

зними об'єктами), і нарешті, особливі обмеження, щоб уникнути вибору

некоректних реалізацій.

Крім цього, у багатьох випадках можливі кілька підходящих реалізацій,

тому можна продемонструвати застосування різних стратегій, заданих

оптимізаційними фітнес-функціями, на підставі яких вибирається найкращий

з деякого погляду варіант.

Варто нагадати, що цей природний і очевидний паттерн застосування

анотацій близько відповідає опису «знань про конфігурації» з парадигми

породжуючого програмування. Так, наприклад, обмеження відповідають

«неможливим комбінаціям характеристик систем», анотації вибору найбільш

підходящого варіанта відповідають «оптимізації», контексти (опису ситуацій,

коли необхідно застосувати ту або іншу реалізацію) — «залежностям за

замовчуванням» і т.п.

Нарешті, потрібно відзначити, що всі ці метадані є метаданими «за

замовчуванням» не потребуючими втручання програміста-розробника кліє-

нтського коду, що використовує готові компоненти. Але у випадку, коли

реальний результат не збігається з бажаним, програміст у будь-який момент

може втрутитися в процес, додавши нові анотації: правила, обмеження й опи-

си спеціальних випадків. Усе це можливо опираючись на виразні засоби, під-

тримувані сучасними ASP вирішувачами.

Рис 2.2. Семантика мінімальних моделей

48

2.4.1. Формалізація властивостей реалізацій контейнерів

Для моделювання були обрані наступні стандартні реалізації контейне-

рів:

Таблиця 2.1.

Реалізації контейнерів

Назва Опис Обмеження

computation Обчислення списку “на вимо-

гу”

Неефективний пошук

заданого ел-ту. Неможливість

сортування

Hashset Структура, що реалізує хеш-

словник. Швидкий пошук

елемента.

Не підтримує впоряд-

кованість ел-ів

Treelist Інкапсулює «червоно-чорне»

дерево. Швидкий пошук

елемента. Підтримка елементів

у заданому порядку

Linkedlist Зв'язний список. Елементи

впорядковані

Неефективний пошук

заданого елемента.

Arraylist Компактний список. Ефекти-

вний по вимогах до пам'яті

Неефективний пошук

заданого елемента.

Difflist Компактний список. Зберігає

перелік змін ел-ів. Корисний у

випадках «майже» константно-

го доступу до ел-ів.

Неефективний пошук

заданого елемента. Ефекти-

вність падає при великій кі-

лькості записів/змін
Для того, щоб коректно вибирати прийнятну реалізацію, необхідно

повністю описати мовою анотацій усі переваги й недоліки кожної реалізації,

давши тим самим можливість автоматичного висновку за певними правила-

ми.

49

2.4.2 Формалізація операцій над контейнерами даних

На підставі того, як саме використовуються контейнери, які саме опера-

ції над ними проводяться, автоматично вибираються потрібні реалізації. Для

того, щоб мати можливість такого вибору, необхідно формально описати від-

повідність між операціями й відповідними для них реалізаціями.

Таблиця базових операцій, і їх вимоги до реалізації

Таблиця 2.2

Операції над контейнерами

Назва Опис Особливостi реалізації

at,

raccess

Доступ до довільного ел-

ту контейнера

Неефективна для зв'язного списку.

Для реалізації виду «computation»

можливий лише однократний доступ

at,

seqaccess

Послідовний доступ до

елементів масиву

Припустима для реалізації

«computation»

size Отримання кілкості ел-ів

контейнеру

Ефективна, якщо контейнер

«пам'ятає» свій розмір

map,

seqaccess

Перетворення всіх ел-ів

контейнеру

Придатна навіть для реалізації

«computation»

sort Сортування ел-ів

контейнера

Не підтримується реалізаціями, що

не забезпечують порядок проходжен-

ня ел-ів. Не підтримується реалізаці-

єю «computation»

find Пошук потрібного ел-та Неефективна для зв'язного списку

insert Додавання ел-та в

довільне місце

Неефективна для компактних реаліза-

цій; Не підтримується для

«computation»
Видно, що в різних операціях багато різних умов для ефективного ви-

конання.

50

Взаємозв'язок між екземплярами контейнерів

У рамках однієї програми звичайно використовується безліч різних

контейнерів так чи інакше один з одним зв'язаних. Наприклад, якісь

контейнери були отримані сортуванням або іншим перетворенням раніше

створених контейнерів. Над кожним з них проводиться свій набір операцій, і

відповідно різні екземпляри використовуваних у програмі контейнерів очеви-

дно можуть мати різну реалізацію.

Таким чином, при виборі реалізації для кожного конкретного екземпля-

ру контейнеру необхідно враховувати не тільки вимоги проведених над ним

операцій, але й простоту(або складність) перетворення, переносу інформації з

урахуванням взаємозв'язку контейнерів між собою. Така інформація відома

тільки на етапі написання клієнтського коду (а це означає що вона не може

бути передбачена при розробці компонентів) і крім того, у складних, багато-

ланкових програмних архітектурах вибрати прийнятні реалізації з урахуван-

ням взаємозв'язків — складне завдання навіть для програміста клієнтського

коду.

Завдання автоматичного вибору реалізацій у такий спосіб розширює-

ться до того, щоб не тільки вказати для кожного контейнера його прийнятну

реалізацію, але й «розмітити» відносини між контейнерами найбільш

оптимальним образом. Тут під «відношенням» розуміється спосіб перетворе-

ння одного контейнера в іншій.

На цю ситуацію можна глянути з іншого боку, з боку проблеми

розв'язання конфліктів. Насправді, не завжди вдається підібрати таку реаліза-

цію, яка б задовольняла й підходила під усі вимоги й обмеження програми.

Для того, щоб уникнути таких ситуацій потрібно застосовувати т.зв. стратегії

розв'язання конфліктів.

Суть таких стратегій у тому, що для різних операцій, у різних

51

компонентах і т.п., «підсувати» різні реалізації, «безшовно», автоматично їх

перетворюючи одну в іншу, без явних вказівок.

Нижче наведений перелік обраних для моделювання стратегій розв'яза-

ння конфліктів, вони ж — можливі взаємозв'язки/відносини між різними ек-

земплярами контейнерів.

• «Inherit». Означає, що в породженого контейнера реалізація «успад-

кована» від батьківського

• «Transform». Означає, що реалізація породженого контейнера пере-

творена щодо батьківського контейнера, утягуючи при перетворенні

й перенесення даних.

• «Multiindex». Описує випадок, коли реалізація породженого

контейнера містить у собі додатковий індекс у порівнянні з реаліза-

цією батьківського. Підхід широко застосовується в СУБД, дозволя-

ючи для однієї й тієї ж таблиці/набору даних зберігати кілька

індексів. Оскільки при зміні вмісту необхідно перебудовувати й усі

індекси, то ефективність використання досягається тільки при read-

only доступі.

• Support. Комбінація реалізацій. Контейнер зберігає й «підтримує»

відразу кілька реалізацій, використовуючи для кожної операції

найбільш прийнятну операцію. Відрізняється від «multiindex» тим,

що незалежно зберігає кілька копій даних, а не тільки різні індекси.

У кожного методу зв'язку є переваги й недоліки. Так, наприклад

найбільш простий і найменш витратний - «inherit», що означає, що реалізацію

змінювати не потрібно, не можна використовувати якщо використовуються

операції потребуючі зовсім різних структур зберігання даних. На противагу

цьому набагато більш універсальний метод «support», що неявно підтримує

52

стільки реалізацій, скільки буде потрібно, дуже неефективний по пам'яті —

припускаючи зберігати кількох копій даних, і в той же час неефективний по

продуктивності — при кожній зміні даних потрібно вносити корективи в кож-

ну «підтримувану» структуру.

У якості короткого прикладу, що пояснює вищеописане, можна навести

наступний рядок коду:

 b = sort(a), де a, b — це спискові контейнери.

Одним з можливих результатів розмітки такого коду, може бути наступ-

на інформація:

«a»: Hashset,

«a'»: Linkedlist,

«b»: Linkedlist,

«a — a'»: transform,

«a' — b»: inherit.

Тут, «а'» - це проміжна змінна, «a — a'», «a' — b» - це типи відносин

між змінними. Такий розв'язок позначає, що спершу створюється проміжна

змінна «a'» з відмінною від «а» реалізацією, у неї копіюються дані, і потім її

вміст сортується зі збереженням результату в змінній «b» використовуючи та-

ку ж реалізацію.

Таким чином на підставі зв’язків мж екземплярами контейнерів та

операціями, що над ними проводяться можливо підібрати найбильш прийнят-

ні реалізцації

53

2.4.3. Фітнес-функції: вибір найкращого розв'язку

Майже завжди можливо підібрати декілька «мінімальних моделей» (у

термінах ASP) — варіантів розв'язку, варіантів анотування обмеженням, що

задовольняють усім особливостям як використовуваних операцій, так і ви-

користовуваних реалізацій контейнерів.

Як приклад, можна привести «Treelist» - це найбільш універсальна

реалізація, яка з однієї сторони дозволяє проводити досить ефективний

пошук потрібного ел-та (логарифмічна складність), а з іншого — підтримує

порядок проходження ел-ів (звичайно, тільки для ел-ів утворюючих решітку).

І в більшості випадків «Treelist» задовольняє всім вимогам програми, тому

можна (майже) завжди використовувати саме цю реалізацію. У цьому ви-

родженому випадку губились б переваги використання більш спеціалізованих

і ефективних реалізацій.

Таким чином, зрозуміло, що встає проблема вибору найбільш вірного

варіанта анотування, який не тільки задовольняє всім вимогам і обмеженням,

але й робить це якнайкраще. На щастя,ASP алгоритми прийняття рішень, на

відміну від більш традиційних Пролог-машин вміють справлятися з такими

ситуаціями, використовуючи крім логічної програми ще й фітнес-функції, що

обчислюють «оцінку» — числовий еквівалент корисності й ефективності ко-

жного варіанта розв'язку. Процес вибору найбільш кращого розв'язку — є

пошуком екстремуму фітнес-функції, її максимізації.

Детальне пророблення фітнес-функцій є окремою великою темою. То-

му в даній роботі її вигляд дещо спрощений.

54

Семантика фітнес-функції

Фітнес-функція побудована з урахуванням прагнення оптимізувати на-

ступні показники:

• Введений захід ефективності виконання операції. Так, для кожної

пари («Операція», «Реалізація») — проставлена оцінка, що показує

ефективність із якою може бути виконана «Операція» в даній

«Реалізації». Оцінка проставлена відповідно до класу «Big-O» нота-

ції складності виконання. 0 — логарифмічну складність виконання,

1 — константну складність. Сумарна оцінка заходу ефективності в

обсязі всієї програми повинна бути найбільшою.

• Введені штрафи за використання неефективних структур даних. На-

приклад пошук ел-та у зв'язному списку — це неефективна опера-

ція, що має лінійну складність. За кожну неефективну операцію

нараховується штраф. Очевидно, що сумарний штраф в обсязі всієї

програми повинен бути мінімальним.

• Ранжирувані методи перетворення контейнерів. Сумарна кількість

перетворень повинна бути мінімальною.

• Облік абстрактних характеристик. Цей термін відноситься до те-

рмінології породжуючого програмування, і в даному конкретному

випадку означає облік деяких властивих реалізаціям характеристик.

Наприклад, віддається перевага компактним структурам даних,

через їх більш ефективного використання пам'яті.

• Установлені додаткові обмеження. Такі обмеження вказують на варі-

анти розв'язку які досить погані, щоб їх відкинути ще до етапу під-

рахунку оцінок. Наприклад, використання неефективних операцій у

циклі.

55

2.4.4. Алгоритм оптимізації контейнерів даних

Витягуючи метаінформацію, анотації з вихідного коду стандартних

компонентів системи формують, виражаючись термінами експертних систем,

експертні знання, базу знань. Ця база складається з анотацій, що описують

характеристики реалізацій, вимоги операцій, залежності й параметри за

замовчуванням, правила розв'язання конфліктів або правила взаємозв'язків,

додаткові обмеження, що описують неможливі розв'язки, і нарешті, оцінки

розв'язків і опис фітнес-функцій.

З іншого боку, аналізуючи вихідний код клієнтської програми, формує-

ться оперативні, «тактичні» знання, факти, застосовні тільки для цієї про-

грами. Сюди входить дерево екземплярів контейнерів і додаткові анотації,

уведені програмістом клієнтського коду, що перевизначають або уточнюють

частину раніше зібраних анотацій. Важливо, що ці анотації використовую-

ться «ad-hoc» і не можуть вплинути на обробку інших програм.

Дерево екземплярів — це дерево, вузлами яких є всі використовувані в

програмі змінні що містять екземпляри контейнерів. А ребра між вузлами —

це залежності між змінними-екземплярами. Вони відбивають порядок створе-

ння контейнерів, шляхом копіювання або перетворення один в одного.

Кожному вузлу приписуються операції, які фактично в програмі

обробляють відповідний до цього вузла екземпляр (змінну). А кожному ребру

приписується вид взаємозв'язку (усі можливі види були описані вище).

На наступному етапі перевіряється відповідність отриманого дерева

всім обмеженням.

Для цього виділяються кластери. Кластер — це набір суміжних вузлів,

що мають між собою ребра типу «inherit». Інакше кажучи, кластер — це

набір змінних, що мають однакову реалізацію. Коренем такого кластера є

56

вузол-змінна, з якого прямо або побічно утворені всі інші вузли кластера. Це

позначає, що всі змінні «успадковують» реалізацію кореня кластера. Реаліза-

ція кореня кластера вибирається так, щоб всі операції приписані іншим чле-

нам кластера «дозволяли» її використання.

Якщо таку реалізацію знайти неможливо, кластер ділиться на більш

дрібні суб-кластери, намагаючись вже для них ізольовано знайти відповідну

реалізацію. Зв'язки між кластерами — це ті або інші перетворення: зміни

реалізації, додавання нового індексу й т.п.

Оптимізація фітнес-функції прагне розбити дерево на як можна меншу

кількість кластерів (тобто використовувати якнайменше різних реалізацій),

але в те ж саме час, щоб реалізація обрана для кожного кластера добре

справлялася з операціями, з ним зв'язаними.

Ще раз варто повторити, що більша частина анотацій — статичні,

стратегічні знання, прописуються однократно на етапі розробки конкретного

компонента. Із клієнтського коду виділяється лише інформація о використан-

ні компонентів, за винятком випадків, коли програмістові клієнтського коду

дійсно потрібно щось виправити й налаштукати.

Таким чином, додаткова інформація, включена в код компонентів,

«включається» і «спрацьовує» лише в з'єднанні з оперативною, тактичною

інформацією про графа керування в програмі, або про графа використання.

Приклад з вибором реалізації контейнерів демонструє застосування

саме графа/дерева використання цих компонентів.

Інформація для автоамтичних розмірковувань збирається як на підставі

вручну внесених анотацій, так і на підставі синтаксичного аналізу, аналізу по-

току даних тощо.

57

Автоматичне перетворення коду

Перетворення програмного коду, вручну або автоматично, викори-

стовується для різних цілей і відповідно проводиться різними способами.

Розглянемо докладніше взаємовідношення між двома різновидами перетворе-

ння: оптимізацією й рефакторингом.

Оптимізація — це процес еквівалентної зміни коду програми з метою

прискорити продуктивність. «Агресивні» техніки змінюють код до невпізнан-

ності, порушуючи інкапсуляцію й логічні зв'язки між програмними об'єктами.

У той же час, рефакторинг — процес еквівалентної зміни з метою полегшен-

ня розуміння тексту програми, пошуку помилок у ній, спільної розробки

командою розробників, і так само, як наслідок, полегшення супроводу й під-

тримки. Проводиться рефакторинг виділенням логічно ізольованих частин,

домагаючись створення ясної структури програми, а так само внесенням кон-

струкцій, що пояснюють намір програміста, що обмежують, що й пропону-

ють певну поведінку й взаємодію об'єктів.

Як вже було показано, рефакторинг і оптимізація в загальному випадку

використовують протилежні один одному стратегії й часто доводиться виби-

рати котрій з них віддати перевагу, і в якій мірі.

Для того, що б послабити в деякій мері це протиріччя можна викори-

стовувати ряд автоматичних стратегій перетворюючих «оригінальний» зру-

чний для розробки код у його більш оптимізовану версію на етапі без-

посередньо компіляції.

Нижче будуть розглянуто кілька таких стратегій або ідіом з погляду

здійсненності на основі використання анотацій.

Ітератори.

Ітератори — це ідіома, заснована на ідеї програмно виразити спосіб ви-

користання деякого об’єкта клієнтським кодом. Таким чином, програміст,

58

надаючи інформацію про те, як він використовує даний об’єкт, дозволяє це

врахувати й згенерувати більш ефективний код для даного конкретного

способу використання.

Ітератори в більшості випадків використовуються у зв'язку з колекція-

ми. Ітератори послідовного доступу, довільного й т.п. — інкапсулюють

стратегію обходу елементів колекції. Від необхідності створювати і явно ви-

користовувати ітератори програміста рятує той факт, що можна автоматично

визначати засіб обходу колекції й автоматично перетворювати код, при-

стосовуючи його саме до використовуваного типу обходу.

Для функціональних мов класичним способом обходу колекцій є

мапери. Так, для мови haskell визначена функція вищого порядку map у такий

спосіб: map :: (a -> b) -> [a] -> [b], що означає, що вона приймає на вхід

список ел-ів і функцію перетворення, і повертає новий список, що складає-

ться з перетворених елементів старого списку. Функція перетворення — це

аналог тіла циклу для імперативних мов, одержує як параметр черговий

елемент вихідного списку, а результат цієї функції — стає черговим

елементом підсумкового списку. Оскільки функція перетворення може ви-

користовуватись в різних контекстах, у загальному випадку усередині неї не-

зрозуміло в якій послідовності вибираються й подаються на її вхід ел-ти.

Недолік інформації про контекст є зворотною стороною інкапсуляції й

абстрагування коду перебору ел-ів від коду перетворення конкретного значен-

ня.

Інформацію про контекст використання можна заповнити, викори-

стовуючи анотації. Тоді, усі звертання до ел-ів списку усередині даного ци-

клу позначаються анотацією контексту, що дозволяє вгадати до якого ел-ту

відбудеться звернення наступного разу, і, наприклад, заздалегідь його закешу-

вати.

59

Flyweight

Ця ідіома дозволяє зменшити обсяг пам'яті що зайнята колекцією

об'єктів, уникаючи дублювання однакових частин цих об'єктів. Її застосуван-

ня можна розглядати як засіб зберігання колекції у вигляді стислого,

упакованого представлення колекції в пам'яті. Ця ідіома звичайно реалізує-

ться створенням особливого об'єкта-«фабрики», що формує об’єкт-член коле-

кції «по запиту», як би «розпаковуючи» його дані, його внутрішній стан зі

стислого представлення.

Недоліком використання цього паттерна є зниження наочності вихідно-

го коду програми, у якій (якому) замість явно зазначеної колекції об'єктів фі-

гурують «фабрики», приховуючи інформацію про тип оброблюваних даних.

Крім того, використання цього паттерна зменшує ступінь повторного викори-

стання коду, не даючи можливості передавати дані на обробку компонентам і

функціям, що ухвалюють саме колекції в явному вигляді, наприклад, немає

можливості використовувати стандартні засоби для обробки колекцій у та-

кому випадку. Зазначені недоліки перешкоджають широкому використанню

цієї корисної ідіоми.

Застосування анотацій може дозволити автоматично застосовувати цей

паттерн у випадках коли це необхідно. Програміст описує за допомогою ано-

тацій лише ті дані (поля), які не повинні дублюватися.

Кешування

Одним з основних способів оптимізації практично будь-якої комп'юте-

рної програми є кешування. Кешування — це виділення й збереження

проміжних даних для повторного використання тим самим або іншими

компонентами.

Зазвичай, в імперативних мовах для кешування використовують рі-

60

зновиди паттерна Registry — тобто створення окремого об’єкта-«одинака»,

який зберігає додаткову інформацію, доступну для читання/запису по ключу.

Недолік цього підходу в складності відстеження, що інформація кешується

раніше, ніж вона використовується, у складності відстеження актуальності

збереженої інформації й т.п.

У середовищі функціональних мов такий підхід не використовується

через руйнуючу семантику цього паттерна, що веде до побічних ефектів. То-

му використовується ряд стратегій на основі використання кортежів (tupling).

Суть підходу в тому, щоб перетворити функцію так, щоб вона крім основного

результату повертала також результати проміжних обчислень, які передаю-

ться як аргументи наступної функції.

Складність автоматичного застосування цієї стратегії в тому, щоб розпі-

знати загальні підвирази в різних функціях. Цю проблему можна виправити

використовуючи анотації для того щоб дані, доступні для повторного викори-

стання, позначати тегами, тим самим указуючи системі які саме частини ви-

користовуваних підвиразів поєднувати з результатом і передавати як

параметри для інших функцій.

61

РОЗДІЛ 3. РЕАЛІЗАЦІЯ ЗАСОБУ КЕРУВАННЯ

ОПТИМІЗАЦІЄЮ ПРОГРАМ

Керування оптимізацією програм за допомогою анотацій виконується

окремою фазою трансляції вихідного коду на мові программування Haskell,

що також містить додаткові анотації, у байт-код віртуальної машини LLVM.

Тому, для демонстрації, було побудовано консольну утиліту, написану

на мові программуваня С++, яка працює у UNIX середовищі, та являє собою

транслятор, що містить у собі цю специфічну фазу.

Ця утиліта приймає на вхід текст комп'ютерної програми, проводить

компіляцію, залучаючи фазу виконання компонентно-орієнтованих оптиміза-

цій, генерує байт-код віртуальної машини LLVM, та виконує його, викори-

стовуючи штатний JIT-компілятор віртуальної машини LLVM.

Окрім цього, на фазі обробки анотацій залучається функціонал сторон-

ньої утіліти clasp — системи автоматичних міркувань у стилі логічного про-

грамування ASP. Формується особлива логічна програма, що дотримується

синтаксису clasp, та передається для виконання автоматичних міркувань. Ре-

зультати знайдених розв’язків використовуються для точного визначення усіх

необхідних параметрів автоматичного перетворення вихідного коду програми

задля оптимізації.

Загальна структура демонстраційної утіліти пояснюється у розділі 3.1.

Деталі обробки анотацій та стислий опис системи clasp надано у розділі 3.4.

Деталі генерації байт-кода та стислий опис віртуальної машини LLVM надано

у розділі 3.5.

Ефекти виконання запропонованих оптимізацій аналізуються на при-

кладі декількох нескладних тестових програм.

Лист

НАУ 13 08 06 000 ПЗ

 Розроб. Мельниченко

 Керівник. Авраменко О.А

 Н. Контр. Радішевський

 Зав.Каф. Сидоров М.О.

 Реалізація засобу
керування
оптимізвцією

Листів

7.05010301

Кафедра ІПЗ

62

3.1. Загальна структура транслятору

На рис. 3.1. приведена загальна структура розробленого транслятору.

З лівого боку зображені модулі, що є типовими для компіляторів. Це є

лексичний та сннтаксичний аналізатори, на виході з яких формується AST —

абстрактне синтаксичне дерево. Грунтуючись на цьому дереві наступний

модуль — семантичний аналізатор – будує структури, що пригодні для на-

ступних трансформацій та трансляції.

З правого боку зображені модулі, що обслуговують обробку анотацій.

Так, екстрактор анотацій збирає і відокремлює від віхидного коду програми

усі знайдені анотації. Знайдені анотації за допомогою результатів статичного

аналізу, виконаного семантичним аналізатором перетворюються аналізатором

анотацій до особливої логічної програми, придатної до обробки стороннюю

системою проведення автоматичних міркувань.

Керуючись розв’язками логічної програми окремий модуль виконує від-

повідні еквівалентні перетворення програми на рівні проміжного представле-

ння вихідного коду.

Отримане після усіх наданих трансформацій остаточне проміжне пред-

ставлення транслюється генератором байт-коду у програму на мові IL LLVM,

що розміщується безпосередньо у пам’яті. Надалі ця програма виконується

штатним JIT-компілятором віртуальної машини LLVM.

Усі проміжні шаги виконуються беспосередньо у пам’яти.

63

Рис 3.1. . Структурна схема транслятору

64

3.2. Опис лексичного та синтаксичного аналізаторів

Лексичний те синтаксичний аналізатори були автоматично сгенеровані

на підставі формальної специфікації у форматі ANTLR 4. Таким чином було

реалізовано распізнавання підмножини сіитаксису язика программування

Haskell.

Граматика підмножини Haskell відображена у додатку 1. Нижче

наведена формальна граматика для відокремлення анотацій від основного ви-

хідного коду програми та іх подальша обробка.

Predicate ::= predname

| predname(Expr1,..,Exprk)

| predname(metavar, Expr1, ..., Exprk)

Expr ::= empty | var | num

| literalconst

| Fun

Fun ::= funname (Expr1, ..., Exprk)

| funname(metavar, Expr1, ...,

Exprk)

Лексичний аналізатор відокремлює коментарі з вихідного коду про-

грами та передає їх модулю-екстрактору анотацій. Увесь інший текст про-

грами передається синтаксичному аналізатору.

Мета роботи лексичного та синтаскичного аналізаторів побудувати AST

— спеціальну структур даних, що відображае синтаксичну структуру про-

грамми.

На рисунку 3.2 відображена UML-діграма базових класів лексичного та

синтаксичного аналізаторів. Клас HkGrammarLexer оброблює вхідний набір

символів, та, проводячи лексичний аналіз, заповнює структуру TokenStream,

65

що инкапсулює набір роспізнаних токенів. Цей набір є вхідним до класу

HkGrammarParser, код якого автоматично сгенерований за допомогою

генератора системи ANTLR v3.

Рис 3.2. UML діаграма модулів лексичного та синтаксичного аналізаторів

Клас HkGrammarParser инкапсулює синтаксичний аналізатор, що на

основі даних з TokenStream будує абстрактне синтаксичне дерево.

66

Абстрактне синтаксичне дерево відображае синтаксичну структуру

програми, та відповідає класу CommonTree — це древовидна структура, ко-

жен вузол якої містить відповідний лексичний токен з вихідного коду про-

грами.

На рис. 3.3 наведений приклад абстрактного синтаксичного дерева для

наступного коду:

inc:: Int->Int

inc x = x + 1Рис 3.3.

Рис 3.3 Приклад AST дерева

67

3.3. Семантичний аналізатор

Семантичний аналізатор обробляє AST дерево, отримане на попедньо-

му етапі. В результаті такої обробки перевіряється семантична коректність

програми, заповнюються внутрішні структури с інформацією о програмі.

С точки зору анотацій важлива таблиця вибору реалізації функції

грунтуючись на типах змінних.

Наприклад:

class List s a where

size':: a->Int

instance List ComputationList [a] where

size' list = length list

instance List ArtrayList [a] where

size' list = 1 + length list

Цей код дозволяє використовувати одну з декількох реалізацій функції

size` тому потрібно для кожного випадку використовування визначити на під-

ставі информації о типах змінних потрібну реалізацію. Таким чином, будує-

ться таблиця підтримки “ad-hoc” поліморфізму.

Нижче неведений приклад такої таблиці:

Таблиця 3.1.

Приклад таблиці підтримки поліморфізму

ідентификатор Назва ф-ції Реалізація

1 sort 1

2 sort 1

3 sort 2

68

На прикладі видно що в деякій програмі, різні визови ф-ції sort викону-

ються різними реалізаціями.

Ця структура даних важлива тим, що саме на неї впливає результат ло-

гічних розмірковувань над анотаціями. Тобто наразі, вплим анотацій на

обработку програми обмежений маніпуляцію с даними цієї таблиці, що до-

зволяє використовувати в кожному окремому випадку саме потрібну реаліза-

цію.

Результатом семантичного аналізу є структура у вигляді дерева, під на-

звою S-expressions, тобто оберенена польска нотація.

На рис 3.4 приведений приклад цієї структури для програми виду:

main = func1 (a + b, 8)

Рис 3.4. Приклад S-expressions дерева

69

3.4. Обробка анотацій

На фазі лексичного аналізатору анотації відокремлюються та обробля-

ються окремим чином. Наприклад у коді наведеном нижче, лексеми, що

знаходяться у коментарях збираються та подаються на вхід екстрактора ано-

тацій.

any:: a->Bool->[a]->Bool

-- saturated(True)

any pred list = foldl (\res->\x-> res || x) False

 list

Екстрактор анотацій відокремлю коректні анотацій та підготовлює їх у

форми, прийнятноі до обробки аналізатором анотацій. Аналізатор анотацій

користується декількома джереами анотацій збираючи их усі у купу. На рис

3.5.наведена диаграма джерел анотацій.

Рис 3.5. Різні види анотацій

Ці іиди анотацій збираются з: окремих файлів, коду біблиотек и

70

Визначення

Правила
відповідності

Правила
росповсюдження

Статичний
аналіз

Правила
обмірковувань

«ad-hoc»
анотації

компонентів, коду клиєнтьскої програми. Крім того ці штучно сформовані

анотації доповнюються даними статичного аналізу та виводяться на підставі

правил розмірковувань.

Рис 3.6. Процес сбору та обробки анотацій

Таким чином, анотації збираются и подаються у вигляді логічної про-

грами на вхід сторонньої утіліти, що виконує автоматичні розмірковування. В

даній реалізації розв’язки, шо були знайден, впливають на таблицю підтри-

мки поліморфізму, тим самим це дає можливість обрати потрібну реалізацію

для кожної програмної ф-ції.

71

Біблиотечний кодОкремі файли

Клієнтський код Статичний аналіз

Система автоматичних�
розмірковувань

(CLASP)

Рішення та розв’язки

3.5. Демонстрація використання

3.5.1. Демонстрація відкладених обчислень

Як було вже показано серед змодельованих реалізацій контейнерів є та-

ка, що пов’язана з відкладеними обчисленнями. Особлива відмінність цієї

реалізації полягає в тому, що замість значень елементів, в цьому контейнері

зберігається алгоритм(функція), що генерує значення елементів при потребі.

Цей розділ призначений щоб продемонструвати використання цього

контейнеру.

Для цього, розглянемо наступну функцію:

example:: Int->Int

example x = sum $ filter (>x) [1..10]

Ця фунція розраховує суму елементів у списку, що більше за даний.

Щоб явно відобразити проміжні змінні іі потрібно переписати наступним чи-

ном:

example:: Int->Int

example x = let a = [1..10],

 b = filter (>x) a

 in sum b

Наступним кроком потрібно дати означення стандартним функціям

sum і filter:

sum :: [Int]->Int

sum list = foldl (\acc->(\el-> acc + el)) 0 list

filter :: (Int->Bool)->[Int]->[Int]

72

filter ffn list = foldl (\prefix-> (\el->

if (ffn el) then (prefix ++ [el]) else prefix)) []

list

Таким чином, враховучи, що параметри передаються за значенням, про-

грама містить 4 проміжні змінні:

a = [1..10]

tmp2 = a /внутрішня змінна filter/

b = filter .. a

tmp3 = b /внутрішня змінна sum/

На рисунку 4.1 відображені 4 проміжних контейнера даних у вигляді

кіл. Стрілками позначена операція копіювання вмісту контейнерів. Також

показано, над якими контейнерами які операції виконуються. Зокрема

“seqaccess” позначає операцію що потребує послідовного доступу не зміню-

ючи змісту контейнера. Еліпсом позначені ті проміжні змінні, що відносяться

до одного кластеру, тобто повинні мати однакову для всього кластеру реаліза-

цію. Це є наперед задане обмеження, виходячи з того факту, що змінна “b” є

результатом операції фільтрування над проміжною змінною “tmp2”.

Таким чином, задача системи прийняття рішень полягає в тому, щоб на

підставі інформації о том, які операції проводяться над контейнерами,

враховуючи вказані обмеження, вибрати найбільш оптимальні реалізації для

кожного контейнеру, в той же час, намагаючись мінімізувати кількість пере-

творень при копіюванні даних.

73

рис 4.1. граф потоку даних

Частина логічної програми, що пов’язана с результатами статичного

аналізу DFA — тобто аналізу потоку даних, граф якого приведений на рис.

4.1. виглядає наступним чином:

var(a).var(tmp2). var(b). var(tmp3).

var_connection(a, tmp2).

bind_var_op(tmp2, seqaccess).

var_connection(tmp2, b, ct_inherits).

74

var_connection(b, tmp3).

bind_var_op(tmp3, seqaccess).

Предикат bind_var_op(var, op) ставить у відповідність

контейнеру var операцію op, що над ним виконується. Предикат

var_connection(var1, var2, type) ставить у відповідність

тип зв’язку між контейнерами.

Система прийняття рішень находить наступну оптимальну стратегію:

bind_var_impl(a, computation).

var_cluster(a, a).

var_cluster(a, tmp2).

var_cluster(a, b).

var_cluster(a, tmp3).

Це рішення позначає, що усі змінні входять в один кластер – тобто

мают однакову реалізаціє, а саме реалізацію “computation”, тобто програма не

потребує додаткової пам’яті для зберігання проміжних контейнерів.

Висновки

Цей приклад продемонстрував, що система прийняття рішень коректно

розпізнає можливість використовування відкладених обчислень, а також

надає програмисту інструменти важілі впливання на співвідношения швид-

кість/об’єм пам’ті, використовуючи відповідні анотації.

75

ВИСНОВКИ

76

ДОДАТОК А. РЕАЛІЗОВАНА ПІДМНОЖИНА

СИНТАКСИСУ HASKELL У НОТАЦІЇ BNF

atomic ::= literal | variable | (expr)

 | (expr1 , ... , exprk)

 | [expr1 , ... , exprk]

 | [expr1 [, exp2] .. [expr3]]

 | (atomic oper)

 | (oper atomic)

 | (symoper)

expr ::= atomic | expr atomic

 | expr oper expr /infix operator /

| - expr /negative numbers/

 | let decls in expr

 | expr where decls

 | if expr then expr else expr

 | \ variable -> expr /lambda/

pattern ::= literal /constant/

 | variable (a variable)

 | (pattern)

 | (pattern1 , ... , patternk) /a tuple/

 | [pattern1 , ... , patternk]

 | constr pattern

body ::= { impdecls ; topdecls }

77

| { impdecls }

| { topdecls }

topdecls ::= topdecl1 ; ... ; topdecln

topdecl ::= type simpletype = type

| data [context =>] simpletype = constrs

| default (type1 , ... , typen) | decl

decls ::= { decl1 ; ... ; decln }

decl ::= gendecl | (funlhs | pat0) rhs

gendecl ::= vars :: [context =>] type /type/

| (empty declaration)

ops ::= op1 , ... , opn

vars ::= var1 , ... , varn

simpletype ::= tycon tyvar1 ... tyvark

funlhs ::= var apat {apat }

rhs -> = exp [where decls]

78

ДОДАТОК Б. ЛОГІЧНА ПРОГРАМА АЛГОРИТМУ ВИ-

БОРУ РЕАЛІЗАЦІЙ КОНТЕЙНРІВ ДАНИХ

%defines:

implementation(hashlist).

implementation(linkedlist). implementation(treelist).

implementation(computation).

operation(at). operation(sort).

operation(insert). operation(seqaccess).

connection_type(ct_inherits).

connection_type(ct_convert).

relation (recommends). relation (satisfied).

relation(unsupported).

relation_score(satisfied, 0).

relation_score(recommends, 1).

relation_score(unsupported, -1).

%integration facts:

relation_op(seqaccess, computation,

recommends).

relation_op(at, hashlist, recommends).

relation_op(at,treelist, satisfied).

relation_op(sort, linkedlist, satisfied).

relation_op(sort, treelist, satisfied).

relation_op(sort, hashlist, unsupported).

%static analysis:

79

%domain rules:

impl_fulfill(OP, IMPL, SCORE):- relation_op(OP,

IMPL, RL), relation_score(RL, SCORE), operation(OP),

implementation(IMPL), RL!=unsupported.

impl_not_fulfill(OP, IMPL):- relation_op(OP,

IMPL, unsupported).

%reasoning rules:

{ var_connection(VAR_FROM, VAR_TO,

CT):connection_type(CT) }1 :- var_connection(VAR_FROM,

VAR_TO).

var_cluster_root(VAR) :- {var_connection(VAR_F,

VAR, ct_inherits): var(VAR_F)} 0, var(VAR).

var_cluster(VAR0, VAR_TO) :-

var_connection(VAR0, VAR_TO, ct_inherits),

var_cluster_root(VAR0).

var_cluster(VAR0, VAR_TO2) :-

var_connection(VAR_TO1, VAR_TO2, ct_inherits),

var_cluster(VAR0, VAR_TO1).

var_cluster(VAR0, VAR0):-

var_cluster_root(VAR0).

impl_fulfill_cluster(VAR0, OP, IMPL, SCORE) :-

var_cluster(VAR0, VAR_ANY), bind_var_op(VAR_ANY, OP),

impl_fulfill(OP, IMPL, SCORE), var_cluster_root(VAR0).

impl_not_fulfill_cluster(VAR0,

IMPL):-var_cluster(VAR0, VAR_ANY), bind_var_op(VAR_ANY,

80

OP), impl_not_fulfill(OP, IMPL),

var_cluster_root(VAR0).

bind_var_impl(VAR0, IMPL, SCORE_RESULT) :-

SCORE_RESULT = #sum[impl_fulfill_cluster(VAR0, _, IMPL,

SCORE) = SCORE], {impl_not_fulfill_cluster(VAR0,

IMPL)}0, var_cluster_root(VAR0), implementation(IMPL).

%pretty output:

#hide.

#show chosen_impl/2.

%#show bind_var_impl/3.

%#show var_cluster_owner/1.

%#show var_connection/3.

%#show bind_var_op/2.

81

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ:

1. K. Czarnecki, U. W. Eisenecker Generative programming: Methods,

Tools, and Applications, Addison Wesley, 2000

2. Matteo B. Generative Programming and Components: theory and

practice, Addison Wesley, 2002 - 114p

3. Voelter M. A Catalog of Patterns for Program Generation, Springer, 2003

- 312p

4. Abiteboul S.m Hull R. Foundations of databases. Addison-Wesley,

1995-685p

5. Климов А., Введение в метавычисления и суперкомпиляцию, ИПС

РАН, 2006 - 83c

6. Абрамов С.М, Парменова Л.В. Метавычисления и их применение .

Суперкомпиляция. ИПС РАН, 2006 - 240c

7. Немытых А.П. О суперкомпиляции. ИПС РАН, 2011- 32c

7. Jones N.D. Partial Evaluation and Automatic Program Generation,

Prentice Hall, 1993. - 384p

8. Kuhne T. A Functional Pattern System for Object-Oriented Design, 1999.

-328p.

9. Hughes J. Why Functional Programming matters, Addison-Wesley, 1990.

-120p

10. Field A., Harrison P. G. Functional Programming, Addison-Wesley,

1988.-616p

11. Schrijvers T., Frühwirth T. Constraint Handling Rules - Current Research

Topics, Springer, 2008 - 43p

12. Metakides G., Nerode A. Principles of Logic and Logic Programming.

North Holland, 1996.- 344p

82

13. Вагин В.Н., Головина Е.Ю. и др. Достоверный и правдоподобный

вывод в интеллектуальных системах. М: Физматлит, 2004. - 704с.

14. Gebser M., Kaminski R., et al. A User’s Guide to gringo, clasp, clingo,

and iclingo, 2010 - 82p

15. Crick, Tom. Superoptimisation: Provably Optimal Code Generation

using Answer Set Programming, 2009 - 170p

16. Baral, C. Knowledge Representation, Reasoning and Declarative Problem

Solving. Cambridge University Press, 2003

17. Muchnick, Steven S. Advanced Compiler design implementation, 1997

83

	ВСТУП
	РОЗДІЛ 1. АНАЛІЗ ІСНУЮЧИХ ТЕХНІК ОПТИМІЗАЦІЇ ПРОГРАМ
	1. 1. Типи оптимізацій
	Обмеження, властиві ручній оптимізації програм
	1.2. Оптимізація функціональних мов
	1.2.1. Переваги використання функціональних мов
	Структурність
	Декларативність
	Використання «контрактів»
	Наочність
	Легкість конфігурування (параметризація)
	Формальні перетворення
	Надійність
	Паралелізм
	Оптимізація
	1.2.2. Оптимізуючі метаобчислення для програм на функціональних мовах
	1.2.3. Використання принципів породжуючого програмування для оптимізації
	Породжуючі доменні моделі
	Знання про конфігурації
	Знання про конфігурації визначають:
	Простір завдання
	Фаза «domain analysis»
	Фаза «domain design»
	Простір рішень
	Генерація коду
	Висновки

	РОЗДІЛ 2. ТЕХНІКА КЕРУВАННЯ ОПТИМІЗАЦІЄЮ ПРОГРАМ
	2.1. Загальні принципи
	2.2. Анотації у вихідному коді
	2.3. Логічні розмірковування використовуючи анотації.
	2.3.1. Використання ASP модулю прийняття рішень для виконання логічних розмірковувань.

	2.4. Оптимізації контейнерів даних
	2.4.1. Формалізація властивостей реалізацій контейнерів
	2.4.2 Формалізація операцій над контейнерами даних
	Взаємозв'язок між екземплярами контейнерів
	2.4.3. Фітнес-функції: вибір найкращого розв'язку
	Семантика фітнес-функції
	2.4.4. Алгоритм оптимізації контейнерів даних
	Автоматичне перетворення коду
	Ітератори.
	Flyweight
	Кешування

	РОЗДІЛ 3. РЕАЛІЗАЦІЯ ЗАСОБУ КЕРУВАННЯ ОПТИМІЗАЦІЄЮ ПРОГРАМ
	3.1. Загальна структура транслятору
	3.2. Опис лексичного та синтаксичного аналізаторів
	3.3. Семантичний аналізатор
	3.4. Обробка анотацій
	3.5. Демонстрація використання
	3.5.1. Демонстрація відкладених обчислень

	Висновки

	ВИСНОВКИ
	Додаток А. РЕАЛІЗОВАНА ПІДМНОЖИНА СИНТАКСИСУ HASKELL У НОТАЦІЇ BNF
	ДОДАТОК Б. ЛОГІЧНА ПРОГРАМА АЛГОРИТМУ ВИБОРУ РЕАЛІЗАЦІЙ КОНТЕЙНРІВ ДАНИХ
	СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ:

