
E�cient Compile-Time Garbage Collection for ArbitraryData StructuresMarkus MohnenLehrstuhl f�ur Informatik II, Aachen University of TechnologyAhornstra�e 55, 52056 Aachen, Germanyemail: markusm@zeus.informatik.rwth-aachen.deMay 9, 1995AbstractThis paper describes a compile-time garbage collection (ctgc) method in the setting ofa �rst-order functional language with data structures. The aim is to obtain information onpositions in a program where certain heap cells will become obsolete during execution. Thereforewe develop an abstract interpretation for the detection of inheritance information which allowsus to detect whether the heap cells of an argument will be propagated to the result of a functioncall. The abstract interpretation itself is independent of the evaluation strategy of the underlyinglanguage. However, since the actual deallocations take place after on termination of functions,the information obtained by the abstract interpretation can be only be applied in an eagercontext, which may be detected using strictness analysis in a lazy language. In order to increasee�ciency we show how the number of recomputations can be decreased by using only parts ofthe abstract domains. The worst case time complexity is essentially quadratic in the size ofthe program. We illustrate the method developed in this paper with several examples and wedemonstrate how to use the results in an eager implementation. Correctness of the analysis isconsidered, using a modi�ed denotational semantics as reference point. A main goal of our workis to keep both the run-time and the compile-time overhead as small as possible.1 IntroductionOne of the advantages of modern functional languages is the ability to work with dynamic datastructures without the necessity to control memory allocations explicitly. On the other hand, thisprevents a programmer from expressing the reusability of heap cells of intermediate data structures.However, since the available memory is restricted in concrete computers, there must be some meansof deallocating obsolete memory cells. But well-known garbage collection mechanisms make no (oronly little) use of the special structure of the underlying functional programs.We present an abstract interpretation which exploits this special structure. The underlyingobservation is that data cells which were created specially for a certain function call become obsolete,if they are not inherited to the function result, i.e. if they are not reachable from the top cell ofthe result. In contrast to other ctgc approaches (like for instance [JM89]) we do not try to reuseobsolete cells as soon as possible, i.e. during function execution, because this would cause severe1

changes in the abstract machine and some runtime overhead. However, application of our techniqueis therefore only possible in `eager' situations, i.e. either in an eager language or at positions inlazy programs which were detected as eager by a strictness analysis.Furthermore, we show that our method can be implemented very e�ciently by using testarguments instead of the full domains. The worst case complexity for general programs is essen-tially O(n2) in the length of the program. Especially for realistic program we will show that thecomputation of the �xpoint can be done almost in linear time.We �nish this introduction by an outline of the contents of the paper. The next section gives amore detailed intuitive description of our method. Section 3 formalises this intuition and emphasisesthe problem of arbitrary data structures and their �nite representation. After that, we give a briefdiscussion of the correctness of our method and explain how to use the results of the abstractinterpretation in an eager implementation. The next section contains a discussion of e�ciencyissues. We show how to decrease the time spent for computing the �xpoint and give experimentalresults. The paper concludes with a comparison with related work and some prospects for furtherresearch.2 Intuitive DescriptionWe want to address the problem in the setting of a �rst-order functional language with construc-tors. For the moment, we will assume eager evaluation, although the abstract interpretation itself isalso applicable to programs of a lazy language. A constructor on the right hand side on a functionde�nition causes the allocation of a corresponding heap cell, if it is encountered during the execu-tion. We assume boxed representation of basic types, i.e. the heap cell representing a constructorcontains just pointers to other heap cells, which may represent constructors or basic values. Theloosening of some of these restrictions will be discussed in Section 8.The general idea of the optimisation can be summarised in the following way: if there is asubterm f(g(t)) on the right hand side of a function de�nition and we know that f does notinherit parts of the result of the evaluation of g(t), then deallocate all cells belonging to these partswhich were allocated during the execution of g(t). The deallocation takes place when the call of fterminates. In an eager implementation this can easily be done, since the termination point of afunction is �xed.In order to illustrate which kind of information we want to derive, we consider the followingexample: datatype ListOfInt ::= Nil | Cons(int,ListOfInt)append : ListOfInt x ListOfInt -> ListOfIntappend(Nil, L) := Lappend(Cons(a,L1), L2) := Cons(a,append(L1,L2))An obvious observation is that append sets up copies of all Cons cells contained in the �rstargument, but not of the int values stored in there. We say that append inherits the secondlevel of its �rst argument and all levels of its second argument, but not the �rst level of its �rstargument. The term level corresponds to the de�nition of the underlying type. For instance, thetype 2

datatype ListOfList ::= LNil | LCons(ListOfInt, ListOfList)has three levels: one for the list built up from LNil and LCons, one for the ListOfInt constructorsand one for for the actual int entries.The basic idea of the abstract interpretation, is to represent the (in�nite) set with elementsof variable size which corresponds to a type by means of a �nite domain of elements with a �xedsize, where each element has one component for each level of the type. This component is a binaryvalue, where the value 1 is used to indicate that the corresponding level may contain a cell whichis part of one of the parameters of the function call. The value 0 guarantees that there is no suchcell, i.e. all cells are new.In the above example we choose AListOfInt = f0; 1g2 as abstract domain for lists over integers.The components represent all constructors resp. all entries in a list.The corresponding abstract functions are essentially built from the abstract constructors. Theformal parameters of a constructor can be divided into two classes: those which are of the sametype as the constructor and those which are not. E.g. the constructor Cons for lists has the secondargument in the �rst class and the �rst argument in the second. The abstract interpretation of aconstructor is performed in two stages:1. All parameters of class two are put (at appropriate positions) into a new value. All otherpositions in this value are set to 0. These are the binary value indicating the inheritance ofthe constructors and the positions for parameters of class two of other constructors for thissort. This step copes with the creation of a new heap cell.2. The maximum (wrt. the order within the abstract domain) of this value and all parametersof class one is returned as result. In this way the information already contained is thoseparameters in preserved.If one of those parameters contains a nonzero entry at the position for the constructors, thenthe result will also. This captures our intuition, that if at least one cell of a list is inherited, weapproximate that all cells are inherited. In our example, the constructors are abstractly interpretedby: A[Nil] : AListOfInt A[Cons] : Aint � AListOfInt! AListOfIntA[Nil] = (0; 0) A[Cons](a; l) = (0; a)t lIn Section 6 we will show that we do not need to determine the values of the abstract functionsfor all possible argument combinations. Instead, we will use a single test argument for each levelof each argument to determine whether this particular level has an impact on the result, i.e. ifthere are elements from this level, which are part of the result. The test arguments are those withexactly one nonzero entry at a position representing this level. The result can only contain nonzeroentries if a nonzero entry in the initial test argument is propagated. For example, the abstractvalues of append for all possible test arguments are:A[append]((0; 0); (0; 1)) = (0; 1) A[append]((0; 0); (1; 0)) = (1; 0)A[append]((0; 1); (0; 0)) = (0; 1) A[append]((1; 0); (0; 0)) = (0; 0)We can see that the abstract value of append for the test argument ((1; 0); (0; 0)) is (0; 0). Thismeans that no Cons or Nil of the �rst level of the �rst argument is inherited to the result of append3

In order to demonstrate the intended use, we expand our example from above by de�nitionsfor the functions filterle, filtergt and quicksort:filterle : ListOfInt x int -> ListOfIntfilterle(Nil,b) := Nilfilterle(Cons(a,L),b) := if a<=b then Cons(a,filterle(L,b))else filterle(L,b)filtergt (* analogous *)quicksort : ListOfInt -> ListOfIntquicksort(Nil) := Nilquicksort(Cons(a,L)) := append(quicksort(filterle(L,a)),Cons(a,quicksort(filterge(L,a))))We can infer that all these functions do not inherit the constructors of their ListOfInt{typedargument. During the execution of a call to quicksort with a parameter not equal to Nil, as-suming left-to-right eager evaluation, the expression filterle(L,a) is evaluated �rst, creating anintermediate data structure which is fed into a recursive call of quicksort. All constructors of theintermediate list are copied by quicksort, which means that we can deallocate everything whichwas allocated for the intermediate list after the termination of quicksort. Accordingly, everyintermediate result can be deallocated after the surrounding function call has terminated, exceptfor the outermost append (this will maybe be deallocated on the level of the calling function) andthe second quicksort (because append does not copy its second argument).3 Abstract InterpretationIn this section we will formalise what we have described informally in the previous section. First,the abstract syntax of our language will be presented. In order to simulate pattern matching, aset of selector and test functions will be be associated with each constructor. Thereafter, we willdiscuss how to choose the abstract domains, where we focus on the problems arising due to arbitrarydata structures. The abstract interpretation is basically determined by the way the constructorsand selectors are interpreted w.r.t. the abstract domains.3.1 Abstract SyntaxLet S = BSnCS be the set of sorts , where BS and CS are �nite, disjoint sets of (basic) sorts , con-taining at least a sort bool 2 BS, and constructed sorts . Correspondingly, we assume that thereare disjoint families of variables X = (Xs jj s 2 S), de�ned functions DF = (DF s1;:::;sn!s jj n 2N0, s1; : : : ; sn ; s 2 S), basic functions
 = (
bs1;:::;bsn!bs jj n 2 N0, bs1; : : : ; bsn , bs 2 BS) andconstructors C = (Cs1;:::;sn!cs jj n 2 N0, s1; : : : ; sn 2 S and cs 2 CS). From the constructors wecan derive1. the family of selectors CSel := (CSelcs!s jj cs 2 CS and s 2 S)where the set of selectors of type cs! s is de�ned byCSelcs!s := fcjsel jj 9c 2 Cs1;:::;sn!cs , 1 � j � n: sj = sg4

2. the family of constructor testsCTest := (CTestcs!bool jj cs 2 CS)where the set of constructor tests of type cs! bool is de�ned byCTestcs!bool := fis�c jj 9c 2 Cs1;:::;sn!csgWe use these auxiliary functions to simulate pattern matching. We de�ne the family of all expres-sions over X , DF ,
, C, CSel and CTest by E := (Es jj s 2 S), where the sets Es are de�nedby:1. Xs � Es2. f 2 (
 n C n CSel n CTest)s1;:::;sn!s and e1 2 Es1 ; : : : ; en 2 Esn =) f(e1; : : : ; en) 2 Es3. F 2 DF s1;:::;sn!s and e1 2 Es1 ; : : : ; en 2 Esn =) F (e1; : : : ; en) 2 Es4. e 2 Ebool; e1; e2 2 Es=) if e then e1 else e2 fi 2 EsA program is a �nite set of de�nitionsF (x1; : : : ; xn) := e with F 2 DF t1 ;:::;tn!t , xi 2 X ti and e 2 Et with variables fx1; : : : ; xngone for each de�ned function.The intended declarative semantics is the usual �xpoint semantics. The data representation wehave in mind is a graph reduction machine where the graph is represented by means of a heap. Ifa constructor is evaluated during the execution, a heap cell representing this constructor is createdon the heap. Arguments are already represented in the heap, and so references to the argumentsare simply copied into the cell. Note, that we assume a boxed representation of basic values.Accordingly, variables always refer to heap cells.3.2 Abstract DomainsAssume that we have sets Vbs for each basic sort bs 2 BS. Denotational semantics uses sets Vcs ,which are �xpoints of the equations:Vcs = [c2C s1;:::;sn!csfc(v1; : : :vn) jj v1 2 Vs1 ; : : : ; vn 2 Vsng 8cs 2 CSThis re
ects the free interpretation of constructors. In the strict case, these sets consists of the�nite terms. In�nite terms are added to obtain the sets for the non-strict semantics. But, ofcourse, as we want to do an abstract interpretation we have to guarantee termination, so we needat least domains with only �nite ascending chains instead. Furthermore, since abstract values withvariable size can only be implemented ine�ciently, we prefer �nite domains, where values can berepresented with a �xed size. The �rst (obvious) step is to replace Vbs by Ibs := f0; 1g, since ourinterest is focused on whether parts of the arguments are inherited to the result, and not on theactual value of the result. Later on, we will use test values with a single `1' for a particular level of5

an argument. If we can observe that this `1' propagates through the computation, we have detected(possible) inheritance w.r.t. this level. Additionally, we add a value to each constructor, indicatingits inheritance behaviour. This yields sets Ics in a similar same way as �xpoints of equations:Ics = [c2C s1;:::;sn!csfc(b; v1; : : : ; vn) jj b 2 f0; 1g; v1 2 Is1 ; : : : ; vn 2 Isn g8cs 2 CSCons;00 Cons;01 Cons;00 Nil;0 7! (0; 1)
Figure 1: Mapping IListOfInt to AListOfIntWe still have the problem of in�nity, since we have essentially only reduced, for instance, theset of lists over integers to the set of lists over f0; 1g. One possibility for obtaining �nite sets, wecall it the horizontal approach, is to build the elements of the abstract domain by gratuitouslyrestricting the height of the elements of Is , for instance only the list of length 7 or less. Thisapproach is used in [JM89]. The obvious drawback is the selection of the threshold, since there isno possibility to derive a good choice from the program itself.We propose a di�erent approach, which has a more vertical appearance. If Is has n levels, wede�ne As ' f0; 1gn and we map an element of Is to an element of As by taking the maximum of allentries of level i as entry for the i-th component (see Figure 1). There is an obvious simpli�cationof the domains, which could be applied here. Instead of f0; 1gn we could choose f0; : : : ; ng, witha value k representing the fact that levels k and above are not inherited. This approach is takenin [Hug92] and [PG92]. The underlying observation is that it is not possible to de�ne a functionalprogram which inherits a certain constructor c and simultaneously does not inherit a constructord below c. This is due to the fact that functional programs can not change parameters stored inexisting heap cells for constructors. But there is a drawback: this approach works for list structures,but not for the general case. We will come back to this point later.Our �rst attempt to de�ne the abstract sets starts with setting Abs := f0; 1g for all basic sorts6

bs 2 BS. We then can de�ne the sets Acs for the constructed sorts as the �xpoints ofAcs = f0; 1g� Yc2C s1;:::;sn!cs Y1�i�nsi 6=cs Asi 8cs 2 CSIn order to evaluate the �rst Cartesian productQ we need an order on all constructors of target sortcs. The second product �lters out all direct recursiveness since we want to combine all constructorsof cs in one level. If we apply this to our example, we can compute thatAListOfInt = f0; 1g� Yc2fNil!ListOfInt ;ConsintxListOfInt!ListOfIntg Y1�i�nsi 6=cs Asi= f0; 1g�Aint= f0; 1g2Note that we assume that a Q over an empty index creates a set, which is a neutral element forsubsequent Cartesian products. Therefore, these parts do not contribute to the resulting domain.E.g. the constructor Nil has no in
uence.But there is a drawback: it is possible that we have a constructed sort cs, where we getjAcsj =1. A minimal example for this consists of the data de�nitions:datatype T1 ::= c1 T2 datatype T2 ::= c2 T1which are valid de�nitions in Miranda or Haskell, and which can be expressed in our abstractsyntax by choosing CT2!T1 = fc1g and CT1!T2 = fc2g.The corresponding sets are empty forstrict semantics and both have exactly one element of in�nite length for non-strict semantics:VT1 = fc1(c2(c1(� � �)))g and VT2 = fc2(c1(c2(� � �)))gAccordingly, we get the abstract set equations:AT1 = f0; 1g� AT2 and AT2 = f0; 1g� AT1which have the unique solution AT1 = AT2 = f0; 1g!, the set of all in�nite sequences of binarynumbers.Of course, sets of this kind are not useful for abstract interpretation, because in order toguarantee termination of the abstract interpretation we need sets with only �nite ascending chainsunder an appropriate order.Therefore, we must enhance our notion. The problem of our �rst attempt is that direct re-cursion and indirect recursion are handled in di�erent ways. In the above example, it would beconvenient to choose AT1 = AT2 = f0; 1g1: one level for all occurrences of c1 and c2.The indirect recursion, or, to be more precise, the fact that the constructed sorts need not forma proper hierarchy is also the reason for the failure of the simpli�ed approach. It assumes that theabstract levels of the type can be ordered in a single chain. Consider the exampledatatype ITree ::= ILeaf int | INode int CTree CTreedatatype CTree ::= CLeaf char | CNode char ITree ITree7

which de�nes types of trees consisting of alternating layers of int resp. char entries. We chooseAITree = ACTree = f0; 1g � (f0; 1g2)2, which means that we have three levels. These levels can notbe ordered linearly, since the levels for the int and for the char entries can not be ordered, theyare kind of incomparable.An extension of the simpli�ed approach would be to choose a domain, where several incompa-rable levels are positioned as brothers of a common father. Since all incomparable levels can behandled independently we have to add values for all possible combinations of inheritance of levels.In our case, this would be the domain in Figure 2 where the `2' represents a situation where bothchar and int entries are inherited to the result but not the constructors. These domains, however,0122a 2bFigure 2: Alternative domainhave lost the simplicity of a linear chain, so there is no advantage anymore. Furthermore it isnot possible to use these domains if we consider an extension of the language with non-functionalprocedures (see related work section).The next de�nition will enable us to express indirect recursion of constructed sorts: Letcs1; cs2 2 CS. We say that cs1 depends on cs2 (cs1 � cs2) i� there exists a constructorc 2 Cs1;:::;si�1;cs2;si+1;:::;sn!cs1 . As usual, ?� denotes the transitive and re
exive closure of �. If wehave cs1 ?� cs2 and cs2 ?� cs1, then we say that cs1 and cs2 are mutually recursive dependent .By de�nition, this is an equivalence relation, and we denote the equivalence class of cs 2 CS by[cs] := fcs0 2 CS jj cs0 ?� cs and cs ?� cs0gAdditionally, we de�ne [bs] := fbsg and A[bs] := f0; 1g for all basic sorts bs 2 BS. Again, we canobtain sets A[cs] by the equations:A[cs] = f0; 1g � Ycs 02[cs] Yc2C s1;:::;sn!cs0 Y1�i�n[si]6=[cs] A[si] 8cs 2 CSThese are suitable sets for abstract interpretation, since we have the following lemma:Lemma 1 jA[cs]j <1 for all cs 2 CS.Proof We can use the notion of dependency to de�ne a relation of the equivalence classes:[cs1] � [cs2] :() 9cs01 2 [cs1]; cs02 2 [cs2] : cs01 ?� cs02By de�nition, � is transitive and re
exive. Additionally, it is antisymmetric: assume [cs1] � [cs2]and [cs2] � [cs1] holds, i.e. 9cs01; cs001 2 [cs1]; cs02; cs002 2 [cs2] : cs01 ?� cs02 and cs002 ?� cs001. By8

de�nition of [csi] we have cs0i ?� cs00i and cs00i ?� cs0i for i = 1; 2. Therefore, transitivity implies:cs02 ?� cs002 ?� cs001 ?� cs01, which means that [cs1] = [cs2].Let � denote the strict part of �, i.e. [cs1] � [cs2] i� [cs1] � [cs2] and [cs1] 6= [cs2]. We can observethat for cs1 and cs2 with [cs1] � [cs2] holds:[cs1] � [cs2] () jA[cs1]j < jA[cs2]j (�)Now assume, we have jA[cs]j = 1 for cs 2 CS. This can only happen if the equations imply thatjA[cs]j < jA[cs]j. By de�nition A[cs] does not depend directly on itself, i.e. there must be a secondclass [cs0] 6= [cs] with jA[cs]j < jA[cs 0]j < jA[cs]j. This leads with (�) to [cs1] � [cs2] � [cs1] ". q.e.d.If we use this de�nition for the example, we get [T1] = [T2] = fT1; T2g and A[T1] = f0; 1g.Additionally, this notion is compatible with our �rst attempt, if we de�ne Acs := A[cs].Now we are in the position to de�ne our abstract domains. Note that, for each s 2 CS [BS,As can be \
attened" to a set f0; 1gn for some n 2 N. Thus we can de�ne a partial order �s by\bitwise" comparison. The resulting structure As := hAs ;�si is isomorphic to hP(f1; : : : ; ng);�i,which means that we have a complete lattice with bottom element ?s= (0; : : : ; 0), top element>s = (1; : : : ; 1) and lub-operator which is a bitwise or(a1; : : : ; an) ts (b1; : : : ; bn) = (a1 _ b1; : : : ; an _ bn)3.3 Interpretation of ConstructorsIn order to formalise which parts of an abstract value are a�ected by a particular constructor (orselector) of a particular type of an equivalence class [cs], we need arbitrary, but �xed orderingson all constructed types of class [cs] and on all constructors of a target type in cs0 2 [cs]. Moreformally, we assume that [cs] = fcs1; : : : ; cslcsg and Ccs := (Cs1;:::;sn!cs jj n 2 N0, s1; : : : ; sn 2 S) =fc1; : : : ; cmcsg for all cs 2 CS. Implicitly, we have already used these orderings in the de�nition ofA[cs].In order to locate those parameters which are not directly recursive, we need the followingauxiliary functions. Let c 2 Cs1;:::;sn!cs be such that cs has index l in the order of the sorts andc has index m in the order of constructors. We de�ne '[cs] such that '[cs](l;m; k) = j i� sk isthe non-recursive parameter of c which has the position j in the second component of the abstractvalues of A[cs]. We de�ne '[cs] : N30 ! N0 such that'[cs](l;m; k) = j i� tk is the non-recursive parameter of c which has the position jin the second component of the abstract values of A[cs].The de�nition of '[cs] (see Figure 3) is done by simultaneous induction on l, m and k.These preparations are su�cient to give a de�nition for the abstract meaning of selectors:A : CSelcs!s ! (Acs ! As)A[cksel]((b; �a)) := ((b; �a) if [cs] = [sk]proj'[cs](l ;m;k)(�a) otherwiseif c 2 Cs1;:::;sn!cs such that cs has index l in the order of the sorts and c has indexm in the order of constructors 9

'[cs] : N3 ! N'[cs](0;m; k) := 0'[cs](l + 1; 0; k) := '[cs](l;ml ; n0l)where ml is the number of constructors of the sort with index l, andn0l the number of arguments of the last constructor of this sort'[cs](l;m+ 1; 0) := '[cs](l;m; nm))where nm is the number of arguments of the constructor with indexm'[cs](l;m; k+ 1) := �(i > '[cs](l;m; k)):([ti] 6= [cs])Figure 3: De�nition of '[cs]With this de�nition we now can easily de�ne the abstract meaning of constructors:A : Cs1;:::;sn!cs ! (As1 � � � � � Asn ! Acs)A[c]((b1; �a1); : : : ; (bn ; �an)) := (b; �a) t G[si]=[cs](bi ; �ai)if c 2 Cs1;:::;sn!cs such that cs has index l in the order of the sorts and c has indexm in the order of constructors and a is a minimal value such that for all 1 � k � nholds: A[cksel]((b; �a)) = (b'[cs](l ;m;k); �a'[cs](l ;m;k))Firstly, a new vector (b; �a) is created by placing those arguments, which do not representreferences to structures of the same class, into a vector �lled with 0. Secondly, the information onreferences to the same class, which is contained in the remaining arguments are taken into accountby building the maximum.In order to illustrate these de�nitions, we will examine two examples:1. Recall the de�nition of lists over integers from the previous section. We have AListOfInt =f0; 1g2 and with the above de�nitions we get the abstract functionsA[Nil] : AListOfInt A[Cons] : Aint � AListOfInt! AListOfIntA[Nil] = (0; 0) A[Cons](a; l) = (0; a)t lA[Cons1sel] : AListOfInt! Aint A[Cons2sel] : AListOfInt! AlistOfIntA[Cons1sel]((x; y)) := y A[Cons2sel]((x; y)) := (x; y)The selection of the head of the list is abstractly represented by A[Cons1sel], which extractthe information for all entries from the abstract value for the list. Note that A[Cons1sel] isnot the projection of the �rst component of its argument. The tail of the list is assumedto have the same inheritance behaviour as the whole list, and therefore A[Cons2sel] is theidentity function.2. Our next example is a little bit more intricate. In the example which de�nes types of trees con-sisting of alternating layers of int resp. char entries. Obviously, we have AITree = ACTree =10

f0; 1g� (f0; 1g4). With the above order, we have the �rst half of the second component of anelement of the abstract domain reserved for the information referring to the int layers andthe second half for the information referring to the char layers. The abstract functions forthe constructors are in Figure 4.A[ILeaf] : Aint ! AITree A[INode] : Aint� AITree� AITree ! AITreeA[ILeaf](a) := (0; (a; 0; 0; 0)) A[INode](a; t1; t2) := (0; (0; a; 0; 0))t t1 t t2A[CLeaf] : Achar ! ACTree A[CNode] : Achar� ACTree� ACTree! ACTreeA[CLeaf](a) := (0; (0; 0; a; 0)) A[CNode](a; t1; t2) := (0; (0; 0; 0; a))t t1 t t2Figure 4: Abstract constructors for CTree and ITreeObviously, the only way to set an entry to 1 is that there is a 1 in the parameters of the abstractfunction.3.4 The Complete Abstract InterpretationWe are now able to extend the interpretation of constructors to the interpretation of a program.Firstly, we de�ne the abstract meaning of each basic function by:A :
bs1;:::;bsn!bs ! (Abs1 � � � � � Absn ! Abs)A[f](a1; : : :an) := 0This is reasonable since we can assume that the result of a basic function is always represented ina newly created heap cell. Similarly, we can de�ne the abstract meaning of the constructor testfunctions: A : CTestcs!bool! (Acs ! Abool)A[is�c](a) := 0The de�nition of the abstract semantic of an expression is as usual; letEnvX := (Xs (As jj s 2 S)be the family of variable assignments andEnvDF := (DF s1;:::;sn!s ((As1 � � � � � Asn ! As) jj n 2 N; s1; : : : ; sn ; s 2 S)be the family of function assignments . The meaning of an expression is inductively de�ned by:A : Es � EnvX � EnvDF (As 8s 2 SA[x](�; %) := �(x) if x 2 XA[f(e1; : : : ; en)](�; %) := A[f](A[e1]; : : : ;A[en]) if ei 2 Esi ; 1 � i � nf 2 (
 n C n CSel n CTest)s1;:::;sn!sA[F (e1; : : : ; en)](�; %) := %(F)(A[e1]; : : : ;A[en]) if ei 2 Esi ; F 2 DF s1 ;:::;sn!sA[if e then e1 else e2 fi 2 Es](�; %) := A[e1](�; %)tA[e2](�; %) if e 2 Ebool; e1; e2 2 Es11

Given a program P = fFi(xi;1; : : : ; xi;ni) := ei jj 1 � i � pg with Fi 2 DF si ;1;:::;si ;ni!si , xi;j 2 Xsi ;jand ei 2 Esi with free variables x1;i ; : : : ; xi;ni we de�ne the semantics of each Fi as a functionA[Fi] : Asi ;1 � � � � � Asi ;ni ! AsiThese functions can be computed as the least �xpoint of the equationsA[Fi](ai;1; : : : ; ai;ni) = A[ei]([xi;1=ai;1; : : : ; xi;ni=ai;ni]; [F1=A[F1]; : : : ; Fp=A[Fp]])Since the underlying domains do not have in�nitely ascending chains and all abstract functions aremonotonous, we can compute this �xpoint according to the Theorem of Knaster and Tarski.4 CorrectnessDue to the restrictions in space we can only give an outline of the correctness proof. The justi�cationof the abstract interpretation A is done w.r.t. a modi�ed non-strict denotational semantics. It issu�cient to proof the correctness for a non-strict semantics only, since the property of inheritanceis only of interest if the function terminates. Since a function which terminates for strict semanticsyields the same value with non-strict semantics, we can directly reuse the theorem.In order to formalise that the result of a function contains parts of the arguments, we must beable to distinguish between components of the original parameters and copies of these components.This is not possible within the domains of the usual denotational semantics I[:], which are the setsof �nite and in�nite partial terms V s?;1. Therefore the domains V s?;1 are annotated with binaryvalues at each node. This leads to new domains �V s?;1, and we can de�ne a modi�ed semantics �I[:]on these domains, which actually does not use the annotations, except that all data created by themodi�ed semantics is annotated with 0. Therefore it is easy to show that the original semantics isequivalent to the modi�ed one, if only arbitrary annotations are added.If we annotate parts of the input with '1' we can observe whether this tag is propagated to theresult of the function. This makes it possible to distinguish between original input and copies ofit. We relate the annotated domains V s?;1 with the abstract domains As via a family of functionsabst = (absts : V s?;1 ! As jj 8t 2 S)These functions create a component of the abstract value by collecting all corresponding annotationsin the annotated value and combines them via the maximum. It is easy to extent these functionsto functions abstenvX and abstenvDF which map annotated environments to abstract environments.For all expression e 2 Es and all environments ��, �' we can prove thatabsts(�I[e](��; �')) �s A[e](abstenvX (��); abstenvDF (�'))Especially, if we have A[e](�; ') =?s for some abstract environments � and ', we know that therecan not be corresponding annotated environments �� and �' such that �I[e](��; �') contains a non-zeroannotation. With other words, the result of the evaluation of e does not contain parts of the input.12

5 How to Use the ResultsWe adopt a notion known from strictness analysis (see for instance [Myc80]) in order to use theabstract interpretation.Given a sort s 2 S we de�ne the set of test vectors for sTs := f(1; 0; : : : ; 0); (0; 1; : : : ; 0); : : : ; (0; 0; : : : ; 1)g � Asas those vectors from As with exactly one 1 entry. The set of test arguments TF for a functionF 2 DF s1;:::;sn!s consists of those arguments where there is exactly one 1 in a single argumentposition:(Ts1 � f?s2g � � � � � f?sng) [(f?s1g � Ts2 � � � � � f?sng) [� � � [(f?s1g � f?s2g � � � � � Tsn)If A[F](ti;j) =?s , where ti;j 2 Ts is the test argument with a 1 at the j-th position for the i-thargument, we can be sure, that there is no member of level i of the j-th argument inherited to theresult of the function F , since this would propagate the 1 to the result of the abstract function.Recall the quicksort example from Section 2. The evaluation of A[append] for the fourelements of Tappend yields:A[append]((0; 0); (0; 1)) = (0; 1) A[append]((0; 0); (1; 0)) = (1; 0)A[append]((0; 1); (0; 0)) = (0; 1) A[append]((1; 0); (0; 0)) = (0; 0)We can conclude that the constructors of the �rst argument are not inherited to the result. Similar-ly, we obtain that the functions filterle, filterge and quicksort do not inherit the constructorsof their argument. With this knowledge we can insert commands for deallocation into the code forquicksort immediately after the recursive calls. At those positions every constructor created byfilter* can be deallocated, since it not be referenced from the result of quicksort.The general scheme is to detect positions in a given program, where we have a subexpressionF (e1; : : : ; en) on the right hand side of a function de�nition such that A[ti;j] =?. Therefore weknow that all cells of level j created during evaluation of ei is garbage after the execution of F .We can now insert commands for the deallocation of all these cells. This could easily be done bytraversing the graph representing of the intermediate result ei . However, this method is quite timeconsuming. Another possibility is to trace all allocations of cells of the appropriate level duringexecution of ei . The advantage is that deallocation can be done without searching the result. Ofcourse, there is some overhead during the allocation and we need additional memory. A moresophisticated method would be to allocate intermediate results in a more stack-like way on a framewhich is associated to the function which is currently evaluated. All intermediate results can thenbe deallocated by releasing the stack frame. Of course, we need additional analyses in order todetermine at compile-time how much intermediate space in terms of the input size is needed for theevaluation of a function de�nition. This is due to the fact that during the evaluation of a functionf , which will create intermediate data, we may need space for 'inter-'intermediate data. This willbe allocated in the stack frame associated with f . But this stack frame is on top of the stack frameof the function calling f , where the result of f will be located. . Therefore we need to reserveenough space for the result of f before evaluating f .13

6 E�ciencyOne of the key targets of this work was to keep both the compile-time and run-time overhead assmall as possible. The compile-time e�ciency is represented by the complexity of the computationof the abstract information. On the other hand, the run-time e�ciency is characterised by twoparameters: the time lost by the execution of the additional commands for the deallocation andthe gain in memory utilisation.6.1 Compile-Time E�ciencyIn general, we need to evaluate all abstract functions associated with a given program for all possiblearguments and recompute until stability. The �niteness of all abstract domains guarantees that astable state is reached after a �nite number of iterations. Firstly, we will estimate the number ofiterations for this na��ve approach.Let n 2 N be the number of de�ned functions in a program P , m 2 N the maximal arity of ade�ned function and l 2 N the maximal number of levels of a sort in P . This is also the length ofthe longest ascending chain in the abstract domain for this sort. An upper bound for the numberof values computed in each iteration is 2lnm. The longest chain contains at most l elements, whichmeans that each computed value can change at most l times during the computation until themaximal element is reached. Altogether, the worst case are 2lmnl iterations, which is far frombeing practicable.Since we are only interested in the value of the functions for the test arguments, it is convenientto compute only these. This optimisation reduces the number of iterations to l2mn, because thereare only lmn test arguments. But we may need the value of a function for a non-test argument.Luckily, we can compute such values from the values of the functions for the test arguments.Lemma 2 (Distributivity of A and t)Let F 2 DF s1;:::;sk!s and ai ; a0i 2 Ai for 1 � i � k. The abstract semantics distributes with thelub-operator, i.e.A[F](a1 t a01; : : : ; ak t a0k) = A[F](a1; : : : ; ak) tA[F](a01; : : : ; a0k)Together with the next corollaries, this enables us to represent the values for a non-test argumentas a 'linear' combination of test argument value.Corollary 1 (Consistency of A)Let F 2 DF s1;:::;sk!s : A[F](?s1 ; : : : ;?sn) =?sCorollary 2 (Generating set Ts)Let s 2 S. The set of test values Ts is a generating set for As in the following sense:As = [fT�Tsg(FT)If we examine the number of function evaluations instead of iterations, the advantage is even moredramatical. While the na��ve implementation requires 2lmn function evaluations per iteration,14

the better version only needs lmn, which implies a total of 22lm2n2l evaluations versus l3m2n2evaluations.Since the number of function de�nitions in a program is the most characteristic value, we caninterpret this result as the proof for a quadratic worst case complexity of our method.Realistic programs, however, do not reach this worst case, since the function de�nitions are notthat enigmatic. Especially those functions, which only depend on themselves, like for instance theappend function, are interesting. If we look at the corresponding transformation, we can observe,that the value of A[append] for an argument (a1; a2) in the i+ 1-th iteration depends only on thevalue for (a1; a2) in the i-th iteration and not on the value for any other argument.A[append](a1; a2) = A[Nil] tA[Cons](Cons1sel(a1);A[append](Cons2sel(a1); a2))= A[Nil] tA[Cons](Cons1sel(a1);A[append](a1; a2))The reason for this is that the abstract interpretation of A[Cons2sel] is the identity function, sincethis corresponds to the access to a substructure of type ListOfInt. Functions which are de�nedvia structural recursion on the underlying type have this property. The impact on the complexityof the computation is enormous. Because the value for each argument is independent from theother values the computation of the �xpoint is stable after at most l steps. For a program whereall de�nitions have this form the number of evaluations drops to l2mn, which is essentially linearin the size of the program.A single evaluation can be done very e�ciently, since it consists of a sequence of lub-operationswhich can be implemented by a \bitwise or".6.2 Run-Time E�ciencyWe have done some experiments with programs which were enriched with deallocation commands.The programs are compiled by hand from our example language to C. The impact of the dealloca-tions on the run-time was small, but since a real implementation is missing we can not make fairexperiments on this topic. Especially, since additional deallocations reduce the need for normalgarbage collection, it may even be possible that the run-time is decreased in situations where muchintermediate data is created. But the impact on memory consumption can be quanti�ed very well.n 1 10 50 100input 2 11 51 101w/o ctgc 7 196 3376 15451ctgc (end) 2 11 51 101ctgc (max) 4 58 1278 5053Table 1: Statistics for qsortThe �rst example (see Table 1) is the qsort program. The points of deallocation are thosewhich were described above. The �rst line of the table shows the number of heap cells used forthe input, which is the list from n down to 1. The remaining three lines show additional amountof heap used by the program without ctgc, at the end of the ctgc version, and the maximal heap15

usage during execution of the ctgc version, respectively. Note, that the maximal heap usage of thectgc version is only a third of the memory consumption of the version without optimisation. Thectgc version of the program is optimal in the sense, that all intermediate data is deallocated; onlythe result is still in memory at the end. If qsort would be called from a position where the inputcould not be accessed any more, the ctgc version would e�ectively be an in-place version.
0 125 250 375060120180 ctgc (max) ctgc (end)w/o ctgc

Figure 5: qsort(10) with and w/o ctgcIn Figure 5 we have compared the di�erent memory consumptions during the evaluation ofqsort(10). The diagram shows the number of heap cells used at each function call performed.After an initial phase, where only alternating calls to filter* and qsort are executed until anempty list is reached, the two curves start to di�er. The ctgc version continuously allocates anddeallocates intermediate data. The point of maximal memory consumption of the ctgc version isthe end of the initial phase. Until then no deallocation is performed.Our second example (Table 2) is an implementation of queens. This particular example isremarkable, because our interpretation can not infer any information for deallocation, since every-thing is inherited by the functions. The only point where a deallocation can be incorporated is asingle call to append. Surprisingly, the e�ect on memory usage is immense.n 1 2 4 8w/o ctgc 5 10 92 20446ctgc (end) 4 4 20 2150ctgc (max) 5 6 23 2239Table 2: Statistics for queensThese results show clearly, that ctgc is worth the (small) e�ort.7 Related WorkSeveral methods have been proposed to reduce the run-time memory consumption by ctgc. Asimple classi�cation can be done by two characteristics:1. Which kind of information is approximated by the underlying abstract interpretation(s).16

By de�nition, a heap cell is garbage if it is (part of a structure) not reachable from the mainexpression. Consequently, there are four actions which in
uence the state of a cell:generation by a constructor,sharing by non-linear function bodies,inheriting by returning as (part of) the result of a function, anddereferencing by pattern matching.Accordingly, ctgc methods use abstract interpretation in order to retrieve information onsome of these properties.2. How is the memory management strategy altered by the information obtained. Especially,the location of memory reuse and the way of memory reuse is of importance.The location of memory reuse determines at which point of execution a garbage cell is reused.An immediate reuse (like in [JM89]) has the advantage of keeping the number of garbage cellssmall at the price of frequent interruptions of the actual computation. It is only possible forfunctions, where sharing of the argument does not occur. Otherwise, either the function mustbe altered to receive additional arguments indicating an \unshared situation", or be specialversions of this function must be used in the appropriate situations. The �rst case requiresadditional test within the function, which increase the time spent on memory managementoperations. The second case avoids this but can increase the code size exponentially in thenumber of arguments of the function. A more delayed approach (like in [Hug92]) deallocatesat the end of the corresponding function call. The advantage is that more deallocations areperformed at the same time, which may be done more e�ciently. Also, there is no need formodi�cations within the function, which circumvents the above problems.The way of memory reuse can be either deallocating, i.e. adding the cell to the free partof the heap, or direct reuse. The latter can be used in situations where the deallocation isimmediately followed by an allocation, like for instance the append function. The result is a\in-place" version of append. Again, there is the problem whether an argument is shared ornot.The approach taken in [Hug92] is the closest work to ours. It uses a combination of generationanalysis and inheritance analysis of (nested) lists of atomic values in the setting of a higher orderlanguage. Arbitrary data structures or structures containing functional parameters are not consid-ered. Garbage is detected if heap cells are created \locally" and are not inherited. The abstractinterpretation uses domains which are also based on the notion of levels of the corresponding liststructure. In contrast to our work, the levels are not handled independently, i.e. all results have theshape \all levels above and including are not inherited". As we have pointed out, this is su�cientin the setting of a purely functional language with lists, but for arbitrary data structures the re-duced approach is not applicable at all.Moreover, for non-functional procedures, like the SET-CAR!in Scheme, it makes optimisations impossible, since there is no abstract value which can be asso-ciated with those procedures. Our approach would even optimise those calls if the correspondingabstract values were given correctly. Of course, it is not possible for our method to derive this17

information. Furthermore, there is no gain by using this simpler domains. Each abstract value canbe represented by less memory, but the worst case number of iterations is not a�ected, since thedomains of Hughes have the same height. A single lub-operation is the maximum of two numberswhich is even a bit more expensive than our bitwise or.Park and Goldberg [PG92] describe a similar approach, which they call escape analysis, indi-cating whether (parts of) the arguments can escape from the function call.In [JM89] a di�erent approach is taken: list constructors which are not shared are collectedas soon as they are dereferenced, i.e. as soon as they match a constructor on the left hand sideof a function de�nition. The abstract domains are introduced as (in�nite) domains Ilist. Forpractical application, the height of the abstract list is restricted, the choice of a threshold is left tothe user. Additionally, if it is detected that a deallocation is immediately followed by an allocation,update-in-place is performed.Two di�erent approaches which use backward analysis are [HJ90] and [JM90]. While the latteris essentially abstract reference counting the �rst infers information on whether a particular cell isgoing to be accessed in the future. The cell will be deallocated if this is not the case.8 Conclusions and Future WorkIn this paper we have presented a method for statically estimating positions in a functional program,where unreferenced data will occur at run-time. Our method is based on the abstract interpretationof the underlying language.We have described how to use our method in the context of eager evaluation. Experimentalresults demonstrate that the storage use used in a much better way. We have quanti�ed the gainof this optimisation by applying it to two examples: The �rst example, quicksort, perfectly �tsthis approach. Not surprisingly, the result was a program with an optimal space consumption. Onthe other hand, the second example, queens, only o�ers one point for optimisation. Nevertheless,the result was quite good. This is evidence to assume that our method works well in practice.Apart from a optimised memory utilisation, it was a major concern to keep the overhead atcompile-time and run-time as small as possible. Of course, due to the fact that ctgc decreases thetime spent for normal gc, it can even be possible that the run-time decreases.Some of the aspects of our work, distinguishing it from other work on ctgc are:1. We can handle arbitrary data structures instead of only lists.2. The abstract domains can be inferred directly from the types, whereas others approachesessentially use approximations of list structures which are obtained by gratuitously restrictingthe height of a list.3. We have considered correctness w.r.t. to a denotational semantics, which is more general thana proof w.r.t. a particular implementation represented as an abstract machine.4. We do not try to handle destructive updates, because this would increase the complexity ofthe implementation immensely, whereas the gain is only of temporary nature. Additionally,destructive updates require enhanced or specialised versions of the functions, which may lead18

to an increase of either run-time or code-size, respectively. The increase of code-size may beexponentially in the worst case, since it may be necessary to create a special version for allpossible combinations of shared and unshared arguments.5. The `point of optimisation' is after the return from a function, which has the advantage thatwe only need the abstract information on a particular function and not its de�nition. Thismay be of interest in the context of modules, where the de�nition is not available.6. We compute the abstract function only for their test arguments, which makes the analysisfast.More work needs to be done in the following directions:Higher-order functions: Currently, we are developing a higher-order version of our analysis.The representation of functions with functional argument or result within the abstract in-terpretation has two aspects: one one hand, the interpretation must be extended to handlefunction as arguments and results, and on the other hand, we want to infer informations onpartial applications, which are also represented in the heap in the shape of closures. Forinstance, if there is a call to filter with a partial application as functional argument, wecan infer that the heap cell associated with this partial application can be deallocated aftertermination of filter. Alternatively, those closures can be allocated on the stack frameassociated with the surrounding function. In some cases, it is even possible to allocate theclosure statically, since there is always only one active incarnation of this closure. This canbe approximated with an additional analysis of the call structure of the program.Polymorphism: With easy extensions our approach is able to handle this. The major idea isthat a polymorphic function can not a�ect the levels of data with a, so that the abstractinterpretation can use the smallest set to represent those elements [BH89]. In this case wecan associate the set f0; 1g2 with this polymorphic type de�nition and evaluate each poly-morphic function once with this type. Actually, our inheritance analysis is polymorphicallyinvariant [Abr86]. This means that given a polymorphic function, our analysis will returnthe same results on any two monotyped instances of that function. Therefore we can analysea polymorphic function by analysing the simplest monotyped instance of this function.Lazy evaluation: Since the abstract interpretation itself does not depend on the evaluation strat-egy, the informations obtained by the analysis are still valid for lazy languages. Since in alazy language there is no particular point in the program associated with the termination of afunction, our approach is not directly applicable. But in combination with a strictness analy-sis, it will be possible to determine `eager' situations, i.e. positions in a lazy program wherewe have f(g(e)) such that f is strict. In these cases we can insert deallocation commands forthose heap cells created in e, which are not inherited by g.Unboxed values: Until now, we have assumed basic values to be stored in separate heap cells.Of course, it it more reasonable to store basic values directly in constructor cells. In general,this refers to a merge of several levels of the abstract domains.19

Additionally, it would be interesting to investigate the relationship with other ctgc approaches andother approaches to decrease memory consumption like deforestation ([Wad90, GLP93]) in moredetail.References[Abr86] S. Abramsky. Strictness analysis and polymorphic invariance. In G. Goos and J. Hart-manis, editors, Workshop on Programs as Data Objects, number 217 in LNCS, pages1|24, 1986.[BH89] G. Baraki and J. Hughes. Abstract interpretation of polymorphic functions. In K. Davisand J. Hughes, editors, Functional Programming, Glasgow 1989, Workshops in Com-puting, 1989.[GLP93] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to deforestation. In Pro-ceedings of FPCA, 1993.[HJ90] G. W. Hamilton and S. B. Jones. Compile-time garbage collection by necessity analysis. InS. L. Peyton Jones, G. Hutton, and C. Kehler Holst, editors, Functional Programming,Glasgow, 1990.[Hug92] S. Hughes. Compile-time garbage collection for higher-order functional languages. Jour-nal of Logic and Computation, 2(4):483{509, 1992.[JM89] Simon B. Jones and Daniel Le M�etayer. Compile-time garbage collection by sharinganalysis. In Proceedings of FPCA, 1989.[JM90] T. P. Jensen and T.�. Mogensen. A backward analysis for compile-time garbage collec-tion. In G. Goos and J. Hartmanis, editors, Proceedings of ESOP 90, number 432 inLNCS, pages 227|239, 1990.[Myc80] Alan Mycroft. The theory and practice of transforming call-by-need into call-by-value. InProceedings of the International Symposium on Programming, number 83 in LNCS,pages 269{281, 1980.[PG92] Y. G. Park and B. Goldberg. Escape analysis on lists. In PLDI 92, ACM SIGPLAN,pages 116|127, 1992.[Wad90] P. Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical Com-puter Science, (73):231|248, 1990.
20

