Efficient Compile-Time Garbage Collection for Arbitrary
Data Structures

Markus Mohnen
Lehrstuhl fur Informatik II, Aachen University of Technology
Ahornstrafie 55, 52056 Aachen, Germany
email: markusm@zeus.informatik.rwth-aachen.de

May 9, 1995

Abstract

This paper describes a compile-tume garbage collection (ctgc) method in the setting of
a first-order functional language with data structures. The aim is to obtain information on
positions in a program where certain heap cells will become obsolete during execution. Therefore
we develop an abstract interpretation for the detection of inheritance information which allows
us to detect whether the heap cells of an argument will be propagated to the result of a function
call. The abstract interpretation itself is independent of the evaluation strategy of the underlying
language. However, since the actual deallocations take place after on termination of functions,
the information obtained by the abstract interpretation can be only be applied in an eager
context, which may be detected using strictness analysis in a lazy language. In order to increase
efficiency we show how the number of recomputations can be decreased by using only parts of
the abstract domains. The worst case time complexity is essentially quadratic in the size of
the program. We illustrate the method developed in this paper with several examples and we
demonstrate how to use the results in an eager implementation. Correctness of the analysis is
considered, using a modified denotational semantics as reference point. A main goal of our work
1s to keep both the run-time and the compile-time overhead as small as possible.

1 Introduction

One of the advantages of modern functional languages is the ability to work with dynamic data
structures without the necessity to control memory allocations explicitly. On the other hand, this
prevents a programmer from expressing the reusability of heap cells of intermediate data structures.
However, since the available memory is restricted in concrete computers, there must be some means
of deallocating obsolete memory cells. But well-known garbage collection mechanisms make no (or
only little) use of the special structure of the underlying functional programs.

We present an abstract interpretation which exploits this special structure. The underlying
observation is that data cells which were created specially for a certain function call become obsolete,
if they are not inherited to the function result, i.e. if they are not reachable from the top cell of
the result. In contrast to other ctgc approaches (like for instance [JM89]) we do not try to reuse
obsolete cells as soon as possible, i.e. during function execution, because this would cause severe

changes in the abstract machine and some runtime overhead. However, application of our technique
is therefore only possible in ‘eager’ situations, i.e. either in an eager language or at positions in
lazy programs which were detected as eager by a strictness analysis.

Furthermore, we show that our method can be implemented very efficiently by using test
arguments instead of the full domains. The worst case complexity for general programs is essen-
tially O(n?) in the length of the program. Especially for realistic program we will show that the
computation of the fixpoint can be done almost in linear time.

We finish this introduction by an outline of the contents of the paper. The next section gives a
more detailed intuitive description of our method. Section 3 formalises this intuition and emphasises
the problem of arbitrary data structures and their finite representation. After that, we give a brief
discussion of the correctness of our method and explain how to use the results of the abstract
interpretation in an eager implementation. The next section contains a discussion of efficiency
issues. We show how to decrease the time spent for computing the fixpoint and give experimental
results. The paper concludes with a comparison with related work and some prospects for further
research.

2 Intuitive Description

We want to address the problem in the setting of a first-order functional language with construc-
tors. For the moment, we will assume eager evaluation, although the abstract interpretation itself is
also applicable to programs of a lazy language. A constructor on the right hand side on a function
definition causes the allocation of a corresponding heap cell, if it is encountered during the execu-
tion. We assume bozed representation of basic types, i.e. the heap cell representing a constructor
contains just pointers to other heap cells, which may represent constructors or basic values. The
loosening of some of these restrictions will be discussed in Section 8.

The general idea of the optimisation can be summarised in the following way: if there is a
subterm f(g(t)) on the right hand side of a function definition and we know that f does not
inherit parts of the result of the evaluation of g(¢), then deallocate all cells belonging to these parts
which were allocated during the execution of g(t). The deallocation takes place when the call of f
terminates. In an eager implementation this can easily be done, since the termination point of a
function is fixed.

In order to illustrate which kind of information we want to derive, we consider the following
example:

datatype ListOfInt ::= Nil | Cons(int,ListO0fInt)
append : ListO0OfInt x ListOfInt -> ListOfInt
append(Nil, L) := L

append(Cons(a,L1), L2) := Cons(a,append(L1,L2))

An obvious observation is that append sets up copies of all Cons cells contained in the first
argument, but not of the int values stored in there. We say that append inherits the second
level of its first argument and all levels of its second argument, but not the first level of its first
argument. The term [evel corresponds to the definition of the underlying type. For instance, the

type

datatype ListOfList ::= LNil | LCons(ListOfInt, ListOfList)

has three levels: one for the list built up from LNil and LCons, one for the List0fInt constructors
and one for for the actual int entries.

The basic idea of the abstract interpretation, is to represent the (infinite) set with elements
of variable size which corresponds to a type by means of a finite domain of elements with a fixed
size, where each element has one component for each level of the type. This component is a binary
value, where the value 1 is used to indicate that the corresponding level may contain a cell which
is part of one of the parameters of the function call. The value 0 guarantees that there is no such
cell, i.e. all cells are new.

In the above example we choose Upistorrns = {0, 1}2 as abstract domain for lists over integers.
The components represent all constructors resp. all entries in a list.

The corresponding abstract functions are essentially built from the abstract constructors. The
formal parameters of a constructor can be divided into two classes: those which are of the same
type as the constructor and those which are not. E.g. the constructor Cons for lists has the second
argument in the first class and the first argument in the second. The abstract interpretation of a
constructor is performed in two stages:

1. All parameters of class two are put (at appropriate positions) into a new value. All other
positions in this value are set to 0. These are the binary value indicating the inheritance of
the constructors and the positions for parameters of class two of other constructors for this
sort. This step copes with the creation of a new heap cell.

2. The maximum (wrt. the order within the abstract domain) of this value and all parameters
of class one is returned as result. In this way the information already contained is those
parameters in preserved.

If one of those parameters contains a nonzero entry at the position for the constructors, then
the result will also. This captures our intuition, that if at least one cell of a list is inherited, we
approximate that all cells are inherited. In our example, the constructors are abstractly interpreted
by:

A[Nil] : RAristorne AfCons] : Aine X Aristorint — AListoflnt

A[Nil] = (0,0) AfCons](a,!) = (0,a) U

In Section 6 we will show that we do not need to determine the values of the abstract functions
for all possible argument combinations. Instead, we will use a single test argument for each level
of each argument to determine whether this particular level has an impact on the result, i.e. if
there are elements from this level, which are part of the result. The test arguments are those with
exactly one nonzero entry at a position representing this level. The result can only contain nonzero
entries if a nonzero entry in the initial test argument is propagated. For example, the abstract
values of append for all possible test arguments are:

Alappend]((0,0),(0,1)) = (0,1) A[append]((0,0),(1,0))=(1,0)
A[[append]]((o, 1)’ (O, O)) = (O’ 1) A[[append]]((l, O), (O’ O)) = M

We can see that the abstract value of append for the test argument ((1,0),(0,0)) is (0,0). This
means that no Cons or Nil of the first level of the first argument is inherited to the result of append

In order to demonstrate the intended use, we expand our example from above by definitions
for the functions filterle, filtergt and quicksort:
filterle : ListOfInt x int —> ListOfInt
filterle(Nil,b) := Nil
filterle(Cons(a,L),b) := if a<=b then Cons(a,filterle(L,b))
else filterle(L,b)
filtergt (* analogous *)
quicksort : ListOfInt -> ListOfInt
quicksort(Nil) := Nil
quicksort(Cons(a,L)) := append(quicksort(filterle(L,a)),
Cons(a,quicksort(filterge(L,a))))

We can infer that all these functions do not inherit the constructors of their ListOfInt-typed
argument. During the execution of a call to quicksort with a parameter not equal to Nil, as-
suming left-to-right eager evaluation, the expression filterle(L,a) is evaluated first, creating an
intermediate data structure which is fed into a recursive call of quicksort. All constructors of the
intermediate list are copied by quicksort, which means that we can deallocate everything which
was allocated for the intermediate list affer the termination of quicksort. Accordingly, every
intermediate result can be deallocated after the surrounding function call has terminated, except
for the outermost append (this will maybe be deallocated on the level of the calling function) and
the second quicksort (because append does not copy its second argument).

3 Abstract Interpretation

In this section we will formalise what we have described informally in the previous section. First,
the abstract syntax of our language will be presented. In order to simulate pattern matching, a
set of selector and test functions will be be associated with each constructor. Thereafter, we will
discuss how to choose the abstract domains, where we focus on the problems arising due to arbitrary
data structures. The abstract interpretation is basically determined by the way the constructors
and selectors are interpreted w.r.t. the abstract domains.

3.1 Abstract Syntax

Let S = BSUWC'S be the set of sorts, where BS and C'S are finite, disjoint sets of (basic) sorts, con-
taining at least a sort bool € BS, and constructed sorts. Correspondingly, we assume that there
are disjoint families of variables X = (X° || s € S), defined functions DF = (DF%» 7% || n €
No, $1,-++,8n,8 € S), basic functions Q = (Qbs10n=bs || n ¢ Ny, bsy,...,bs,, bs € BS) and
constructors C = (C**7¢ || n € Ny, $1,...,5, € S and ¢s € CS). From the constructors we

can derive
1. the family of selectors
CSel:=(CSel®* 7% ||cs € CS and s € 5)
where the set of selectors of type cs — s is defined by

CSel®™% := {cl,; || Ic € C* 7 1< j < n: sj = s}

2. the family of constructor tests
CTest := (CTest®* " || cs € CS)
where the set of constructor tests of type cs — bool is defined by

CTestésbool . {is—c || e € Cs1,...,sn—>cs}

We use these auxiliary functions to simulate pattern matching. We define the family of all ezpres-
stons over X, DF', Q, C, CSel and CTest by E := (E° || s € §), where the sets £° are defined
by:

1. X°C B
2. fE(QUCUYCSelUCTest) 7% and e; € B, ...,ep € B = f(e1,...,epn) € B°
3. F€ DF*»*>%and e; € E",...,e, € B = F(ey,...,e,) € E*
4. e € E*°L ¢, ey € E°=—> if e then e; else ey fi € B
A program is a finite set of definitions
F(zy,...,z,) :=e with F ¢ DFt»-t=t 7. ¢ X% and e € E* with variables {z;,...,z,}

one for each defined function.

The intended declarative semantics is the usual fixpoint semantics. The data representation we
have in mind is a graph reduction machine where the graph is represented by means of a heap. If
a constructor is evaluated during the execution, a heap cell representing this constructor is created
on the heap. Arguments are already represented in the heap, and so references to the arguments
are simply copied into the cell. Note, that we assume a bozed representation of basic values.
Accordingly, variables always refer to heap cells.

3.2 Abstract Domains

Assume that we have sets V3, for each basic sort bs € BS. Denotational semantics uses sets Vg,
which are fixpoints of the equations:

Ves = U {c(vr,...vn) || v1 € Viyyoo oy Un € Vg } Ves € CS

cECSLi sp—CSs

This reflects the free interpretation of constructors. In the strict case, these sets consists of the
finite terms. Infinite terms are added to obtain the sets for the non-strict semantics. But, of
course, as we want to do an abstract interpretation we have to guarantee termination, so we need
at least domains with only finite ascending chains instead. Furthermore, since abstract values with
variable size can only be implemented inefliciently, we prefer finite domains, where values can be
represented with a fixed size. The first (obvious) step is to replace Vis by Ips := {0, 1}, since our
interest is focused on whether parts of the arguments are inherited to the result, and not on the
actual value of the result. Later on, we will use test values with a single ‘1’ for a particular level of

an argument. If we can observe that this ‘1’ propagates through the computation, we have detected
(possible) inheritance w.r.t. this level. Additionally, we add a value to each constructor, indicating
its inheritance behaviour. This yields sets I, in a similar same way as fixpoints of equations:

Ies = U {c(bjvr,...,un) ||0€{0,1},v1 € I, ..., 0, € I, }Ves € CS

cECELi sp—cs

Cons;0

/N

(0 Coms;0)
NN = (0,1)
NI !
/

\
\
1\ Comns;0

/
\ \ !
\ \ /
\ \ /
N /
N /

.0
-

Y Nil;0 v
< s

Figure 1: Mapping Iristofint 10 Aristofint

We still have the problem of infinity, since we have essentially only reduced, for instance, the
set of lists over integers to the set of lists over {0, 1}. One possibility for obtaining finite sets, we
call it the horizontal approach, is to build the elements of the abstract domain by gratuitously
restricting the height of the elements of I;, for instance only the list of length 7 or less. This
approach is used in [JM89]. The obvious drawback is the selection of the threshold, since there is
no possibility to derive a good choice from the program itself.

We propose a different approach, which has a more vertical appearance. If I; has n levels, we
define A; ~ {0, 1}" and we map an element of I; to an element of A, by taking the maximum of all
entries of level ¢ as entry for the ¢-th component (see Figure 1). There is an obvious simplification
of the domains, which could be applied here. Instead of {0,1}" we could choose {0,...,n}, with
a value k representing the fact that levels & and above are not inherited. This approach is taken
in [Hug92] and [PG92]. The underlying observation is that it is not possible to define a functional
program which inherits a certain constructor ¢ and simultaneously does not inherit a constructor
d below ¢. This is due to the fact that functional programs can not change parameters stored in
existing heap cells for constructors. But there is a drawback: this approach works for list structures,
but not for the general case. We will come back to this point later.

Our first attempt to define the abstract sets starts with setting Ay, := {0, 1} for all basic sorts

bs € BS. We then can define the sets A, for the constructed sorts as the fixpoints of

Acs={0,1}x] [] A VesecCs
CECSl Sp—CS 137‘3"‘
s;Z£cs
In order to evaluate the first Cartesian product [] we need an order on all constructors of target sort
cs. The second product filters out all direct recursiveness since we want to combine all constructors

of ¢s in one level. If we apply this to our example, we can compute that

Avistorme = 10,1} X H H As,

CE{Nil—)ListofInt ’Consint:cListofInt—)ListhInt} IS;S‘IL
s, #cs
7

= {O, 1} X Aint
= {O’ 1}2

Note that we assume that a [] over an empty index creates a set, which is a neutral element for
subsequent Cartesian products. Therefore, these parts do not contribute to the resulting domain.
E.g. the constructor Nil has no influence.

But there is a drawback: it is possible that we have a constructed sort cs, where we get
|Acs| = 0. A minimal example for this consists of the data definitions:

datatype T1 ::= c1 T2 datatype T2 ::= c2 T1

which are valid definitions in Miranda or Haskell, and which can be expressed in our abstract
syntax by choosing CT?7T! = {c1} and CT'~7T2 = {c2}.The corresponding sets are empty for
strict semantics and both have exactly one element of infinite length for non-strict semantics:

Vg = {c1(c2(c1(--1)))} and Vrp ={c2(ci(c2(--1)))}
Accordingly, we get the abstract set equations:
ATl = {O, 1} X ATZ and ATZ = {O, 1} X ATl

which have the unique solution Ay = Ary = {0,1}¥, the set of all infinite sequences of binary
numbers.

Of course, sets of this kind are not useful for abstract interpretation, because in order to
guarantee termination of the abstract interpretation we need sets with only finite ascending chains
under an appropriate order.

Therefore, we must enhance our notion. The problem of our first attempt is that direct re-
cursion and indirect recurston are handled in different ways. In the above example, it would be
convenient to choose Ar; = Ay = {0, 1}1: one level for all occurrences of c1 and c2.

The indirect recursion, or, to be more precise, the fact that the constructed sorts need not form
a proper hierarchy is also the reason for the failure of the simplified approach. It assumes that the
abstract levels of the type can be ordered in a single chain. Consider the example

datatype ITree ::= ILeaf int | INode int CTree CTree
datatype CTree ::= CLeaf char | CNode char ITree ITree

which defines types of trees consisting of alternating layers of int resp. char entries. We choose
Arrree = Uctree = {0, 1} X ({0,1}?)?, which means that we have three levels. These levels can not
be ordered linearly, since the levels for the int and for the char entries can not be ordered, they
are kind of incomparable.

An extension of the simplified approach would be to choose a domain, where several incompa-
rable levels are positioned as brothers of a common father. Since all incomparable levels can be
handled independently we have to add values for all possible combinations of inheritance of levels.
In our case, this would be the domain in Figure 2 where the ‘2’ represents a situation where both
char and int entries are inherited to the result but not the constructors. These domains, however,

0
|
\
2

72

2a 2b

Figure 2: Alternative domain

have lost the simplicity of a linear chain, so there is no advantage anymore. Furthermore it is
not possible to use these domains if we consider an extension of the language with non-functional
procedures (see related work section).

The next definition will enable us to express indirect recursion of constructed sorts: Let
csy,csy € CS. We say that cs; depends on csy (csy « csy) iff there exists a constructor
€ € CS1irnSi—1:652,5i41,-95n 2651 - Ag y1gual, « denotes the transitive and reflexive closure of «. If we
have cs; “ csy and cso “ cs1, then we say that cs; and cs, are mutually recursive dependent.
By definition, this is an equivalence relation, and we denote the equivalence class of cs € C'S by

[cs] :={cs' € CS || cs’ « csand cs & cs'}

Additionally, we define [bs] := {bs} and A[ps) := {0, 1} for all basic sorts bs € BS. Again, we can
obtain sets A[.;] by the equations:

A[cs] = {O; 1} X H H H A[Sz] Ves € CS
el e st 155t

These are suitable sets for abstract interpretation, since we have the following lemma:

Lemma 1 |A[| < oo forall cs € CS.

Proof We can use the notion of dependency to define a relation of the equivalence classes:
[cs1] < [ess] <= Jes| € [es1], csh € [esy] : e & cs)

By definition, < is transitive and reflexive. Additionally, it is antisymmetric: assume [cs1] < [cs2]

. * *
and [csz] < [csi] holds, i.e. Jesi,cs] € [cs1],csh,csh € [cs2] 1 cs| « csh, and csy « csf. By

definition of [cs;] we have cs « cs! and cs! “ cs; for 1 = 1,2. Therefore, transitivity implies:
csh “ csy “ cs! “ csy, which means that [cs;] = [cs3].

Let < denote the strict part of <, i.e. [cs1] < [cs2] iff [cs1] < [cs2] and [cs;] # [cs2]. We can observe
that for cs; and csy with [cs1] < [cs2] holds:

[cs1] < [cs2] = [Ales]l < [Alesyl (*)

Now assume, we have |A[)| = oo for cs € C'S. This can only happen if the equations imply that
|Afcs)| < |A[cs]|- By definition A[s) does not depend directly on itself, i.e. there must be a second
class [cs'] # [cs] with [A[eq| < [Afes| < |Afes)|- This leads with (%) to [cs1] < [es2] < [es1] 4. g.e.d.

If we use this definition for the example, we get [T'1] = [T2] = {T'1,T2} and A[ry = {0, 1}.
Additionally, this notion is compatible with our first attempt, if we define Acs := Afcy).

Now we are in the position to define our abstract domains. Note that, for each s € CS U BS,
As can be “flattened” to a set {0,1}™ for some n € N. Thus we can define a partial order <; by
“bitwise” comparison. The resulting structure U, := (A;, <;) is isomorphic to (P({1,...,n}), C),

which means that we have a complete lattice with bottom element —;= (0,...,0), top element
Ts=(1,...,1) and lub-operator which is a bitwise or
(al,...,an) Ug (bl,...,bn) = (al\/bl,...,an\/bn)

3.3 Interpretation of Constructors

In order to formalise which parts of an abstract value are affected by a particular constructor (or
selector) of a particular type of an equivalence class [cs], we need arbitrary, but fixed orderings
on all constructed types of class [cs] and on all constructors of a target type in cs’ € [cs]. More
formally, we assume that [cs] = {cs1,...,cs1,} and C := (C%7¢5 || n € Ng, S1,...,5, € S) =
{c1,- -y Cm,, } for all cs € CS. Implicitly, we have already used these orderings in the definition of
A[cs].

In order to locate those parameters which are not directly recursive, we need the following
auxiliary functions. Let ¢ € C®»»%» 75 be such that cs has index [in the order of the sorts and
¢ has index m in the order of constructors. We define g, such that pcq(l, m, k) = 7 iff 55 is
the non-recursive parameter of ¢ which has the position 7 in the second component of the abstract
values of A[.,. We define ¢4 : N3 — Np such that

Ples)(lym, k) = 5 iff % is the non-recursive parameter of ¢ which has the position j

in the second component of the abstract values of Ay

The definition of @[, (see Figure 3) is done by simultaneous induction on I, m and k.
These preparations are sufficient to give a definition for the abstract meaning of selectors:

A:CSel®™ — (Ues — As)
ba if [es]| =Ts
A, (b, 3)) := { (5,a) [cs] = [sk]

Pr0j¢[cs](1,m,k)(&) otherwise
if ¢c € C%1ron68 guch that cs has index [in the order of the sorts and ¢ has index

m in the order of constructors

Ples] . N3 — N
Pres)(0,m, k) = 0

el +1,0,k) = ppeq(l, mi, ng)
where m; 1s the number of constructors of the sort with index /, and
n} the number of arguments of the last constructor of this sort

Ples)(lm +1,0) = greq(l,m, nm))
where n,, is the number of arguments of the constructor with index
m

Presilm, k+1) = u(e > greq(l, m, k)).([t:] # [cs])

Figure 3: Definition of @[

With this definition we now can easily define the abstract meaning of constructors:

A Ot (R X X Us, = Ues)
Allc]((b1,81), ..., (bn,8n)) := (b,a) U |_| (b;,@;)
[s:]=[cs]
if ¢ € C%»¥n 785 guch that cs has index [in the order of the sorts and ¢ has index
m in the order of constructors and a is a minimal value such that forall 1 < k <mn

holds: A[[clscel]]((bt d)) = (bw[cs](l,m,k): d(p[cs](l,m,k))

Firstly, a new vector (b,a) is created by placing those arguments, which do not represent
references to structures of the same class, into a vector filled with 0. Secondly, the information on
references to the same class, which is contained in the remaining arguments are taken into account
by building the maximum.

In order to illustrate these definitions, we will examine two examples:

1. Recall the definition of lists over integers from the previous section. We have Ap;istofrns =
{0,1}? and with the above definitions we get the abstract functions

A[Nil] : Apistorint AfCons] : Aint X Uristofint — AListofInt
A[Nil] = (0,0) AlCons](a,l) = (0,a) U
Aflcons!] : Uristorint — Aint A[Cons2 ;] : Ariseorint — Mistofint
Alcons,]((2,9)) = v Afcons?,]((2,9)) = (2, 9)
The selection of the head of the list is abstractly represented by A[Consl.;], which extract

the information for all entries from the abstract value for the list. Note that AJConsl.;] is
not the projection of the first component of its argument. The tail of the list is assumed
to have the same inheritance behaviour as the whole list, and therefore A[Cons? ;] is the

sel
identity function.

2. Our next example is a little bit more intricate. In the example which defines types of trees con-
sisting of alternating layers of int resp. char entries. Obviously, we have Arrree = YcTree =

10

{0,1} x ({0, 1}%). With the above order, we have the first half of the second component of an
element of the abstract domain reserved for the information referring to the int layers and
the second half for the information referring to the char layers. The abstract functions for
the constructors are in Figure 4.

A[[ILeaf]] : Q[int — Q[ITree A[[INOde]] : Q[int X Q[ITree X Q[ITree — Q[ITree
A[ILeat](a) := (0, (2,0,0,0)) A[INode](a,t1,) := (0, (0,a,0,0)) Ut Uity

A[[CLeaf]] : Q[char — Q[CTree A[[CNOde]] : Q[char X Q[CTree X Q[CTree — Q[CTree
A[CLeaf](a) = (0, (0,0,a,0)) A[CNode](a,t1,5) := (0, (0,0,0,a)) U t; Ut

Figure 4: Abstract constructors for CTree and ITree

Obviously, the only way to set an entry to 1 is that there is a 1 in the parameters of the abstract
function.

3.4 The Complete Abstract Interpretation

We are now able to extend the interpretation of constructors to the interpretation of a program.
Firstly, we define the abstract meaning of each basic function by:

A btk =bs (g e X s, — Ups)
Alfl(a1,...an) =0

This is reasonable since we can assume that the result of a basic function is always represented in
a newly created heap cell. Similarly, we can define the abstract meaning of the constructor test
functions:

A : CTest™ 7 5 (As — Apoo1)
Alis—c](a):=0
The definition of the abstract semantic of an expression is as usual; let
Envy :=(X° -2, || s €S)
be the family of variable assignments and
Envpp = (DF% 7% oo (Ug, X oo X Uy, = A) || m €Nys1, .00y 8p, 8 €5)
be the family of function assignments. The meaning of an expression is inductively defined by:
A:EFE°xEnvy X Envpr -+, VseES
Alz](x,0) =x(z) fzeX
Alf(er,...,en)l(x,0) == A[f](Ale1], ..., Alen]) ife, € B* 1<t<n
fE(QUCUCSellyCTest)r 73
AlF(e1,...,en)(x,0) := o(F)(Ale1], ..., Alen]) if e; € E* F € DF* %73
A[if e then e; else ey i € E*(x, 0) := Ale1](x,0) U Ae2](x,0) if e € B! ey, e, € E°

11

Given a program P = {F;(z;1,...,Zin,) ‘= ¢€; || 1 <t < p} with F; € DFSb%im =% g, o € X%
and e; € E% with free variables z;;,...,2; , we define the semantics of each F; as a function

AlF] : U, X oo X Uy, — Uy,

These functions can be computed as the least fixpoint of the equations

AlFi(ain, .-, ain) = Alell([Zin/aia, -« o Bing /Cing)y [Fr/ALFL], - - Fp/A[Fp]])

Since the underlying domains do not have infinitely ascending chains and all abstract functions are
monotonous, we can compute this fixpoint according to the Theorem of Knaster and Tarski.

4 Correctness

Due to the restrictions in space we can only give an outline of the correctness proof. The justification
of the abstract interpretation A is done w.r.t. a modified non-strict denotational semantics. It is
sufficient to proof the correctness for a non-strict semantics only, since the property of inheritance
is only of interest if the function terminates. Since a function which terminates for strict semantics
yields the same value with non-strict semantics, we can directly reuse the theorem.

In order to formalise that the result of a function contains parts of the arguments, we must be
able to distinguish between components of the original parameters and copies of these components.
This is not possible within the domains of the usual denotational semantics I[.], which are the sets
of finite and infinite partial terms V7 . Therefore the domains V} , are annotated with binary

values at each node. This leads to new domains V{ __, and we can define a modified semantics I[.]

1,000
on these domains, which actually does not use the annotations, except that all data created by the
modified semantics is annotated with 0. Therefore it is easy to show that the original semantics is
equivalent to the modified one, if only arbitrary annotations are added.

If we annotate parts of the input with ’1’ we can observe whether this tag is propagated to the
result of the function. This makes it possible to distinguish between original input and copies of

it. We relate the annotated domains V7 ,, with the abstract domains 2, via a family of functions
abst = (abst® : V} — R4, ||Vt € S)

These functions create a component of the abstract value by collecting all corresponding annotations

in the annotated value and combines them via the maximum. It is easy to extent these functions

to functions abst®*'* and abst**'P¥ which map annotated environments to abstract environments.
For all expression e € E° and all environments %, ¢ we can prove that

abst’(I[e] (X, §)) <s Ale](abst™* (%), abst™ 27 (¢))

Especially, if we have Ae](x, ¢) =—, for some abstract environments x and ¢, we know that there
can not be corresponding annotated environments ¥ and @ such that I[e](k, @) contains a non-zero
annotation. With other words, the result of the evaluation of e does not contain parts of the input.

12

5 How to Use the Results

We adopt a notion known from strictness analysis (see for instance [Myc80]) in order to use the
abstract interpretation.
Given a sort s € S we define the set of test vectors for s

T, :=={(1,0,...,0),(0,1,...,0),...,(0,0,...,1)} C 2,

as those vectors from 2, with exactly one 1 entry. The set of test arguments T for a function
F € DF*®»5=$ congists of those arguments where there is exactly one 1 in a single argument
position:

(Toy x {La} x - x {Le, DU ({Lo} x Ty x - x{Ls, DU U ({La} x {Lls} x -+ x T,)

If A[F](ti;) =—s, where ¢;; € T, is the test argument with a 1 at the j-th position for the i-th
argument, we can be sure, that there is no member of level i of the j-th argument inherited to the
result of the function F, since this would propagate the 1 to the result of the abstract function.

Recall the quicksort example from Section 2. The evaluation of Afappend] for the four
elements of Tappenq yields:

~—

Allappend]((0,0),(0,1)) = (0,1) Afappend]((0,0),(1,0))= (1,0
Alappend]((0,1),(0,0)) = (0,1) A[append]((1,0),(0,0)) = (0,0)

We can conclude that the constructors of the first argument are not inherited to the result. Similar-
ly, we obtain that the functions filterle, filterge and quicksort do not inherit the constructors
of their argument. With this knowledge we can insert commands for deallocation into the code for
quicksort immediately after the recursive calls. At those positions every constructor created by
filter#* can be deallocated, since it not be referenced from the result of quicksort.

The general scheme is to detect positions in a given program, where we have a subexpression
F(ey,...,epn) on the right hand side of a function definition such that A[¢;;] =—. Therefore we
know that all cells of level 7 created during evaluation of e; is garbage after the execution of F.
We can now insert commands for the deallocation of all these cells. This could easily be done by
traversing the graph representing of the intermediate result e;. However, this method is quite time
consuming. Another possibility is to trace all allocations of cells of the appropriate level during
execution of e;. The advantage is that deallocation can be done without searching the result. Of
course, there is some overhead during the allocation and we need additional memory. A more
sophisticated method would be to allocate intermediate results in a more stack-like way on a frame
which is associated to the function which is currently evaluated. All intermediate results can then
be deallocated by releasing the stack frame. Of course, we need additional analyses in order to
determine at compile-time how much intermediate space in terms of the input size is needed for the
evaluation of a function definition. This is due to the fact that during the evaluation of a function
f, which will create intermediate data, we may need space for 'inter-'intermediate data. This will
be allocated in the stack frame associated with f. But this stack frame is on top of the stack frame
of the function calling f, where the result of f will be located. . Therefore we need to reserve
enough space for the result of f before evaluating f.

13

6 Efficiency

One of the key targets of this work was to keep both the compile-time and run-time overhead as
small as possible. The compile-time efficiency is represented by the complexity of the computation
of the abstract information. On the other hand, the run-time efficiency is characterised by two
parameters: the time lost by the execution of the additional commands for the deallocation and
the gain in memory utilisation.

6.1 Compile-Time Efficiency

In general, we need to evaluate all abstract functions associated with a given program for all possible
arguments and recompute until stability. The finiteness of all abstract domains guarantees that a
stable state is reached after a finite number of iterations. Firstly, we will estimate the number of
iterations for this naive approach.

Let n € N be the number of defined functions in a program P, m € N the maximal arity of a
defined function and [€ N the maximal number of levels of a sort in P. This is also the length of
the longest ascending chain in the abstract domain for this sort. An upper bound for the number
of values computed in each iteration is 2!nm. The longest chain contains at most [elements, which
means that each computed value can change at most [times during the computation until the
maximal element is reached. Altogether, the worst case are 2!mnl iterations, which is far from
being practicable.

Since we are only interested in the value of the functions for the test arguments, it is convenient
to compute only these. This optimisation reduces the number of iterations to I?mn, because there
are only Imn test arguments. But we may need the value of a function for a non-test argument.
Luckily, we can compute such values from the values of the functions for the test arguments.

Lemma 2 (Distributivity of A and Ul)
Let F € DF®* %% and a;,a; € 2; for 1 < ¢ < k. The abstract semantics distributes with the
lub-operator, i.e.

A[F](aiUal,...,axUay) = A[F](a1,-..,ax) UA[F](al, ..., a})

Together with the next corollaries, this enables us to represent the values for a non-test argument
as a 'linear’ combination of test argument value.

Corollary 1 (Consistency of A)
Let F € DFS%5: A[F](—s1r-..s—s.) =—s

Corollary 2 (Generating set Ty)
Let s € S. The set of test values T is a generating set for 2 in the following sense:

A = U (UT)

{TCTs}

If we examine the number of function evaluations instead of iterations, the advantage is even more
dramatical. While the naive implementation requires 2mn function evaluations per iteration,

14

the better version only needs Imn, which implies a total of 22!m2n?] evaluations versus [m?n?

evaluations.
Since the number of function definitions in a program is the most characteristic value, we can

interpret this result as the proof for a quadratic worst case complexity of our method.

Realistic programs, however, do not reach this worst case, since the function definitions are not
that enigmatic. Especially those functions, which only depend on themselves, like for instance the
append function, are interesting. If we look at the corresponding transformation, we can observe,
that the value of AJappend] for an argument (a1, a2) in the ¢ + 1-th iteration depends only on the
value for (a1, az) in the i-th iteration and not on the value for any other argument.

Afappend](a;,a;) = A[Nil]U AfCons](Consl,,(a1), A[append](Cons?,;(a;), as))

sel

= A[Nil] U A[Cons](Consl,;(a1), A[append](ay, as))

The reason for this is that the abstract interpretation of A[Cons?_;] is the identity function, since
this corresponds to the access to a substructure of type ListOfInt. Functions which are defined
via structural recursion on the underlying type have this property. The impact on the complexity
of the computation is enormous. Because the value for each argument is independent from the
other values the computation of the fixpoint is stable after at most [steps. For a program where
all definitions have this form the number of evaluations drops to I?mn, which is essentially linear
in the size of the program.

A single evaluation can be done very efficiently, since it consists of a sequence of lub-operations
which can be implemented by a “bitwise or”.

6.2 Run-Time Efficiency

We have done some experiments with programs which were enriched with deallocation commands.
The programs are compiled by hand from our example language to C. The impact of the dealloca-
tions on the run-time was small, but since a real implementation is missing we can not make fair
experiments on this topic. Especially, since additional deallocations reduce the need for normal
garbage collection, it may even be possible that the run-time is decreased in situations where much
intermediate data is created. But the impact on memory consumption can be quantified very well.

E 1] 10] 50| 100]
input 2| 11 51 101
w/o ctgc 196 | 3376 | 15451

7
ctge (end) || 2| 11 51 101
4

ctge (max) 58 | 1278 | 5053

Table 1: Statistics for gsort

The first example (see Table 1) is the gsort program. The points of deallocation are those
which were described above. The first line of the table shows the number of heap cells used for
the input, which is the list from n down to 1. The remaining three lines show additional amount
of heap used by the program without ctgc, at the end of the ctgc version, and the maximal heap

15

usage during execution of the ctgc version, respectively. Note, that the maximal heap usage of the
ctgc version is only a third of the memory consumption of the version without optimisation. The
ctgc version of the program is optimal in the sense, that all intermediate data is deallocated; only
the result is still in memory at the end. If gsort would be called from a position where the input
could not be accessed any more, the ctgc version would effectively be an in-place version.

w/o ctge
180 —+
120 + ctgc (max)
60
ctge (end)
0 1 1 1

0 125 250 375

Figure 5: gqsort(10) with and w/o ctgc

In Figure 5 we have compared the different memory consumptions during the evaluation of
gsort(10). The diagram shows the number of heap cells used at each function call performed.
After an initial phase, where only alternating calls to filter* and gsort are executed until an
empty list is reached, the two curves start to differ. The ctgc version continuously allocates and
deallocates intermediate data. The point of maximal memory consumption of the ctgc version is
the end of the initial phase. Until then no deallocation is performed.

Our second example (Table 2) is an implementation of queens. This particular example is
remarkable, because our interpretation can not infer any information for deallocation, since every-
thing is inherited by the functions. The only point where a deallocation can be incorporated is a
single call to append. Surprisingly, the effect on memory usage is immense.

Ln (1] 2] 4] 8]
w/o ctgc 5|10 | 92 | 20446
ctgc (end) | 4| 4|20 | 2150
ctge (max) | 5| 6|23 | 2239

Table 2: Statistics for queens

These results show clearly, that ctgc is worth the (small) effort.

7 Related Work

Several methods have been proposed to reduce the run-time memory consumption by ctge. A
simple classification can be done by two characteristics:

1. Which kind of information is approximated by the underlying abstract interpretation(s).

16

By definition, a heap cell is garbage if it is (part of a structure) not reachable from the main
expression. Consequently, there are four actions which influence the state of a cell:

generation by a constructor,
sharing by non-linear function bodies,
inheriting by returning as (part of) the result of a function, and

dereferencing by pattern matching.

Accordingly, ctgec methods use abstract interpretation in order to retrieve information on
some of these properties.

2. How is the memory management strategy altered by the information obtained. Especially,
the location of memory reuse and the way of memory reuse is of importance.

The location of memory reuse determines at which point of execution a garbage cell is reused.
An immediate reuse (like in [JM89]) has the advantage of keeping the number of garbage cells
small at the price of frequent interruptions of the actual computation. It is only possible for
functions, where sharing of the argument does not occur. Otherwise, either the function must
be altered to receive additional arguments indicating an “unshared situation”, or be special
versions of this function must be used in the appropriate situations. The first case requires
additional test within the function, which increase the time spent on memory management
operations. The second case avoids this but can increase the code size exponentially in the
number of arguments of the function. A more delayed approach (like in [Hug92]) deallocates
at the end of the corresponding function call. The advantage is that more deallocations are
performed at the same time, which may be done more efficiently. Also, there is no need for
modifications within the function, which circumvents the above problems.

The way of memory reuse can be either deallocating, i.e. adding the cell to the free part
of the heap, or direct reuse. The latter can be used in situations where the deallocation is
immediately followed by an allocation, like for instance the append function. The result is a
“in-place” version of append. Again, there is the problem whether an argument is shared or
not.

The approach taken in [Hug92] is the closest work to ours. It uses a combination of generation
analysis and inheritance analysis of (nested) lists of atomic values in the setting of a higher order
language. Arbitrary data structures or structures containing functional parameters are not consid-
ered. Garbage is detected if heap cells are created “locally” and are not inherited. The abstract
interpretation uses domains which are also based on the notion of levels of the corresponding list
structure. In contrast to our work, the levels are not handled independently, i.e. all results have the
shape “all levels above and including are not inherited”. As we have pointed out, this is sufficient
in the setting of a purely functional language with lists, but for arbitrary data structures the re-
duced approach is not applicable at all. Moreover, for non-functional procedures, like the SET-CAR!
in Scheme, it makes optimisations impossible, since there is no abstract value which can be asso-
ciated with those procedures. Our approach would even optimise those calls if the corresponding
abstract values were given correctly. Of course, it is not possible for our method to derive this

17

information. Furthermore, there is no gain by using this simpler domains. Each abstract value can
be represented by less memory, but the worst case number of iterations is not affected, since the
domains of Hughes have the same height. A single lub-operation is the maximum of two numbers
which is even a bit more expensive than our bitwise or.

Park and Goldberg [PG92] describe a similar approach, which they call escape analysts, indi-
cating whether (parts of) the arguments can escape from the function call.

In [JM89] a different approach is taken: list constructors which are not shared are collected
as soon as they are dereferenced, i.e. as soon as they match a constructor on the left hand side
of a function definition. The abstract domains are introduced as (infinite) domains I7jg¢. For
practical application, the height of the abstract list is restricted, the choice of a threshold is left to
the user. Additionally, if it is detected that a deallocation is immediately followed by an allocation,
update-in-place is performed.

Two different approaches which use backward analysis are [HJ90] and [JM90]. While the latter
is essentially abstract reference counting the first infers information on whether a particular cell is
going to be accessed in the future. The cell will be deallocated if this is not the case.

8 Conclusions and Future Work

In this paper we have presented a method for statically estimating positions in a functional program,
where unreferenced data will occur at run-time. Our method is based on the abstract interpretation
of the underlying language.

We have described how to use our method in the context of eager evaluation. Experimental
results demonstrate that the storage use used in a much better way. We have quantified the gain
of this optimisation by applying it to two examples: The first example, quicksort, perfectly fits
this approach. Not surprisingly, the result was a program with an optimal space consumption. On
the other hand, the second example, queens, only offers one point for optimisation. Nevertheless,
the result was quite good. This is evidence to assume that our method works well in practice.

Apart from a optimised memory utilisation, it was a major concern to keep the overhead at
compile-time and run-time as small as possible. Of course, due to the fact that ctgc decreases the
time spent for normal gc, it can even be possible that the run-time decreases.

Some of the aspects of our work, distinguishing it from other work on ctgc are:

1. We can handle arbitrary data structures instead of only lists.

2. The abstract domains can be inferred directly from the types, whereas others approaches
essentially use approximations of list structures which are obtained by gratuitously restricting
the height of a list.

3. We have considered correctness w.r.t. to a denotational semantics, which is more general than
a proof w.r.t. a particular implementation represented as an abstract machine.

4. We do not try to handle destructive updates, because this would increase the complexity of
the implementation immensely, whereas the gain is only of temporary nature. Additionally,
destructive updates require enhanced or specialised versions of the functions, which may lead

18

to an increase of either run-time or code-size, respectively. The increase of code-size may be
exponentially in the worst case, since it may be necessary to create a special version for all
possible combinations of shared and unshared arguments.

5. The ‘point of optimisation’ is after the return from a function, which has the advantage that
we only need the abstract information on a particular function and not its definition. This
may be of interest in the context of modules, where the definition is not available.

6. We compute the abstract function only for their test arguments, which makes the analysis
fast.

More work needs to be done in the following directions:

Higher-order functions: Currently, we are developing a higher-order version of our analysis.
The representation of functions with functional argument or result within the abstract in-
terpretation has two aspects: one one hand, the interpretation must be extended to handle
function as arguments and results, and on the other hand, we want to infer informations on
partial applications, which are also represented in the heap in the shape of closures. For
instance, if there is a call to filter with a partial application as functional argument, we
can infer that the heap cell associated with this partial application can be deallocated after
termination of filter. Alternatively, those closures can be allocated on the stack frame
associated with the surrounding function. In some cases, it is even possible to allocate the
closure statically, since there is always only one active incarnation of this closure. This can
be approximated with an additional analysis of the call structure of the program.

Polymorphism: With easy extensions our approach is able to handle this. The major idea is
that a polymorphic function can not affect the levels of data with a, so that the abstract
interpretation can use the smallest set to represent those elements [BH89]. In this case we
can associate the set {0,1}? with this polymorphic type definition and evaluate each poly-
morphic function once with this type. Actually, our inheritance analysis is polymorphically
invariant [Abr86]. This means that given a polymorphic function, our analysis will return
the same results on any two monotyped instances of that function. Therefore we can analyse
a polymorphic function by analysing the simplest monotyped instance of this function.

Lazy evaluation: Since the abstract interpretation itself does not depend on the evaluation strat-
egy, the informations obtained by the analysis are still valid for lazy languages. Since in a
lazy language there is no particular point in the program associated with the termination of a
function, our approach is not directly applicable. But in combination with a strictness analy-
sis, 1t will be possible to determine ‘eager’ situations, i.e. positions in a lazy program where
we have f(g(e)) such that f is strict. In these cases we can insert deallocation commands for
those heap cells created in e, which are not inherited by g.

Unboxed values: Until now, we have assumed basic values to be stored in separate heap cells.
Of course, it it more reasonable to store basic values directly in constructor cells. In general,
this refers to a merge of several levels of the abstract domains.

19

Additionally, it would be interesting to investigate the relationship with other ctgc approaches and

other approaches to decrease memory consumption like deforestation ([Wad90, GLP93]) in more

detail.

References

[Abr86] S. Abramsky. Strictness analysis and polymorphic invariance. In G. Goos and J. Hart-
manis, editors, Workshop on Programs as Data Objects, number 217 in LNCS, pages
1—24, 1986.

[BH89] G. Baraki and J. Hughes. Abstract interpretation of polymorphic functions. In K. Davis
and J. Hughes, editors, Functional Programming, Glasgow 1989, Workshops in Com-
puting, 1989.

[GLP93] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to deforestation. In Pro-
ceedings of FPCA, 1993.

[HJ90] G.W.Hamilton and S. B. Jones. Compile-time garbage collection by necessity analysis. In
S. L. Peyton Jones, G. Hutton, and C. Kehler Holst, editors, Functional Programmaing,
Glasgow, 1990.

[Hug92] S. Hughes. Compile-time garbage collection for higher-order functional languages. Jour-
nal of Logic and Computation, 2(4):483-509, 1992.

[JM89] Simon B. Jones and Daniel Le Métayer. Compile-time garbage collection by sharing
analysis. In Proceedings of FPCA, 1989.

[JM90] T. P. Jensen and T.&E. Mogensen. A backward analysis for compile-time garbage collec-
tion. In G. Goos and J. Hartmanis, editors, Proceedings of ESOP 90, number 432 in
LNCS, pages 227—239, 1990.

[Myc80] Alan Mycroft. The theory and practice of transforming call-by-need into call-by-value. In
Proceedings of the International Symposium on Programmaing, number 83 in LNCS,
pages 269-281, 1980.

[PG92] Y. G. Park and B. Goldberg. Escape analysis on lists. In PLDI 92, ACM SIGPLAN,
pages 116—127, 1992.

[Wad90] P. Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical Com-

puter Science, (73):231—248, 1990.

20

