diff --git a/coco/xreate.ATG b/coco/xreate.ATG index b50fb1b..66e8ad4 100644 --- a/coco/xreate.ATG +++ b/coco/xreate.ATG @@ -1,599 +1,600 @@ //TODO add ListLiteral //TODO ExprTyped: assign default(none) type #include "ast.h" #include "ExternLayer.h" #include "pass/adhocpass.h" #include #include #define wprintf(format, ...) \ char __buffer[100]; \ wcstombs(__buffer, format, 100); \ fprintf(stderr, __buffer, __VA_ARGS__) using namespace xreate; using namespace std; COMPILER Xreate xreate::AST root; // current program unit struct { std::stack scopesOld; xreate::CodeScope* scope = nullptr; } context; void pushContextScope(CodeScope* scope){ context.scopesOld.push(context.scope); context.scope = scope; } void popContextScope(){ context.scope = context.scopesOld.top(); context.scopesOld.pop(); } int nextToken() { scanner->ResetPeek(); return scanner->Peek()->kind; } bool checkParametersList() { return la->kind == _ident && nextToken() == _lparen; } bool checkInfix() { return la->kind == _ident && nextToken() == _ident; } bool checkIndex() { return la->kind == _ident && nextToken() == _lbrack; } bool checkFuncDecl() { if (la->kind != _ident) return false; int token2 = nextToken(); int token3 = scanner->Peek()->kind; return token2 == _assign && (token3 == _function || token3 == _pre); } bool checkAssignment() { if (la->kind != _ident) return false; scanner->ResetPeek(); int token2 = scanner->Peek()->kind; if (token2 == _lcurbrack) { scanner->Peek(); int token3 = scanner->Peek()->kind; if (token3 != _rcurbrack) return false; int token4 = scanner->Peek()->kind; return token4 == _assign; } return token2 == _assign; } void recognizeIdentifier(Expression& i){ if (!context.scope->recognizeIdentifier(i)){ if (!root.recognizeVariantIdentifier(i)){ root.postponeIdentifier(context.scope, i); } } } enum SwitchKind{SWITCH_NORMAL, SWITCH_META}; CHARACTERS letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz". any = ANY - '"'. digit = "0123456789". cr = '\r'. lf = '\n'. tab = '\t'. TOKENS ident = (letter | '_') {letter | digit | '_'}. - number = digit {digit}. + number = (digit | '-' digit) {digit}. string = '"' { any } '"'. function = "function". pre = "pre". lparen = '('. rparen = ')'. lbrack = '['. rbrack = ']'. lcurbrack = '{'. rcurbrack = '}'. equal = "==". assign = '='. implic = '-' '>'. colon = ':'. context = "context". tagcolon = "::". lse = "<=". lss = "<". gte = ">=". gtr = ">". ne1 = "!=". ne2= "<>". COMMENTS FROM "/*" TO "*/" NESTED COMMENTS FROM "//" TO lf IGNORE cr + lf + tab PRODUCTIONS Xreate = (. Function* function; .) {( RuleDecl | InterfaceData | Imprt | ContextSection | IF(checkFuncDecl()) FDecl (. root.add(function); .) | TDecl )} (. root.recognizePostponedIdentifiers(); .) . Ident = ident (. name = t->val; .). VarIdent = ident (. e = Expression(Atom(t->val)); .) [ lcurbrack ( ident (. SemErr(coco_string_create("var version as ident is not implemented yet")); .) | number (. Attachments::put(e, Atom(t->val).get()); .) ) rcurbrack ] . FDecl = (. std::wstring fname; std::wstring argName; TypeAnnotation typIn; TypeAnnotation typOut; bool flagIsPrefunct = false; Expression binding; .) Ident assign [pre (. flagIsPrefunct = true; .)] function (. f = new Function(fname); f->isPrefunction = flagIsPrefunct; CodeScope* entry = f->getEntryScope(); .) ['(' Ident tagcolon ExprAnnotations (. f->addBinding(Atom(argName), move(binding)); .) {',' Ident tagcolon ExprAnnotations (. f->addBinding(Atom (argName), move(binding));.) } ')'] [ tagcolon ( IF(flagIsPrefunct) FnTag | Type ) {';' FnTag }] BDecl (. entry->getBody().bindType(move(typOut));.) . ContextSection<>= (. Expression context; Function* f; .) "case" "context" tagcolon MetaSimpExpr lcurbrack { FDecl (. f->guardContext = context; root.add(f); .) } rcurbrack. /** * TYPES * */ TypeTerm = (. std::wstring tid; .) ("string" (. typ = TypePrimitive::String;.) | "num" (. typ = TypePrimitive::Num;.) | "int" (. typ = TypePrimitive::Int;.) | "float" (. typ = TypePrimitive::Float;.) | "bool" (. typ = TypePrimitive::Bool; .) | "i8" (. typ = TypePrimitive::I8; .) | "i32" (. typ = TypePrimitive::I32; .) + | "i64" (. typ = TypePrimitive::I64; .) ). Type = (. TypeAnnotation typ2; TypePrimitive typ3; std::wstring tid, field; .) ( TList | TStruct | TypeTerm (. typ = typ3; .) | IF (checkIndex()) Ident lbrack Ident (. typ = TypeAnnotation(TypeOperator::ACCESS, {}); typ.__valueCustom = Atom(tid).get(); typ.fields.push_back(Atom(field).get()); .) {',' Ident (. typ.fields.push_back(Atom(field).get()); .) } rbrack | Ident (. typ = TypeAnnotation(TypeOperator::CUSTOM, {}); typ.__valueCustom = Atom(tid).get(); .) ['(' Type (. typ.__operator = TypeOperator::CALL; typ.__operands.push_back(typ2); .) {',' Type (. typ.__operands.push_back(typ2); .) } ')'] ) . TList = (. TypeAnnotation ty; .) '[' Type (. typ = TypeAnnotation(TypeOperator::ARRAY, {ty}); .) {',' Type (. typ.__operator = TypeOperator::TUPLE; typ.__operands.push_back(ty); .) }']' . TStruct = (. TypeAnnotation t; std::wstring field; .) lcurbrack Ident tagcolon Type (. typ = TypeAnnotation(TypeOperator::STRUCT, {t}); typ.fields.push_back(Atom(field).get()); .) {',' Ident tagcolon Type} (. typ.__operands.push_back(t); typ.fields.push_back(Atom(field).get()); .) rcurbrack. TDecl = (. std::wstring ttag; TypeAnnotation t, t1; std::wstring tname, arg; std::vector> args; .) Ident assign "type" ( "alias" Type (. root.add(move(t), Atom(tname)); .) | "variant" lparen Ident (. t = TypeAnnotation(TypeOperator::VARIANT, {}); args.push_back(Atom(arg)); .) {',' Ident (. args.push_back(Atom(arg)); .) } rparen (. t.addFields(move(args)); root.add(move(t), Atom(tname)); .) | Ident ['(' Ident (. args.push_back(Atom(arg)); .) {',' Ident (. args.push_back(Atom(arg)); .) } ')'] Type (. t.addBindings(move(args)); root.add(move(t), Atom(tname)); .) ) '.' . ContextDecl = (. Expression tag; .) context tagcolon MetaSimpExpr (. scope->tags.push_back(tag); .) {';' MetaSimpExpr (. scope->tags.push_back(tag); .) }. VDecl = (. std::wstring vname; Expression var, value;.) VarIdent assign ExprTyped (. f->addDeclaration(move(var), move(value)); .) . //TODO forbid multiple body declaration (ExprTyped) BDecl = lcurbrack (. Expression body; pushContextScope(scope); .) {(IF(checkAssignment()) VDecl '.' | RuleContextDecl | ContextDecl'.' | ExprTyped (. scope->setBody(body); .) )} (. popContextScope(); .) rcurbrack . IfDecl = (. Expression cond; ManagedScpPtr blockTrue = root.add(new xreate::CodeScope(context.scope)); ManagedScpPtr blockFalse = root.add(new xreate::CodeScope(context.scope)); .) "if" '(' Expr ')' (. e = Expression(Operator::IF, {cond}); .) tagcolon ExprAnnotations BDecl<&*blockTrue> "else" BDecl<&*blockFalse> (. e.addBlock(blockTrue); e.addBlock(blockFalse); .) . LoopDecl = (. Expression eIn, eAcc, eFilters; std::wstring varEl, varAcc, contextClass; Expression tagsEl; ManagedScpPtr block = root.add(new xreate::CodeScope(context.scope)); .) "loop" ("map" '(' Expr implic Ident (. e = Expression(Operator::MAP, {eIn}); .) tagcolon ExprAnnotations ')' tagcolon ExprAnnotations BDecl<&*block> (. e.addBindings({Atom(varEl)}); block->addBinding(Atom(varEl), move(tagsEl)); e.addBlock(block); .) |"fold" ("inf" '(' Expr implic Ident ')' (. e = Expression(Operator::FOLD_INF, {eAcc}); e.addBindings({Atom(varAcc)}); .) tagcolon ExprAnnotations BDecl<&*block> (. block->addBinding(Atom(varAcc), Expression()); e.addBlock(block); .) | '(' Expr implic Ident tagcolon ExprAnnotations ['|' Expr ] ',' Expr implic Ident')' (. e = Expression(Operator::FOLD, {eIn, eAcc}); e.addBindings({Atom(varEl), Atom(varAcc)}); .) tagcolon ExprAnnotations BDecl<&*block> (. block->addBinding(Atom(varEl), move(tagsEl)); block->addBinding(Atom(varAcc), Expression()); e.addBlock(block); .) ) | "context" '(' string (. contextClass = t->val; .) ')' BDecl<&*block> (. e = Expression(Operator::LOOP_CONTEXT, {Expression(Atom(std::move(contextClass)))}); e.addBlock(block); .) ). SwitchDecl = (. TypeAnnotation typ; eSwitch = Expression(Operator::SWITCH, {}); Expression eCondition; Expression tag;.) ["switch" ( "ad" "hoc" lparen Expr tagcolon MetaSimpExpr rparen (. eSwitch.op = Operator::SWITCH_ADHOC; eSwitch.operands.push_back(eCondition); eSwitch.addTags({tag}); flagSwitchKind = SWITCH_META; .) | lparen Expr rparen tagcolon ExprAnnotations (. eSwitch.operands.push_back(eCondition);.) ) ] CaseDecl {CaseDecl} . CaseDecl = (. ManagedScpPtr scope = root.add(new xreate::CodeScope(context.scope)); Expression condition; .) "case" ( IF(flagSwitchKind == SWITCH_META) lparen MetaSimpExpr rparen BDecl<&*scope> (. Expression exprCase(Operator::CASE, {}); exprCase.addTags({condition}); exprCase.addBlock(scope); outer.addArg(move(exprCase));.) | "default" BDecl<&*scope> (. Expression exprCase(Operator::CASE_DEFAULT, {}); exprCase.addBlock(scope); outer.operands.insert(++outer.operands.begin(), exprCase); .) | lparen CaseParams<&*scope> rparen (. ManagedScpPtr scopeBody = root.add(new xreate::CodeScope(&*scope)); Expression exprCase(Operator::CASE, {}); .) BDecl<&*scopeBody> (. exprCase.addBlock(scope); exprCase.addBlock(scopeBody); outer.addArg(move(exprCase)); .) ). CaseParams = (. Expression condition; Expression guard(Operator::LOGIC_AND, {}); pushContextScope(scope); .) ExprTyped (. guard.addArg(Expression(condition)); .) {',' ExprTyped (. guard.addArg(Expression(condition)); .) } (. scope->setBody(guard); popContextScope(); .) . IntrinsicDecl= (. std::wstring name; .) "intrinsic" Ident< name> (. outer = Expression(Operator::CALL_INTRINSIC, {}); outer.setValue(Atom(name)); .) lparen [CalleeParams] rparen . /*============================ INTERFACES ===============================*/ Imprt<> = "import" "raw" lparen string (. root.__rawImports.push_back(Atom(t->val).get()); .) rparen . InterfaceData<> = "interface" '(' ( "dfa" ')' InterfaceDFA | "extern-c" ')' InterfaceExternC | "cfa" ')' InterfaceCFA | "adhoc" ')' InterfaceAdhoc ). InterfaceAdhoc<> = '{' { PrefunctionSchemeDecl } '}'. PrefunctionSchemeDecl<> = (. TypeAnnotation typReturn; std::wstring prefName; Expression exprCases; .) pre function Ident tagcolon Type lcurbrack SwitchDecl rcurbrack (. Expression prefData(Operator::CALL, {Atom(prefName), exprCases}); prefData.bindType(typReturn); root.addInterfaceData(Adhoc, move(prefData)); .). InterfaceExternC<> = (.xreate::ExternData data; .) '{' {IncludeExternDecl | LibExternDecl } '}' (. root.addExternData(move(data)); .) . LibExternDecl = (. std::wstring pkgname, libname; .) Ident assign "library" tagcolon "pkgconfig" '(' string (. pkgname = t->val; .) ')' '.' (. data.addLibrary(Atom(libname), Atom(pkgname)); .) . IncludeExternDecl = (. Expression inc; .) "include" StructLiteral '.' (. data.addIncludeDecl(move(inc)); .) . InterfaceDFA<> = '{' { InstructDecl } '}' . InstructDecl = (.Operator op; Expression tag; Expression scheme; std::vector& tags = scheme.operands; tags.push_back(Expression()); /* return value */ .) "operator" InstructAlias tagcolon '(' (.scheme.setOp(op); .) [ MetaSimpExpr (. tags.push_back(tag); .) { ',' MetaSimpExpr (. tags.push_back(tag); .) } ] ')' [ implic MetaSimpExpr (. tags[0] = tag; .) ] (. root.addDFAData(move(scheme)); .) '.'. InstructAlias = ( "map" (. op = Operator::MAP; .) | "list_range" (. op = Operator::LIST_RANGE; .) | "list" (. op = Operator::LIST; .) | "fold" (. op = Operator::FOLD; .) | "index" (. op = Operator::INDEX; .) ). InterfaceCFA<> = '{' { InstructCFADecl } '}' . InstructCFADecl<> = (.Operator op; Expression tag; Expression scheme; std::vector& tags = scheme.operands; .) "operator" InstructAlias tagcolon (. scheme.setOp(op); .) [ MetaSimpExpr (. tags.push_back(tag); .) { ',' MetaSimpExpr (. tags.push_back(tag); .) } ] '.' (. root.addInterfaceData(CFA, move(scheme)); .). /*============================ METAPROGRAMMING ===============================*/ // TagsDecl = (. Expression tag; TagModifier mod = TagModifier::NONE; .) // ':' { MetaSimpExpr (. /*f.addTag(std::move(tag), mod); */ .) // }. FnTag = (. Expression tag; TagModifier mod = TagModifier::NONE; .) MetaSimpExpr ['-' TagMod] (. f->addTag(std::move(tag), mod); .). TagMod = ( "assert" (. mod = TagModifier::ASSERT; .) | "require" (. mod = TagModifier::REQUIRE; .) ). RuleDecl<> = "rule" tagcolon (. RuleArguments args; RuleGuards guards; DomainAnnotation typ; std::wstring arg; .) '(' Ident tagcolon Domain (. args.add(arg, typ); .) {',' Ident tagcolon Domain (. args.add(arg, typ); .) } ')' ["case" RGuard {',' RGuard}] '{' RBody '}' . /* - TODO use RGuard for guards-*/ RuleContextDecl = (.Expression eHead, eGuards, eBody; .) "rule" "context" tagcolon MetaSimpExpr "case" lparen MetaSimpExpr rparen '{' MetaSimpExpr '}' (.scope->contextRules.push_back(Expression(Operator::CONTEXT_RULE, {eHead, eGuards, eBody})); .). Domain = ( "function" (. dom = DomainAnnotation::FUNCTION; .) | "variable" (. dom = DomainAnnotation::VARIABLE; .) ). RGuard= (. Expression e; .) MetaExpr (. guards.add(std::move(e)); .). MetaExpr= (.Operator op; Expression e2; .) MetaExpr2 [MetaOp MetaExpr2 (. e = Expression(op, {e, e2}); .) ]. MetaExpr2= ( '(' MetaExpr ')' | MetaSimpExpr ). MetaSimpExpr= (. std::wstring i1, infix; Expression e2; .) ( '-' MetaSimpExpr (. e = Expression(Operator::NEG, {e2}); .) | IF(checkParametersList()) Ident (. e = Expression(Operator::CALL, {Expression(Atom(i1))}); .) '(' [ MetaCalleeParams ] ')' | IF(checkInfix()) Ident Ident MetaSimpExpr (. e = Expression(Operator::CALL, {Expression(Atom(infix))}); e.addArg(Expression(Atom(i1))); e.addArg(std::move(e2)); .) | Ident (. e = Expression(Atom(i1)); .) ). MetaCalleeParams = (. Expression e2; .) MetaSimpExpr (. e.addArg(Expression(e2)); .) {',' MetaSimpExpr (. e.addArg(Expression(e2)); .) }. RBody = (. Expression e; std::wstring msg; .) "warning" MetaExpr ["message" string (. msg = t->val; .) ] (. root.add(new RuleWarning(RuleArguments(args), RuleGuards(guards), std::move(e), Atom(msg))); .) . MetaOp< Operator& op> = implic (. op = Operator::IMPL; .) . /*============================ Expressions ===============================*/ ExprAnnotations = (. TypeAnnotation typ; std::list tags; Expression tag; e.tags.clear();.) Type (. e.bindType(move(typ)); .) {';' MetaSimpExpr (. tags.push_back(tag); .) } (. e.addTags(tags); .) . ExprTyped = Expr [tagcolon ExprAnnotations]. Expr< Expression& e> (. Operator op; Expression e2; .) = ExprArithmAdd [ RelOp ExprArithmAdd (. e = Expression(op, {e, e2}); .) ]. ExprArithmAdd< Expression& e>= (. Operator op; Expression e2; .) ExprArithmMul< e> [ AddOp< op> ExprArithmAdd< e2> (. e = Expression(op, {e, e2});.) ]. ExprArithmMul< Expression& e> (. Operator op; Expression e2; .) = ExprPostfix< e> [ MulOp< op> ExprArithmMul< e2> (. e = Expression(op, {e, e2}); .) ]. ExprPostfix = Term [lbrack (. e = Expression(Operator::INDEX, {e}); .) CalleeParams rbrack ]. Term< Expression& e> (. std::wstring name; e = Expression(); .) = (IF (checkParametersList()) Ident< name> (. e = Expression(Operator::CALL, {Atom(name)}); .) '(' [CalleeParams] ')' | VarIdent (. recognizeIdentifier(e); .) | ListLiteral (. /* tuple */.) | StructLiteral (. /* struct */.) | LoopDecl | IfDecl | SwitchDecl | AdhocDecl | IntrinsicDecl | "true" (. e = Expression(Atom(1)); e.bindType(TypePrimitive::Bool); .) | "false" (. e = Expression(Atom(0)); e.bindType(TypePrimitive::Bool); .) | number (. e = Expression(Atom(t->val)); .) | string (. e = Expression(Atom(t->val)); .) | '-' Term (. e = Expression(Operator::NEG, {e}); .) | '(' ExprTyped ')' ). StructLiteral = (. std::wstring key; Expression val; std::list> keys; .) '{' Ident '=' Expr (. keys.push_back(Atom(key)); e = Expression(Operator::LIST_NAMED, {val}); .) {',' Ident '=' Expr (.e.addArg(Expression(val)); keys.push_back(Atom(key)); .) } '}' (. e.addBindings(keys.begin(), keys.end()); .) . ListLiteral = (. Expression eFrom, eTo; .) '[' [ Expr (. e.addArg(Expression(eFrom)); .) (".." Expr (. e.addArg(Expression(eTo)); e.setOp(Operator::LIST_RANGE); .) |{',' Expr (. e.addArg(Expression(eFrom)); .) } (. e.setOp(Operator::LIST); .) ) ] ']'. AdhocDecl = (. Expression command; .) "ad" "hoc" MetaSimpExpr (. AdhocExpression exprAdhoc; exprAdhoc.setCommand(command); e = exprAdhoc; .). CalleeParams = (. Expression e2; .) ExprTyped (. e.addArg(Expression(e2)); .) {',' ExprTyped (. e.addArg(Expression(e2)); .) }. AddOp< Operator& op> = (. op = Operator::ADD; .) ( '+' | '-' (. op = Operator::SUB; .) ). MulOp< Operator& op> = (. op = Operator::MUL; .) ( '*' | '/' (. op = Operator::DIV; .) ). RelOp< Operator& op> = (. op = Operator::EQU; .) ( equal | (ne1 | ne2) (. op = Operator::NE; .) | lse (. op = Operator::LSE; .) | lss (. op = Operator::LSS; .) | gte (. op = Operator::GTE; .) | gtr (. op = Operator::GTR; .) ). END Xreate. diff --git a/config/default.json b/config/default.json index 9f1f85a..f928097 100644 --- a/config/default.json +++ b/config/default.json @@ -1,69 +1,69 @@ { "containers": { "id": { "implementations": "impl_fulfill_cluster", "clusters": "var_cluster", "prototypes": "proto_cluster", "linkedlist": "linkedlist" }, "impl": { "solid": "solid", "onthefly": "on_the_fly" } }, "logging": { "id": "logging" }, "function-entry": "entry", "clasp": { "bindings" : { "variable": "bind", "function": "bind_func", "scope": "bind_scope", "function_demand" : "bind_function_demand", "scope_decision": "bind_scope_decision" }, "context" : { "decisions":{ "dependent": "resolution_dependency" }, }, "nonevalue": "nonevalue", "ret": { "symbol": "retv", "tag": "ret" } }, "tests": { "template": "default", "templates": { "default": "*-", "adhocs": "Adhoc.*", "effects": "Effects.*", "basic": "Attachments.*", "ast": "AST.*", "cfa": "CFA.*", "dfa": "DFA.*", - "compilation": "Compilation.*", + "compilation": "Compilation.functionEntry1*", "diagnostic": "Diagnostic.*", "ExpressionSerializer": "ExpressionSerializer.*", "externc": "InterfaceExternC.*", "types": "Types.*-", "vendorsAPI/clang": "ClangAPI.*", "vendorsAPI/xml2": "libxml2*", - "dsl": "Interpretation.*", + "dsl": "InterpretationExamples.*", "context": "Context.*", "containers": "Containers.*", "loops": "Loop.*" } } } diff --git a/cpp/src/CMakeLists.txt b/cpp/src/CMakeLists.txt index c42834a..78a19cc 100644 --- a/cpp/src/CMakeLists.txt +++ b/cpp/src/CMakeLists.txt @@ -1,218 +1,219 @@ cmake_minimum_required(VERSION 2.8.11) project(xreate) cmake_policy(SET CMP0022 NEW) message("MODULES" ${CMAKE_MODULE_PATH}) # LLVM #====================== FIND_PACKAGE (LLVM REQUIRED) set(LLVM_VERSION ${LLVM_VERSION_MAJOR}.${LLVM_VERSION_MINOR}) message(STATUS "Found LLVM ${LLVM_PACKAGE_VERSION}") message("LLVM LIB PATH:" ${LLVM_LIBRARY_DIRS}) message(STATUS "Using LLVMConfig.cmake in: ${LLVM_DIR}") INCLUDE_DIRECTORIES(${LLVM_INCLUDE_DIRS}) message(STATUS "INCLUDE DIR: ${LLVM_INCLUDE_DIRS}") add_definitions(${LLVM_DEFINITIONS}) message("LLVM DEFS: " ${LLVM_DEFINITIONS}) llvm_map_components_to_libnames(LLVM_LIBS core nativecodegen native executionengine mcjit support option) message("LLVM LIBS: " ${LLVM_LIBS}) # CLANG #====================== set(CLANG_LIBS clangCodeGen clangASTMatchers clangQuery clangTooling clangFrontend clangSerialization clangDriver clangParse clangSema clangAnalysis clangAST clangEdit clangLex clangBasic ) # POTASSCO #====================== set(POTASSCO_PATH "/opt/potassco/clingo" CACHE PATH "Path to potassco sources") set(POTASSCO_INCLUDE_PATH ${POTASSCO_PATH}/libgringo ${POTASSCO_PATH}/libclasp ${POTASSCO_PATH}/libclingo ${POTASSCO_PATH}/libprogram_opts ${POTASSCO_PATH}/liblp ) INCLUDE_DIRECTORIES(${POTASSCO_INCLUDE_PATH}) set(LIBCLASP_LIBS clingo clasp gringo program_opts reify lp ) message("CLASP LIBS: " ${LIBCLASP_LIBS}) # OTHER DEPENDENCIES #=========================== set(JEAYESON_INCLUDE_PATH ${CMAKE_HOME_DIRECTORY}/../vendors/jeayeson/include/ ) INCLUDE_DIRECTORIES(${JEAYESON_INCLUDE_PATH}) # COCO #=========================== set(COCO_EXECUTABLE "" CACHE PATH "Path to coco executable") set(COCO_FRAMES_PATH "" CACHE PATH "Path to coco frames") set(COCO_GRAMMAR_PATH ${CMAKE_HOME_DIRECTORY}/../coco/) set(COCO_SOURCE_FILES ${COCO_GRAMMAR_PATH}/Parser.cpp ${COCO_GRAMMAR_PATH}/Scanner.cpp) INCLUDE_DIRECTORIES(${COCO_GRAMMAR_PATH}) add_custom_command(OUTPUT ${COCO_SOURCE_FILES} COMMAND ${COCO_GRAMMAR_PATH}/gen-grammar ${COCO_EXECUTABLE} ${COCO_FRAMES_PATH} WORKING_DIRECTORY ${COCO_GRAMMAR_PATH} MAIN_DEPENDENCY ${COCO_GRAMMAR_PATH}/xreate.ATG ) message(STATUS "COCO GRAMMAR BUILD STATUS:" ${COCO_OUTPUT}) # XREATE #====================== set(SOURCE_FILES + compilation/pointerarithmetic.cpp compilation/transformations.cpp compilation/transformersaturation.cpp pass/compilepass.cpp pass/dfapass.cpp analysis/dfagraph.cpp pass/versionspass.cpp compilation/targetinterpretation.cpp attachments.cpp ast.cpp ExternLayer.cpp analysis/cfagraph.cpp analysis/aux.cpp compilation/containers.cpp compilation/advanced.cpp clasplayer.cpp compilation/latecontextcompiler2.cpp query/context.cpp llvmlayer.cpp utils.cpp passmanager-bare.cpp passmanager-full.cpp pass/abstractpass.cpp pass/cfapass.cpp pass/adhocpass.cpp contextrule.cpp query/containers.cpp pass/interpretationpass.cpp analysis/DominatorsTreeAnalysisProvider.cpp serialization/expressionserializer.cpp ) set(XREATE_INCLUDE_DIRS ${CMAKE_CURRENT_SOURCE_DIR}/ ) INCLUDE_DIRECTORIES(${XREATE_INCLUDE_DIRS}) set(XREATE_PRIVATE_INCLUDE_DIRS ${XREATE_INCLUDE_DIRS} ${COCO_GRAMMAR_PATH} ${JEAYESON_INCLUDE_PATH} ${LLVM_INCLUDE_DIRS} ${POTASSCO_INCLUDE_PATH} ) add_library(${PROJECT_NAME} SHARED ${SOURCE_FILES} ${COCO_SOURCE_FILES}) target_link_libraries(${PROJECT_NAME}) target_include_directories(${PROJECT_NAME} INTERFACE ${XREATE_INCLUDE_DIRS} ${COCO_GRAMMAR_PATH} ${JEAYESON_INCLUDE_PATH} ${LLVM_INCLUDE_DIRS} ${POTASSCO_INCLUDE_PATH} ) get_directory_property(DEFINITIONS_ALL DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} COMPILE_DEFINITIONS) message("definitions all: " ${DEFINITIONS_ALL}) target_compile_definitions(${PROJECT_NAME} INTERFACE ${DEFINITIONS_ALL}) get_directory_property(COMPILATION_OPTIONS_ALL DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} COMPILE_OPTIONS) message("compilations all: " ${COMPILATION_OPTIONS_ALL}) target_compile_options(${PROJECT_NAME} INTERFACE ${COMPILATION_OPTIONS_ALL}) SET_PROPERTY(TARGET ${PROJECT_NAME} PROPERTY INTERFACE_LINK_LIBRARIES ${LIBCLASP_LIBS} ${CLANG_LIBS} ${LLVM_LIBS} tbb ) #${CLANG_LIBS} #set (LINK_INTERFACE_LIBRARIES "") # FUNCTION(PREPEND var prefix) # SET(listVar "") # FOREACH(f ${ARGN}) # LIST(APPEND listVar "${prefix}/${f}") # ENDFOREACH(f) # SET(${var} "${listVar}" PARENT_SCOPE) # ENDFUNCTION(PREPEND) #set(COTIRE_UNITY_SOURCE_MAXIMUM_NUMBER_OF_INCLUDES "-j4") #cotire(xreate) # MACRO (ADD_PCH_RULE _header_filename _src_list) # SET(_gch_filename "${_header_filename}.gch") # LIST(APPEND ${_src_list} ${_gch_filename}) # SET (_args ${CMAKE_CXX_FLAGS}) # LIST(APPEND _args -c ${_header_filename} -o ${_gch_filename}) # GET_DIRECTORY_PROPERTY(DIRINC INCLUDE_DIRECTORIES) # foreach (_inc ${DIRINC}) # LIST(APPEND _args "-I" ${_inc}) # endforeach(_inc ${DIRINC}) # SEPARATE_ARGUMENTS(_args) # add_custom_command(OUTPUT ${_gch_filename} # COMMAND rm -f ${_gch_filename} # COMMAND ${CMAKE_CXX_COMPILER} ${CMAKE_CXX_COMPILER_ARG1} ${_args} # DEPENDS ${_header_filename}) # ENDMACRO(ADD_PCH_RULE _header_filename _src_list) # ADD_PCH_RULE (${CMAKE_HOME_DIRECTORY}/src/ast.h SOURCE_FILES) # ADD_PCH_RULE (${CMAKE_HOME_DIRECTORY}/src/llvmlayer.h SOURCE_FILES) # ADD_PCH_RULE (${CMAKE_HOME_DIRECTORY}/src/clasplayer.h SOURCE_FILES) # ADD_PCH_RULE (${CMAKE_HOME_DIRECTORY}/src/pass/abstractpass.h SOURCE_FILES) diff --git a/cpp/src/ast.h b/cpp/src/ast.h index 7407463..8c24e48 100644 --- a/cpp/src/ast.h +++ b/cpp/src/ast.h @@ -1,558 +1,556 @@ #ifndef AST_H #define AST_H #include "attachments.h" #include #include #include #include #include #include #include #include "utils.h" #include namespace llvm { class Value; } namespace xreate { struct String_t { }; struct Identifier_t { }; struct Number_t { }; struct Type_t { }; template class Atom { }; //DEBT hold for all atoms/identifiers Parser::Token data, like line:col position template<> class Atom { public: Atom(const std::wstring& value); Atom(std::string && name); const std::string& get() const; private: std::string __value; }; template<> class Atom { public: Atom(wchar_t* value); Atom(int value); double get()const; private: double __value; }; template<> class Atom { public: Atom(const std::wstring& value); const std::string& get() const; private: std::string __value; }; enum class TypePrimitive { - Invalid, Bool, I8, I32, Num, Int, Float, String + Invalid, Bool, I8, I32, I64, Num, Int, Float, String }; enum class TypeOperator { NONE, CALL, CUSTOM, VARIANT, ARRAY, TUPLE, STRUCT, ACCESS, LINK }; struct llvm_array_tag { }; struct struct_tag { }; const llvm_array_tag tag_array = llvm_array_tag(); const struct_tag tag_struct = struct_tag(); class TypeAnnotation { public: TypeAnnotation(); TypeAnnotation(const Atom& typ); TypeAnnotation(TypePrimitive typ); TypeAnnotation(llvm_array_tag, TypeAnnotation typ, int size); TypeAnnotation(TypeOperator op, std::initializer_list operands); TypeAnnotation(TypeOperator op, std::vector&& operands); void addBindings(std::vector>&& params); void addFields(std::vector>&& listFields); bool operator<(const TypeAnnotation& t) const; // TypeAnnotation (struct_tag, std::initializer_list); bool isValid() const; TypeOperator __operator = TypeOperator::NONE; std::vector __operands; TypePrimitive __value; std::string __valueCustom; int conjuctionId = -1; //conjunction point id (relevant for recursive types) uint64_t __size = 0; std::vector fields; std::vector bindings; private: }; enum class Operator { ADD, SUB, MUL, DIV, EQU, NE, NEG, LSS, LSE, GTR, GTE, LIST, LIST_RANGE, LIST_NAMED, CALL, CALL_INTRINSIC, NONE, IMPL/* implication */, MAP, FOLD, FOLD_INF, LOOP_CONTEXT, INDEX, IF, SWITCH, SWITCH_ADHOC, CASE, CASE_DEFAULT, LOGIC_AND, ADHOC, CONTEXT_RULE }; class Function; class AST; class CodeScope; class MetaRuleAbstract; template struct ManagedPtr { static ManagedPtr Invalid() { return ManagedPtr(); } ManagedPtr() : __storage(0) { } ManagedPtr(unsigned int id, const std::vector* storage) : __id(id), __storage(storage) { } Target& operator*() const { assert(isValid() && "Invalid Ptr"); return *__storage->at(__id); } void operator=(const ManagedPtr& other) { __id = other.__id; __storage = other.__storage; } bool operator==(const ManagedPtr& other) { return isValid() && (__id == other.__id); } Target* operator->() const noexcept { assert(isValid() && "Invalid Ptr"); return __storage->at(__id); } inline bool isValid() const { return (__storage) && (0 <= __id) && (__id < __storage->size()); } inline operator bool() const { return isValid(); } ManagedPtr& operator++() { ++__id; return *this; } inline unsigned int id() const { return __id; } private: unsigned int __id = 0; const std::vector * __storage = 0; }; typedef ManagedPtr ManagedFnPtr; typedef ManagedPtr ManagedScpPtr; typedef ManagedPtr ManagedRulePtr; const ManagedScpPtr NO_SCOPE = ManagedScpPtr(UINT_MAX, 0); //To update ExpressionHints in case of any changes struct Expression { friend class CodeScope; friend class ClaspLayer; friend class CFAPass; friend class ExpressionHints; Expression(const Operator &oprt, std::initializer_list params); Expression(const Atom& ident); Expression(const Atom& number); Expression(const Atom& a); Expression(); void setOp(Operator oprt); void addArg(Expression&& arg); void addBindings(std::initializer_list> params); void bindType(TypeAnnotation t); template void addBindings(InputIt paramsBegin, InputIt paramsEnd); void addTags(const std::list tags) const; void addBlock(ManagedScpPtr scope); const std::vector& getOperands() const; double getValueDouble() const; void setValueDouble(double value); const std::string& getValueString() const; void setValue(const Atom&& v); bool isValid() const; bool isDefined() const; bool operator==(const Expression& other) const; enum { INVALID, COMPOUND, IDENT, NUMBER, STRING, VARIANT, BINDING } __state = INVALID; Operator op; unsigned int id; std::vector bindings; std::map __indexBindings; std::vector operands; TypeAnnotation type; mutable std::map tags; std::list blocks; private: std::string __valueS; double __valueD; static unsigned int nextVacantId; }; bool operator< (const Expression&, const Expression&); template void Expression::addBindings(InputIt paramsBegin, InputIt paramsEnd) { size_t index = bindings.size(); std::transform(paramsBegin, paramsEnd, std::inserter(bindings, bindings.end()), [&index, this] (const Atom atom) { std::string key = atom.get(); this->__indexBindings[key] = index++; return key; }); } typedef std::list ExpressionList; enum class TagModifier { NONE, ASSERT, REQUIRE }; enum class DomainAnnotation { FUNCTION, VARIABLE }; class RuleArguments : public std::vector> { public: void add(const Atom& name, DomainAnnotation typ); }; class RuleGuards : public std::vector { public: void add(Expression&& e); }; class ClaspLayer; class LLVMLayer; class MetaRuleAbstract { public: MetaRuleAbstract(RuleArguments&& args, RuleGuards&& guards); virtual ~MetaRuleAbstract(); virtual void compile(ClaspLayer& layer) = 0; protected: RuleArguments __args; RuleGuards __guards; }; class RuleWarning : public MetaRuleAbstract { friend class ClaspLayer; public: RuleWarning(RuleArguments&& args, RuleGuards&& guards, Expression&& condition, Atom&& message); virtual void compile(ClaspLayer& layer); ~RuleWarning(); private: std::string __message; Expression __condition; }; typedef unsigned int VNameId; typedef int VariableVersion; const VariableVersion VERSION_NONE = -2; const VariableVersion VERSION_INIT = 0; template<> struct AttachmentsDict { typedef VariableVersion Data; static const unsigned int key = 6; }; struct ScopedSymbol{ VNameId id; VariableVersion version; static const ScopedSymbol RetSymbol; }; struct Symbol { ScopedSymbol identifier; CodeScope * scope; }; template<> struct AttachmentsDict { typedef Symbol Data; static const unsigned int key = 7; }; } namespace std { template<> struct hash{ std::size_t operator()(xreate::ScopedSymbol const& s) const; }; template<> struct equal_to{ bool operator()(const xreate::ScopedSymbol& __x, const xreate::ScopedSymbol& __y) const; }; } namespace xreate { typedef std::pair Tag; bool operator<(const ScopedSymbol& s1, const ScopedSymbol& s2); bool operator==(const ScopedSymbol& s1, const ScopedSymbol& s2); bool operator<(const Symbol& s1, const Symbol& s2); bool operator==(const Symbol& s1, const Symbol& s2); class CodeScope { friend class Function; friend class PassManager; public: CodeScope(CodeScope* parent = 0); void setBody(const Expression& body); Expression& getBody(); void addDeclaration(Expression&& var, Expression&& body); void addBinding(Expression&& var, Expression&& argument); static const Expression& getDeclaration(const Symbol& symbol); const Expression& getDeclaration(const ScopedSymbol& symbol); ~CodeScope(); std::vector __bindings; std::map __identifiers; + CodeScope* __parent; //TODO move __definitions to SymbolsAttachments data //NOTE: definition of return type has zero(0) variable index std::unordered_map __declarations; std::vector tags; std::vector contextRules; - private: VNameId __vCounter = 1; - CodeScope* __parent; - ScopedSymbol registerIdentifier(const Expression& identifier); public: bool recognizeIdentifier(const Expression& identifier) const; ScopedSymbol getSymbol(const std::string& alias); }; class Function { friend class Expression; friend class CodeScope; friend class AST; public: Function(const Atom& name); void addBinding(Atom && name, Expression&& argument); void addTag(Expression&& tag, const TagModifier mod); const std::string& getName() const; const std::map& getTags() const; CodeScope* getEntryScope() const; CodeScope* __entry; std::string __name; bool isPrefunction = false; //SECTIONTAG adhoc Function::isPrefunction flag Expression guardContext; private: std::map __tags; }; class ExternData; struct ExternEntry { std::string package; std::vector headers; }; typedef Expanded ExpandedType; enum ASTInterface { CFA, DFA, Extern, Adhoc }; struct FunctionSpecialization { std::string guard; size_t id; }; struct FunctionSpecializationQuery { std::unordered_set context; }; template<> struct AttachmentsId{ static unsigned int getId(const Expression& expression){ return expression.id; } }; template<> struct AttachmentsId{ static unsigned int getId(const Symbol& s){ return s.scope->__declarations.at(s.identifier).id; } }; template<> struct AttachmentsId{ static unsigned int getId(const ManagedFnPtr& f){ const Symbol symbolFunction{ScopedSymbol::RetSymbol, f->getEntryScope()}; return AttachmentsId::getId(symbolFunction); } }; class AST { public: AST(); //TASK extern and DFA interfaces move into addInterfaceData /** * DFA Interface */ void addDFAData(Expression&& data); /** * Extern Interface */ void addExternData(ExternData&& data); void addInterfaceData(const ASTInterface& interface, Expression&& data); void add(Function* f); void add(MetaRuleAbstract* r); ManagedScpPtr add(CodeScope* scope); std::string getModuleName(); ManagedPtr findFunction(const std::string& name); typedef std::multimap FUNCTIONS_REGISTRY; std::list getAllFunctions() const; std::list getFunctionVariants(const std::string& name) const; template ManagedPtr begin(); std::vector __externdata; std::list __dfadata; //TODO move to more appropriate place std::list __rawImports; //TODO move to more appropriate place std::multimap __interfacesData; //TODO CFA data here. private: std::vector __rules; std::vector __functions; std::vector __scopes; FUNCTIONS_REGISTRY __indexFunctions; // ***** TYPES SECTION ***** public: std::map __indexTypeAliases; ExpandedType expandType(const TypeAnnotation &t) const; ExpandedType findType(const std::string& name); void add(TypeAnnotation t, Atom alias); //TODO revisit enums/variants, move to codescope bool recognizeVariantIdentifier(Expression& identifier); private: std::map> __dictVariants; ExpandedType expandType(const TypeAnnotation &t, std::map scope, const std::vector &args = std::vector()) const; // ***** SYMBOL RECOGNITION ***** public: std::set> binUnrecognizedIdentifiers; public: void postponeIdentifier(CodeScope* scope, const Expression& id); void recognizePostponedIdentifiers(); }; template<> ManagedPtr AST::begin(); template<> ManagedPtr AST::begin(); template<> ManagedPtr AST::begin(); } #endif // AST_H diff --git a/cpp/src/compilation/advanced.cpp b/cpp/src/compilation/advanced.cpp index d5183a8..c83705f 100644 --- a/cpp/src/compilation/advanced.cpp +++ b/cpp/src/compilation/advanced.cpp @@ -1,403 +1,404 @@ /* * File: InstructionsAdvanced.cpp * Author: pgess * * Created on June 26, 2016, 6:00 PM */ //#include #include "compilation/advanced.h" #include "compilation/containers.h" #include "compilation/transformersaturation.h" #include "query/context.h" #include "query/containers.h" #include "llvmlayer.h" #include "ast.h" using namespace std; using namespace llvm; using namespace xreate; using namespace xreate::containers; using namespace xreate::compilation; #define NAME(x) (hintRetVar.empty()? x : hintRetVar) #define UNUSED(x) (void)(x) #define EXPAND_CONTEXT \ LLVMLayer* llvm = context.pass->man->llvm; \ compilation::AbstractCodeScopeUnit* scope = context.scope; \ compilation::FunctionUnit* function = context.function; Advanced::Advanced(compilation::Context ctx) : context(ctx), tyNum(static_cast (ctx.pass->man->llvm->toLLVMType(ExpandedType(TypeAnnotation(TypePrimitive::Num))))) { } llvm::Value* Advanced::compileMapSolidOutput(const Expression &expr, const std::string hintRetVar) { EXPAND_CONTEXT //initialization Symbol symbolIn = Attachments::get(expr.getOperands()[0]); ImplementationRec implIn = containers::Query::queryImplementation(symbolIn).extract(); // impl of input list size_t size = implIn.size; CodeScope* scopeLoop = expr.blocks.front(); std::string varEl = scopeLoop->__bindings[0]; Iterator* it = Iterator::create(context, symbolIn); llvm::Value *rangeFrom = it->begin(); llvm::Value *rangeTo = it->end(); //definitions ArrayType* tyNumArray = (ArrayType*) (llvm->toLLVMType(ExpandedType(TypeAnnotation(tag_array, TypePrimitive::Num, size)))); llvm::IRBuilder<> &builder = llvm->builder; llvm::BasicBlock *blockLoop = llvm::BasicBlock::Create(llvm::getGlobalContext(), "loop", function->raw); llvm::BasicBlock *blockBeforeLoop = builder.GetInsertBlock(); llvm::BasicBlock *blockAfterLoop = llvm::BasicBlock::Create(llvm::getGlobalContext(), "postloop", function->raw); Value* dataOut = llvm->builder.CreateAlloca(tyNumArray, ConstantInt::get(tyNum, size), NAME("map")); // * initial check Value* condBefore = builder.CreateICmpSLE(rangeFrom, rangeTo); builder.CreateCondBr(condBefore, blockLoop, blockAfterLoop); // create PHI: builder.SetInsertPoint(blockLoop); llvm::PHINode *stateLoop = builder.CreatePHI(tyNum, 2, "mapIt"); stateLoop->addIncoming(rangeFrom, blockBeforeLoop); // loop body: Value* elIn = it->get(stateLoop, varEl); compilation::AbstractCodeScopeUnit* scopeLoopUnit = function->getScopeUnit(scopeLoop); scopeLoopUnit->bindArg(elIn, move(varEl)); Value* elOut = scopeLoopUnit->compile(); Value *pElOut = builder.CreateGEP(dataOut, ArrayRef(std::vector{ConstantInt::get(tyNum, 0), stateLoop})); builder.CreateStore(elOut, pElOut); //next iteration preparing Value *stateLoopNext = builder.CreateAdd(stateLoop, llvm::ConstantInt::get(tyNum, 1)); stateLoop->addIncoming(stateLoopNext, builder.GetInsertBlock()); //next iteration checks: Value* condAfter = builder.CreateICmpSLE(stateLoopNext, rangeTo); builder.CreateCondBr(condAfter, blockLoop, blockAfterLoop); //finalization: builder.SetInsertPoint(blockAfterLoop); return dataOut; } Value* Advanced::compileArrayIndex(llvm::Value* aggregate, std::vector indexes, std::string hintRetVar) { EXPAND_CONTEXT UNUSED(function); indexes.insert(indexes.begin(), llvm::ConstantInt::get(tyNum, 0)); llvm::Value *pEl = llvm->builder.CreateGEP(aggregate, llvm::ArrayRef(indexes)); return llvm->builder.CreateLoad(pEl, NAME("el")); } Value* Advanced::compileStructIndex(llvm::Value* aggregate, const ExpandedType& t, const std::string& idx) { EXPAND_CONTEXT UNUSED(scope); TypeUtils types(llvm); std::vector&& fields = types.getStructFields(t); for (unsigned i = 0, size = fields.size(); i < size; ++i) { if (fields.at(i) == idx) { std::vector refs; llvm::IntegerType* tyInt = llvm::Type::getInt32Ty(llvm::getGlobalContext()); llvm::ConstantInt* zero = llvm::ConstantInt::get(tyInt, 0, false); llvm::BasicBlock *blockSafe = llvm::BasicBlock::Create(llvm::getGlobalContext(), "safe", function->raw); // TODO review safety check: validPtr for `aggregate` // SECTIONTAG validptr exception PointerType* tyAggr = dyn_cast(aggregate->getType()); llvm::Value* null = llvm::ConstantPointerNull::get(tyAggr); Value* condNull = llvm->builder.CreateICmpNE(aggregate, null); llvm::BasicBlock *blockException = llvm::BasicBlock::Create(llvm::getGlobalContext(), "exception", function->raw); llvm->builder.CreateCondBr(condNull, blockSafe, blockException); llvm->initExceptionBlock(blockException); llvm->builder.SetInsertPoint(blockSafe); std::vector indexes; //dereference pointer if (types.isPointer(t)) { indexes.push_back(zero); } indexes.push_back(ConstantInt::get(tyInt, i)); Value* addr = llvm->builder.CreateGEP(aggregate, indexes); return llvm->builder.CreateLoad(addr); } } assert(false && "not found required struct field"); return nullptr; } llvm::Value* Advanced::compileFold(const Expression& fold, const std::string& hintRetVar) { EXPAND_CONTEXT assert(fold.op == Operator::FOLD); //initialization: Symbol varInSymbol = Attachments::get(fold.getOperands()[0]); Implementation info = Query::queryImplementation(varInSymbol); Iterator* it = Iterator::create(context, varInSymbol); llvm::Value* rangeBegin = it->begin(); llvm::Value* rangeEnd = it->end(); llvm::Value* accumInit = scope->process(fold.getOperands()[1]); std::string varIn = fold.getOperands()[0].getValueString(); std::string varAccum = fold.bindings[1]; std::string varEl = fold.bindings[0]; llvm::BasicBlock *blockBeforeLoop = llvm->builder.GetInsertBlock(); std::unique_ptr transformerSaturation(new TransformerSaturation(blockBeforeLoop, context.pass->managerTransformations)); llvm::BasicBlock *blockLoop = llvm::BasicBlock::Create(llvm::getGlobalContext(), "fold", function->raw); llvm::BasicBlock *blockLoopBody = llvm::BasicBlock::Create(llvm::getGlobalContext(), "fold_body", function->raw); llvm::BasicBlock *blockAfterLoop = llvm::BasicBlock::Create(llvm::getGlobalContext(), "fold_after", function->raw); llvm::BasicBlock *blockNext = llvm::BasicBlock::Create(llvm::getGlobalContext(), "fold_next", function->raw); llvm->builder.CreateBr(blockLoop); // * create phi llvm->builder.SetInsertPoint(blockLoop); llvm::PHINode *accum = llvm->builder.CreatePHI(accumInit->getType(), 2, varAccum); accum->addIncoming(accumInit, blockBeforeLoop); llvm::PHINode *itLoop = llvm->builder.CreatePHI(rangeBegin->getType(), 2, "foldIt"); itLoop->addIncoming(rangeBegin, blockBeforeLoop); // * loop checks Value* condRange = llvm->builder.CreateICmpNE(itLoop, rangeEnd); llvm->builder.CreateCondBr(condRange, blockLoopBody, blockAfterLoop); // * loop body llvm->builder.SetInsertPoint(blockLoopBody); CodeScope* scopeLoop = fold.blocks.front(); compilation::AbstractCodeScopeUnit* loopUnit = function->getScopeUnit(scopeLoop); Value* elIn = it->get(itLoop); loopUnit->bindArg(accum, move(varAccum)); loopUnit->bindArg(elIn, move(varEl)); Value* accumNext = loopUnit->compile(); // * Loop saturation checks bool flagSaturationTriggered = transformerSaturation->insertSaturationChecks(blockNext, blockAfterLoop, context); llvm::BasicBlock* blockSaturation = llvm->builder.GetInsertBlock(); if (!flagSaturationTriggered){ llvm->builder.CreateBr(blockNext); } // * computing next iteration state llvm->builder.SetInsertPoint(blockNext); Value *itLoopNext = it->advance(itLoop); accum->addIncoming(accumNext, llvm->builder.GetInsertBlock()); itLoop->addIncoming(itLoopNext, llvm->builder.GetInsertBlock()); llvm->builder.CreateBr(blockLoop); // * finalization: llvm->builder.SetInsertPoint(blockAfterLoop); if (!flagSaturationTriggered){ return accum; } llvm::PHINode* result = llvm->builder.CreatePHI(accumInit->getType(), 2); result->addIncoming(accum, blockLoop); result->addIncoming(accumNext, blockSaturation); return result; } llvm::Value* Advanced::compileFoldInf(const Expression& fold, const std::string& hintRetVar) { EXPAND_CONTEXT assert(fold.op == Operator::FOLD_INF); std::string accumName = fold.bindings[0]; llvm::Value* accumInit = scope->process(fold.getOperands()[0]); llvm::BasicBlock *blockBeforeLoop = llvm->builder.GetInsertBlock(); llvm::BasicBlock *blockLoop = llvm::BasicBlock::Create(llvm::getGlobalContext(), "foldinf", function->raw); llvm::BasicBlock *blockNext = llvm::BasicBlock::Create(llvm::getGlobalContext(), "foldinf_next", function->raw); llvm::BasicBlock *blockAfterLoop = llvm::BasicBlock::Create(llvm::getGlobalContext(), "foldinf_post", function->raw); std::unique_ptr transformerSaturation(new TransformerSaturation(blockBeforeLoop, context.pass->managerTransformations)); llvm->builder.CreateBr(blockLoop); // * create phi llvm->builder.SetInsertPoint(blockLoop); llvm::PHINode *accum = llvm->builder.CreatePHI(accumInit->getType(), 2, accumName); accum->addIncoming(accumInit, blockBeforeLoop); // * loop body CodeScope* scopeLoop = fold.blocks.front(); compilation::AbstractCodeScopeUnit* unitLoop = function->getScopeUnit(scopeLoop); unitLoop->bindArg(accum, move(accumName)); Value* accumNext = unitLoop->compile(); // * Loop saturation checks bool flagSaturationTriggered = transformerSaturation->insertSaturationChecks(blockNext, blockAfterLoop, context); assert(flagSaturationTriggered); // * computing next iteration state llvm->builder.SetInsertPoint(blockNext); accum->addIncoming(accumNext, llvm->builder.GetInsertBlock()); llvm->builder.CreateBr(blockLoop); // finalization: llvm->builder.SetInsertPoint(blockAfterLoop); return accumNext; } llvm::Value* Advanced::compileIf(const Expression& exprIf, const std::string& hintRetVar) { EXPAND_CONTEXT //initialization: - const Expression& condExpr = exprIf.getOperands()[0]; + const Expression& condExpr = exprIf.getOperands()[0]; llvm::IRBuilder<>& builder = llvm->builder; //llvm::Type* tyResultType = llvm->toLLVMType(llvm->ast->expandType(exprIf.type)); llvm::BasicBlock *blockAfter = llvm::BasicBlock::Create(llvm::getGlobalContext(), "ifAfter", function->raw); llvm::BasicBlock *blockTrue = llvm::BasicBlock::Create(llvm::getGlobalContext(), "ifTrue", function->raw); llvm::BasicBlock *blockFalse = llvm::BasicBlock::Create(llvm::getGlobalContext(), "ifFalse", function->raw); llvm::Value* cond = scope->process(condExpr); llvm->builder.CreateCondBr(cond, blockTrue, blockFalse); builder.SetInsertPoint(blockTrue); CodeScope* scopeTrue = exprIf.blocks.front(); llvm::Value* resultTrue = function->getScopeUnit(scopeTrue)->compile(); blockTrue = builder.GetInsertBlock(); builder.CreateBr(blockAfter); builder.SetInsertPoint(blockFalse); CodeScope* scopeFalse = exprIf.blocks.back(); llvm::Value* resultFalse = function->getScopeUnit(scopeFalse)->compile(); blockFalse = builder.GetInsertBlock(); builder.CreateBr(blockAfter); builder.SetInsertPoint(blockAfter); llvm::PHINode *ret = builder.CreatePHI(resultTrue->getType(), 2, NAME("if")); + ret->addIncoming(resultTrue, blockTrue); ret->addIncoming(resultFalse, blockFalse); return ret; } //TODO Switch: default variant no needed when all possible conditions are considered llvm::Value* Advanced::compileSwitch(const Expression& exprSwitch, const std::string& hintRetVar) { EXPAND_CONTEXT UNUSED(function); assert(exprSwitch.operands.size() >= 2); assert(exprSwitch.operands[1].op == Operator::CASE_DEFAULT && "No default case in Switch Statement"); int countCases = exprSwitch.operands.size() - 1; llvm::IRBuilder<>& builder = llvm->builder; llvm::BasicBlock* blockProlog = builder.GetInsertBlock(); llvm::BasicBlock *blockEpilog = llvm::BasicBlock::Create(llvm::getGlobalContext(), "switchAfter", function->raw); builder.SetInsertPoint(blockEpilog); llvm::Type* exprSwitchType = llvm->toLLVMType(ExpandedType(exprSwitch.type)); llvm::PHINode *ret = builder.CreatePHI(exprSwitchType, countCases, NAME("switch")); builder.SetInsertPoint(blockProlog); llvm::Value * conditionSwitch = scope->process(exprSwitch.operands[0]); llvm::BasicBlock *blockDefault = llvm::BasicBlock::Create(llvm::getGlobalContext(), "caseDefault", function->raw); llvm::SwitchInst * instructionSwitch = builder.CreateSwitch(conditionSwitch, blockDefault, countCases); for (int size = exprSwitch.operands.size(), i = 2; i < size; ++i) { llvm::BasicBlock *blockCase = llvm::BasicBlock::Create(llvm::getGlobalContext(), "case" + std::to_string(i), function->raw); llvm::Value* condCase = function->getScopeUnit(exprSwitch.operands[i].blocks.front())->compile(); builder.SetInsertPoint(blockCase); llvm::Value* resultCase = function->getScopeUnit(exprSwitch.operands[i].blocks.back())->compile(); builder.CreateBr(blockEpilog); ret->addIncoming(resultCase, builder.GetInsertBlock()); builder.SetInsertPoint(blockProlog); instructionSwitch->addCase(dyn_cast(condCase), blockCase); } //compile default block: builder.SetInsertPoint(blockDefault); CodeScope* scopeDefault = exprSwitch.operands[1].blocks.front(); llvm::Value* resultDefault = function->getScopeUnit(scopeDefault)->compile(); builder.CreateBr(blockEpilog); ret->addIncoming(resultDefault, builder.GetInsertBlock()); builder.SetInsertPoint(blockEpilog); return ret; } //TODO recognize cases to make const arrays/stored in global mem/stack alloced. llvm::Value* Advanced::compileListAsSolidArray(const Expression &expr, const std::string& hintRetVar) { EXPAND_CONTEXT UNUSED(scope); UNUSED(function); AST* root = context.pass->man->root; const size_t& length = expr.getOperands().size(); const Expression& expression = expr; llvm::Value* zero = ConstantInt::get(tyNum, 0); llvm::Value* one = ConstantInt::get(tyNum, 1); ExpandedType typAggrExpanded = root->expandType(expression.type); assert(typAggrExpanded->__operator == TypeOperator::ARRAY); llvm::Type* typEl = llvm->toLLVMType(ExpandedType(typAggrExpanded->__operands[0])); ArrayType* typAggr = (ArrayType*) llvm::ArrayType::get(typEl, length); llvm::Value* list = llvm->builder.CreateAlloca(typAggr, ConstantInt::get(Type::getInt32Ty(llvm::getGlobalContext()), length, false), hintRetVar); const std::vector& operands = expression.getOperands(); llvm::Value* addrOperand = llvm->builder.CreateGEP(typAggr, list, ArrayRef(std::vector{zero, zero})); llvm->builder.CreateStore(scope->process(operands.front()), addrOperand) ; for (auto i=++operands.begin(); i!=operands.end(); ++i){ addrOperand = llvm->builder.CreateGEP(typEl, addrOperand, ArrayRef(std::vector{one})); llvm->builder.CreateStore(scope->process(*i), addrOperand) ; } return list; // Value* listDest = l.builder.CreateAlloca(typList, ConstantInt::get(typI32, __size), *hintRetVar); // l.buil1der.CreateMemCpy(listDest, listSource, __size, 16); } llvm::Value* Advanced::compileConstantStringAsPChar(const string& data, const std::string& hintRetVar) { EXPAND_CONTEXT UNUSED(function); UNUSED(scope); Type* typPchar = PointerType::getUnqual(Type::getInt8Ty(llvm::getGlobalContext())); //ArrayType* typStr = (ArrayType*) (llvm->toLLVMType(ExpandedType(TypeAnnotation(tag_array, TypePrimitive::I8, size+1)))); /* std::vector chars; chars.reserve(size+1); for (size_t i=0; i< size; ++i){ chars[i] = ConstantInt::get(typI8, (unsigned char) data[i]); } chars[size] = ConstantInt::get(typI8, 0); */ Value* rawData = ConstantDataArray::getString(llvm::getGlobalContext(), data); Value* rawPtrData = llvm->builder.CreateAlloca(rawData->getType(), ConstantInt::get(Type::getInt32Ty(llvm::getGlobalContext()), 1, false)); llvm->builder.CreateStore(rawData, rawPtrData); return llvm->builder.CreateCast(llvm::Instruction::BitCast, rawPtrData, typPchar, hintRetVar); } diff --git a/cpp/src/compilation/pointerarithmetic.cpp b/cpp/src/compilation/pointerarithmetic.cpp new file mode 100644 index 0000000..307c174 --- /dev/null +++ b/cpp/src/compilation/pointerarithmetic.cpp @@ -0,0 +1,31 @@ +/* + * pointerarithmetic.cpp + * + * Author: pgess + * Created on March 29, 2017, 11:52 AM + */ +#include "pointerarithmetic.h" +#include "llvmlayer.h" +#include + +using namespace llvm; + +namespace xreate { namespace compilation { + +llvm::Value* +PointerArithmetic::add(llvm::Value *left, llvm::Value *right, Context context, const std::string& hintVarDecl){ + LLVMLayer* llvm = context.pass->man->llvm; + + if (left->getType()->isPointerTy() && right->getType()->isIntegerTy()){ + + std::vector indexes{right}; + //{llvm::ConstantInt::get(llvm::Type::getInt32Ty(llvm::getGlobalContext()), 0)}; + //indexes.push_back(right); + + return llvm->builder.CreateGEP(left, llvm::ArrayRef(indexes), hintVarDecl); + } + + return nullptr; +} + +} } \ No newline at end of file diff --git a/cpp/src/compilation/pointerarithmetic.h b/cpp/src/compilation/pointerarithmetic.h new file mode 100644 index 0000000..5302d7b --- /dev/null +++ b/cpp/src/compilation/pointerarithmetic.h @@ -0,0 +1,29 @@ +/* + * File: pointerarithmetic.h + * Author: pgess + * + * Created on March 29, 2017, 11:52 AM + */ + +#ifndef POINTERARITHMETIC_H +#define POINTERARITHMETIC_H + +#include "pass/compilepass.h" + +namespace llvm { + class Value; +} + +namespace xreate { namespace compilation { + +class PointerArithmetic { +public: + static llvm::Value* add(llvm::Value *left, llvm::Value *right, Context context, const std::string& hintVarDecl); +}; + + +} } + + +#endif /* POINTERARITHMETIC_H */ + diff --git a/cpp/src/compilation/scopedecorators.h b/cpp/src/compilation/scopedecorators.h index 612d68a..ac469ad 100644 --- a/cpp/src/compilation/scopedecorators.h +++ b/cpp/src/compilation/scopedecorators.h @@ -1,123 +1,129 @@ /* * File: scopedecorators.h * Author: pgess * * Created on February 24, 2017, 11:35 AM */ #ifndef SCOPEDECORATORS_H #define SCOPEDECORATORS_H #include "ast.h" #include "compilation/targetinterpretation.h" #include "compilation/versions.h" #include "compilation/transformations.h" namespace xreate { class CompilePass; namespace compilation { class AbstractCodeScopeUnit; class FunctionUnit; template class CachedScopeDecorator: public Parent{ typedef CachedScopeDecorator SELF; public: CachedScopeDecorator(CodeScope* codeScope, FunctionUnit* f, CompilePass* compilePass): Parent(codeScope, f, compilePass){} - void reset(){ - __rawVars.clear(); - } - void bindArg(llvm::Value* value, std::string&& alias) { //ensure existence of an alias assert(Parent::scope->__identifiers.count(alias)); //memorize new value for an alias ScopedSymbol id{Parent::scope->__identifiers.at(alias), VERSION_NONE}; __rawVars[id] = value; } void bindArg(llvm::Value* value, const ScopedSymbol& s) { __rawVars[s] = value; } llvm::Value* compile(const std::string& hintBlockDecl="") override{ if (__rawVars.count(ScopedSymbol::RetSymbol)){ return __rawVars[ScopedSymbol::RetSymbol]; } return Parent::compile(hintBlockDecl); } llvm::Value* processSymbol(const Symbol& s, std::string hintRetVar) override{ CodeScope* scope = s.scope; SELF* self = dynamic_cast(Parent::function->getScopeUnit(scope)); if (self->__rawVars.count(s.identifier)){ return self->__rawVars[s.identifier]; } //Declaration could be overriden Expression declaration = CodeScope::getDeclaration(s); if (!declaration.isDefined()){ if (self->__declarationsOverriden.count(s.identifier)){ declaration = self->__declarationsOverriden[s.identifier]; } else { assert(false); //in case of binding there should be raws provided. } } return self->__rawVars[s.identifier] = Parent::processSymbol(s, hintRetVar); } void overrideDeclaration(const Symbol binding, Expression&& declaration){ SELF* self = dynamic_cast(Parent::function->getScopeUnit(binding.scope)); self->__declarationsOverriden.emplace(binding.identifier, std::move(declaration)); } + void registerChildScope(std::shared_ptr scope){ + __childScopes.push_back(scope); + } + + void reset(){ + __rawVars.clear(); + __declarationsOverriden.clear(); + __childScopes.clear(); + } + private: std::unordered_map __declarationsOverriden; std::unordered_map __rawVars; - + std::list> __childScopes; }; typedef CachedScopeDecorator< compilation::TransformationsScopeDecorator< compilation::InterpretationScopeDecorator< compilation::VersionsScopeDecorator>>> DefaultScopeUnit; } //end of compilation namespace struct CachedScopeDecoratorTag; struct VersionsScopeDecoratorTag; template<> struct DecoratorsDict{ typedef compilation::CachedScopeDecorator< compilation::TransformationsScopeDecorator< compilation::InterpretationScopeDecorator< compilation::VersionsScopeDecorator>>> result; }; template<> struct DecoratorsDict{ typedef compilation::VersionsScopeDecorator< compilation::BasicCodeScopeUnit> result; }; } //end of xreate #endif /* SCOPEDECORATORS_H */ diff --git a/cpp/src/compilation/targetinterpretation.cpp b/cpp/src/compilation/targetinterpretation.cpp index 2969498..937a400 100644 --- a/cpp/src/compilation/targetinterpretation.cpp +++ b/cpp/src/compilation/targetinterpretation.cpp @@ -1,432 +1,436 @@ /* * File: targetinterpretation.cpp * Author: pgess * * Created on June 29, 2016, 6:45 PM */ #include "compilation/targetinterpretation.h" #include "pass/interpretationpass.h" #include "llvmlayer.h" #include "compilation/scopedecorators.h" #include #include #include using namespace std; namespace xreate{ namespace compilation { const Expression EXPRESSION_FALSE = Expression(Atom(0)); const Expression EXPRESSION_TRUE = Expression(Atom(1)); //Expression //InterpretationScope::compile(const Expression& expression){} CodeScope* InterpretationScope::processOperatorIf(const Expression& expression){ const Expression& exprCondition = process(expression.getOperands()[0]); if (exprCondition == EXPRESSION_TRUE){ return expression.blocks.front(); } return expression.blocks.back(); } CodeScope* InterpretationScope::processOperatorSwitch(const Expression& expression) { const Expression& exprCondition = process(expression.operands[0]); bool flagHasDefault = expression.operands[1].op == Operator::CASE_DEFAULT; //TODO check that one and only one case variant is appropriate for (size_t size = expression.operands.size(), i= flagHasDefault? 2: 1; igetScope(exprCase.blocks.front())->processScope() == exprCondition){ return exprCase.blocks.back(); } } if (flagHasDefault){ const Expression& exprCaseDefault = expression.operands[1]; return exprCaseDefault.blocks.front(); } assert(false && "Switch has no appropriate variant"); return nullptr; } llvm::Value* InterpretationScope::compileHybrid(const InterpretationOperator& op, const Expression& expression, const Context& context){ switch(op){ case IF_INTERPRET_CONDITION: { CodeScope* scopeResult = processOperatorIf(expression); llvm::Value* result = context.function->getScopeUnit(scopeResult)->compile(); return result; } case SWITCH_INTERPRET_CONDITION:{ CodeScope* scopeResult = processOperatorSwitch(expression); llvm::Value* result = context.function->getScopeUnit(scopeResult)->compile(); return result; } case FOLD_INTERPRET_INPUT: { //initialization const Expression& exprInput = process(expression.getOperands()[0]); assert(exprInput.op == Operator::LIST); CodeScope* scopeBody = expression.blocks.front(); const string& nameEl = expression.bindings[0]; Symbol symbEl{ScopedSymbol{scopeBody->__identifiers.at(nameEl), VERSION_NONE}, scopeBody}; const std::string& idAccum = expression.bindings[1]; llvm::Value* rawAccum = context.scope->process(expression.getOperands()[1]); - auto unitBody = Decorators::getInterface(context.function->getScopeUnit(scopeBody)); + InterpretationScope* intrBody = function->getScope(scopeBody); + auto unitBody = Decorators::getInterface(context.function->getScopeUnit(scopeBody)); + const std::vector elementsInput= exprInput.getOperands(); for (size_t i=0; ireset(); unitBody->reset(); + Expression exprElement = elementsInput[i]; + intrBody->overrideBinding(exprElement, nameEl); unitBody->overrideDeclaration(symbEl, move(exprElement)); unitBody->bindArg(rawAccum, string(idAccum)); rawAccum = unitBody->compile(); } return rawAccum; } case CALL_INTERPRET_PARTIAL: { const std::string &calleeName = expression.getValueString(); AbstractCodeScopeUnit* scopeUnitSelf = context.scope; ManagedFnPtr callee = this->function->man->ast->findFunction(calleeName); const FunctionInterpretationData& calleeData = FunctionInterpretationHelper::getSignature(callee); std::vector argsActual; PIFSignature sig; sig.declaration = callee; for(size_t no=0, size = expression.operands.size(); no < size; ++no){ const Expression& op = expression.operands[no]; if (calleeData.signature.at(no) == INTR_ONLY){ sig.bindings.push_back(process(op)); continue; } argsActual.push_back(scopeUnitSelf->process(op)); } TargetInterpretation* man = dynamic_cast(this->function->man); PIFunction* pifunction = man->getFunction(move(sig)); llvm::Function* raw = pifunction->compile(); boost::scoped_ptr statement(new CallStatementRaw(raw, man->pass->man->llvm)); return (*statement)(move(argsActual)); } default: break; } assert(false&& "Unknown hybrid operator"); return nullptr; } llvm::Value* InterpretationScope::compile(const Expression& expression, const Context& context){ const InterpretationData& data = Attachments::get(expression); if (data.op != InterpretationOperator::NONE){ return compileHybrid(data.op, expression, context); } Expression result = process(expression); return context.scope->process(result); } Expression InterpretationScope::process(const Expression& expression){ switch (expression.__state){ case Expression::INVALID: assert(false); case Expression::VARIANT: case Expression::NUMBER: case Expression::STRING: return expression; case Expression::IDENT:{ Symbol s = Attachments::get(expression); return Parent::processSymbol(s); } case Expression::COMPOUND: break; default: assert(false); } switch (expression.op) { case Operator::EQU: { const Expression& left = process(expression.operands[0]); const Expression& right = process(expression.operands[1]); if (left == right) return EXPRESSION_TRUE; return EXPRESSION_FALSE; } case Operator::NE: { const Expression& left = process(expression.operands[0]); const Expression& right = process(expression.operands[1]); if (left == right) return EXPRESSION_FALSE; return EXPRESSION_TRUE; } case Operator::LOGIC_AND: { assert(expression.operands.size() == 1); return process (expression.operands[0]); } // case Operator::LOGIC_OR: case Operator::CALL: { const std::string &fnName = expression.getValueString(); ManagedFnPtr fnAst = this->function->man->ast->findFunction(fnName); InterpretationFunction* fnUnit = this->function->man->getFunction(fnAst); vector args; args.reserve(expression.getOperands().size()); for(size_t i=0, size = expression.getOperands().size(); iprocess(args); } case Operator::IF:{ CodeScope* scopeResult = processOperatorIf(expression); return function->getScope(scopeResult)->processScope(); } case Operator::SWITCH: { CodeScope* scopeResult = processOperatorSwitch(expression); return function->getScope(scopeResult)->processScope(); } case Operator::INDEX: { const Expression& exprKey = process(expression.operands[1]); const Expression& exprData = process(expression.operands[0]); if (exprKey.__state == Expression::STRING){ const string& key = exprKey.getValueString(); assert(exprData.__indexBindings.count(key)); return exprData.operands[exprData.__indexBindings.at(key)]; } if (exprKey.__state == Expression::NUMBER){ int key = exprKey.getValueDouble(); return exprData.operands[key]; } assert(false); } case Operator::FOLD: { const Expression& exprInput = process(expression.getOperands()[0]); const Expression& exprInit = process(expression.getOperands()[1]); const std::string& argEl = expression.bindings[0]; const std::string& argAccum = expression.bindings[1]; InterpretationScope* body = function->getScope(expression.blocks.front()); Expression accum = exprInit; for(size_t size=exprInput.getOperands().size(), i=0; ioverrideBinding(exprInput.getOperands()[i], argEl); body->overrideBinding(accum, argAccum); accum = body->processScope(); } return accum; } // case Operator::MAP: { // break; // } default: break; } return expression; } InterpretationFunction* TargetInterpretation::getFunction(FunctionUnit* unit){ if (__dictFunctionsByUnit.count(unit)) { return __dictFunctionsByUnit.at(unit); } InterpretationFunction* f = new InterpretationFunction(unit->function, this); __dictFunctionsByUnit.emplace(unit, f); assert(__functions.emplace(unit->function.id(), f).second); return f; } PIFunction* TargetInterpretation::getFunction(PIFSignature&& sig){ auto f = __pifunctions.find(sig); if (f != __pifunctions.end()){ return f->second; } PIFunction* result = new PIFunction(PIFSignature(sig), __pifunctions.size(), this); __pifunctions.emplace(move(sig), result); assert(__dictFunctionsByUnit.emplace(result->functionUnit, result).second); return result; } InterpretationScope* TargetInterpretation::transformContext(const Context& c){ return this->getFunction(c.function)->getScope(c.scope->scope); } llvm::Value* TargetInterpretation::compile(const Expression& expression, const Context& ctx){ return transformContext(ctx)->compile(expression, ctx); } InterpretationFunction::InterpretationFunction(const ManagedFnPtr& function, Target* target) : Function(function, target) {} Expression InterpretationFunction::process(const std::vector& args){ InterpretationScope* body = getScope(__function->__entry); for(size_t i=0, size = args.size(); ioverrideBinding(args.at(i), string(body->scope->__bindings.at(i))); } return body->processScope(); } // Partial function interpretation typedef BasicFunctionDecorator PIFunctionUnitParent; class PIFunctionUnit: public PIFunctionUnitParent{ public: PIFunctionUnit(ManagedFnPtr f, std::set&& arguments, size_t id, CompilePass* p) : PIFunctionUnitParent(f, p), argumentsActual(move(arguments)), __id(id) {} protected: std::vector prepareArguments(){ LLVMLayer* llvm = PIFunctionUnitParent::pass->man->llvm; AST* ast = PIFunctionUnitParent::pass->man->root; CodeScope* entry = PIFunctionUnitParent::function->__entry; std::vector signature; for(size_t no: argumentsActual){ VNameId argId = entry->__identifiers.at(entry->__bindings.at(no)); ScopedSymbol arg{argId, VERSION_NONE}; signature.push_back(llvm->toLLVMType(ast->expandType(entry->__declarations.at(arg).type))); } return signature; } llvm::Function::arg_iterator prepareBindings(){ CodeScope* entry = PIFunctionUnitParent::function->__entry; AbstractCodeScopeUnit* entryCompilation = PIFunctionUnitParent::getScopeUnit(entry); llvm::Function::arg_iterator fargsI = PIFunctionUnitParent::raw->arg_begin(); for(size_t no: argumentsActual){ ScopedSymbol arg{entry->__identifiers.at(entry->__bindings.at(no)), VERSION_NONE}; entryCompilation->bindArg(&*fargsI, arg); fargsI->setName(entry->__bindings.at(no)); ++fargsI; } return fargsI; } virtual std::string prepareName(){ return PIFunctionUnitParent::prepareName() + "_" + std::to_string(__id); } private: std::set argumentsActual; size_t __id; }; PIFunction::PIFunction(PIFSignature&& sig, size_t id, TargetInterpretation* target) : InterpretationFunction(sig.declaration, target), signatureInstance(move(sig)) { const FunctionInterpretationData& functionData = FunctionInterpretationHelper::getSignature(signatureInstance.declaration); std::set argumentsActual; for (size_t no=0, size=functionData.signature.size(); no < size; ++no){ if (functionData.signature.at(no) != INTR_ONLY){ argumentsActual.insert(no); } } functionUnit = new PIFunctionUnit(signatureInstance.declaration, move(argumentsActual), id, target->pass); CodeScope* entry = signatureInstance.declaration->__entry; auto entryUnit = Decorators::getInterface<>(functionUnit->getEntry()); InterpretationScope* entryIntrp = InterpretationFunction::getScope(entry); for(size_t no=0, sigNo=0, size = entry->__bindings.size(); no < size; ++no){ if (functionData.signature.at(no) == INTR_ONLY){ entryIntrp->overrideBinding(signatureInstance.bindings[sigNo], entry->__bindings[no]); VNameId argId = entry->__identifiers.at(entry->__bindings[no]); Symbol argSymbol{ScopedSymbol{argId, VERSION_NONE}, entry}; entryUnit->overrideDeclaration(argSymbol, Expression(signatureInstance.bindings[sigNo])); ++sigNo; } } } llvm::Function* PIFunction::compile(){ llvm::Function* raw = functionUnit->compile(); return raw; } bool operator<(const PIFSignature& lhs, const PIFSignature& rhs){ if (lhs.declaration.id() != rhs.declaration.id()) { return lhs.declaration.id() < rhs.declaration.id(); } return lhs.bindings < rhs.bindings; } bool operator<(const PIFSignature& lhs, PIFunction* const rhs){ return lhs < rhs->signatureInstance; } bool operator<(PIFunction* const lhs, const PIFSignature& rhs){ return lhs->signatureInstance < rhs; } -}} \ No newline at end of file +}} diff --git a/cpp/src/compilation/targets.h b/cpp/src/compilation/targets.h index a871d44..2ec48eb 100644 --- a/cpp/src/compilation/targets.h +++ b/cpp/src/compilation/targets.h @@ -1,161 +1,191 @@ /* * File: targetabstract.h * Author: pgess * * Created on July 2, 2016, 1:25 PM */ #ifndef TARGETABSTRACT_H #define TARGETABSTRACT_H #include "ast.h" #include #include namespace xreate{ namespace compilation { template struct TargetInfo{ //typedef Result //typedef Function //typedef Scope }; template class Function; template class Target; template class Scope{ + typedef typename TargetInfo::Scope Self; + public: CodeScope* scope; typename TargetInfo::Result processSymbol(const Symbol& s){ CodeScope* scope = s.scope; - typename TargetInfo::Scope* self = function->getScope(scope); + Self* self = function->getScope(scope); if (self->__bindings.count(s.identifier)) { return self->__bindings[s.identifier]; } const Expression& declaration = CodeScope::getDeclaration(s); if (!declaration.isDefined()){ assert(false); //for bindings there should be result already } return self->__bindings[s.identifier] = self->process(declaration); } typename TargetInfo::Result processScope() { if (raw) return *raw; raw = process(scope->getBody()); return *raw; } // typename TargetInfo::Result // processFunction(typename TargetInfo::Function* fnRemote, const std::vector::Result>& args){ // Scope scopeRemote = fnRemote->getScope(fnRemote->__function->__entry); // // if (scopeRemote->raw){ // return scopeRemote->raw; // } // // return fnRemote->process(args); // } virtual typename TargetInfo::Result process(const Expression& expression)=0; Scope(CodeScope* codeScope, Function* f) : scope(codeScope), function(f) {} virtual ~Scope(){} void overrideBinding(typename TargetInfo::Result arg, const std::string& name){ assert(scope->__identifiers.count(name)); ScopedSymbol id{scope->__identifiers.at(name), VERSION_NONE}; __bindings[id] = arg; //reset the result if any: raw.reset(); } + void registerChildScope(std::shared_ptr scope){ + __childScopes.push_back(scope); + } + + void reset(){ + __bindings.clear(); + __childScopes.clear(); + raw == nullptr; + } + protected: Function* function=0; std::map::Result> __bindings; + std::list> __childScopes; typename boost::optional::Result> raw; - - //ResultType findFunction(const std::string& callee); }; template class Function{ typedef typename TargetInfo::Result Result; + typedef typename TargetInfo::Scope ConcreteScope; public: Function(const ManagedFnPtr& function, Target* target) : man(target), __function(function) {} virtual ~Function(){}; - typename TargetInfo::Scope* + ConcreteScope* getScope(CodeScope* scope){ - if (!__scopes.count(scope)){ - typename TargetInfo::Scope* unit = new typename TargetInfo::Scope(scope, this); - __scopes.emplace(scope, std::unique_ptr::Scope>(unit)); + if (__scopes.count(scope)) { + auto result = __scopes.at(scope).lock(); + + if (result){ + return result.get(); + } + } + + std::shared_ptr unit(new ConcreteScope(scope, this)); + + if (scope->__parent != nullptr){ + getScope(scope->__parent)->registerChildScope(unit); + + } else { + assert(!__entryScope); + __entryScope = unit; } - return __scopes.at(scope).get(); + if (!__scopes.emplace(scope, unit).second){ + __scopes[scope] = unit; + } + + return unit.get(); } virtual Result process(const std::vector& args)=0; Target* man=0; ManagedFnPtr __function; protected: - std::map::Scope>> __scopes; + std::map> __scopes; + std::shared_ptr __entryScope; }; template class Target { typedef typename TargetInfo::Function ConcreteFunction; public: Target(AST* root): ast(root){} ConcreteFunction* getFunction(const ManagedFnPtr& function){ unsigned int id = function.id(); if (!__functions.count(id)){ ConcreteFunction* unit = new ConcreteFunction(function, this); __functions.emplace(id, unit); return unit; } return __functions.at(id); } AST* ast; virtual ~Target(){ for (const auto& entry: __functions){ delete entry.second; } } protected: std::map __functions; }; }} -#endif /* TARGETABSTRACT_H */ \ No newline at end of file +#endif /* TARGETABSTRACT_H */ diff --git a/cpp/src/compilation/transformations.h b/cpp/src/compilation/transformations.h index 4350147..d2ac123 100644 --- a/cpp/src/compilation/transformations.h +++ b/cpp/src/compilation/transformations.h @@ -1,111 +1,110 @@ /* * File: transformations.h * Author: pgess * * Created on March 25, 2017, 9:04 PM */ #ifndef TRANSFORMATIONS_H #define TRANSFORMATIONS_H #include "pass/compilepass.h" namespace xreate { namespace compilation { template struct TransformerInfo { //static const unsigned int id = 1; (current vacant id) }; class Transformer{ public: virtual llvm::Value* transform(const Expression& expression, llvm::Value* raw, const Context& ctx)=0; virtual ~Transformer(){}; }; class TransformationsManager { public: std::list getRelevantTransformers(const Expression& expression); template void registerTransformer(const std::string& annotation, TransformerType* t){ const int id = TransformerInfo::id; assert(!__transformers.count(id)); __transformers[id] = t; __subscriptions.emplace(annotation, id); } template void unregisterTransformer(const std::string& annotation, TransformerType* t){ const unsigned int id = TransformerInfo::id; auto range = __subscriptions.equal_range(annotation); const auto entry = make_pair(annotation, id); __subscriptions.erase(std::find_if(range.first, range.second, [id](const auto& el){return el.second == id;})); __transformers.erase(id); } template TransformerType* update(TransformerType* newInstance){ const int id = TransformerInfo::id; Transformer* oldInstance = __transformers[id]; __transformers[id] = newInstance; return static_cast(oldInstance); } template bool exists(){ const int id = TransformerInfo::id; return __transformers.count(id); } template TransformerType* get(){ const int id = TransformerInfo::id; return static_cast(__transformers.at(id)); } private: std::map __transformers; std::multimap __subscriptions; }; template class TransformationsScopeDecorator: public Transformer, public Parent { // SCOPE DECORATOR PART public: TransformationsScopeDecorator(CodeScope* codeScope, FunctionUnit* f, CompilePass* compilePass) : Parent(codeScope, f, compilePass){} virtual llvm::Value* process(const Expression& expr, const std::string& hintVarDecl=""){ llvm::Value* result = Parent::process(expr, hintVarDecl); - return transform(expr, result, Context{this, Parent::function, Parent::pass}); } // TRANSFORMER PART public: virtual llvm::Value* transform(const Expression& expression, llvm::Value* raw, const Context& ctx) { llvm::Value* result = raw; TransformationsManager* man = Parent::pass->managerTransformations; if (expression.tags.size()) for (Transformer* handler: man->getRelevantTransformers(expression)){ result = handler->transform(expression, result, ctx); } return result; } }; } } #endif /* TRANSFORMATIONS_H */ diff --git a/cpp/src/llvmlayer.cpp b/cpp/src/llvmlayer.cpp index ca7ce01..2d9cce1 100644 --- a/cpp/src/llvmlayer.cpp +++ b/cpp/src/llvmlayer.cpp @@ -1,255 +1,258 @@ #include "ast.h" #include "llvmlayer.h" #include "ExternLayer.h" #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/ExecutionEngine/MCJIT.h" #include "llvm/Support/TargetSelect.h" #include #include using namespace llvm; using namespace xreate; using namespace std; LLVMLayer::LLVMLayer(AST* root) : ast(root), builder(getGlobalContext()) { module = new llvm::Module(root->getModuleName(), llvm::getGlobalContext()); layerExtern = new ExternLayer(this); layerExtern->init(root); } void* LLVMLayer::getFunctionPointer(llvm::Function* function){ uint64_t entryAddr = jit->getFunctionAddress(function->getName().str()); return (void*) entryAddr; } void LLVMLayer::initJit(){ std::string ErrStr; LLVMInitializeNativeTarget(); llvm::InitializeNativeTargetAsmPrinter(); llvm::EngineBuilder builder((std::unique_ptr(module))); jit = builder .setEngineKind(llvm::EngineKind::JIT) .setErrorStr(&ErrStr) .setVerifyModules(true) .create(); } void LLVMLayer::print(){ llvm::PassManager PM; PM.addPass(llvm::PrintModulePass(llvm::outs(), "banner")); PM.run(*module); } llvm::BasicBlock* LLVMLayer::initExceptionBlock(llvm::BasicBlock* blockException){ initExceptionsSupport(); PointerType* tyInt8P = PointerType::getInt8PtrTy(llvm::getGlobalContext()); Value* nullInt8P = llvm::ConstantPointerNull::get(tyInt8P); builder.SetInsertPoint(blockException); llvm::Function* fAllocate = module->getFunction("__cxa_allocate_exception"); llvm::Function* fThrow = module->getFunction("__cxa_throw"); auto exception = builder.CreateCall(fAllocate, ConstantInt::get(IntegerType::getInt64Ty(getGlobalContext()), 4)); vector throwParams{exception, nullInt8P, nullInt8P}; builder.CreateCall(fThrow, ArrayRef(throwParams)); builder.CreateUnreachable(); return blockException; } void LLVMLayer::moveToGarbage(void *o) { __garbage.push_back(o); } llvm::Type* LLVMLayer:: toLLVMType(const ExpandedType& ty) const { std::map empty; return toLLVMType(ty, empty); } llvm::Type* LLVMLayer:: toLLVMType(const ExpandedType& ty, std::map& conjuctions) const { TypeAnnotation t = ty; switch (t.__operator) { case TypeOperator::ARRAY: { assert(t.__operands.size()==1); TypeAnnotation elTy = t.__operands.at(0); return llvm::ArrayType::get(toLLVMType(ExpandedType(move(elTy)), conjuctions), t.__size); } case TypeOperator::STRUCT: case TypeOperator::TUPLE: { assert(t.__operands.size()); std::vector pack_; pack_.reserve(t.__operands.size()); std::transform(t.__operands.begin(), t.__operands.end(), std::inserter(pack_, pack_.end()), [this, &conjuctions](const TypeAnnotation& t){ return toLLVMType(ExpandedType(TypeAnnotation(t)), conjuctions); }); llvm::ArrayRef pack(pack_); //process recursive types: if (conjuctions.count(t.conjuctionId)) { auto result = conjuctions[t.conjuctionId]; result->setBody(pack, false); return result; } return llvm::StructType::get(llvm::getGlobalContext(), pack, false); }; case TypeOperator::LINK: { llvm::StructType* conjuction = llvm::StructType::create(llvm::getGlobalContext()); int id = t.conjuctionId; conjuctions.emplace(id, conjuction); return conjuction; }; case TypeOperator::CALL: { assert(false); }; case TypeOperator::CUSTOM: { //Look in extern types clang::QualType qt = layerExtern->lookupType(t.__valueCustom); return layerExtern->toLLVMType(qt); }; case TypeOperator::VARIANT: { int size = t.fields.size(); assert(size); int bitcount = ceil(log2(size)); return llvm::Type::getIntNTy(llvm::getGlobalContext(), bitcount); } case TypeOperator::NONE: { switch (t.__value) { - case TypePrimitive::Bool: - return llvm::Type::getInt1Ty(llvm::getGlobalContext()); - case TypePrimitive::I32: case TypePrimitive::Int: case TypePrimitive::Num: return llvm::Type::getInt32Ty(llvm::getGlobalContext()); + case TypePrimitive::Bool: + return llvm::Type::getInt1Ty(llvm::getGlobalContext()); + case TypePrimitive::I8: return llvm::Type::getInt8Ty(llvm::getGlobalContext()); + case TypePrimitive::I64: + return llvm::Type::getInt64Ty(llvm::getGlobalContext()); + case TypePrimitive::Float: return llvm::Type::getDoubleTy(llvm::getGlobalContext()); case TypePrimitive::String: return llvm::Type::getInt8PtrTy(llvm::getGlobalContext()); default: assert(false); } } default: assert(false); } assert(false); return nullptr; } void LLVMLayer::initExceptionsSupport(){ Type* typInt8Ptr = PointerType::get(IntegerType::get(module->getContext(), 8), 0); if (!module->getFunction("__cxa_throw")) { std::vector fThrowSignature{typInt8Ptr, typInt8Ptr, typInt8Ptr}; FunctionType* tyFThrow = FunctionType::get( /*Result=*/Type::getVoidTy(module->getContext()), /*Params=*/fThrowSignature, /*isVarArg=*/false); llvm::Function::Create( /*Type=*/tyFThrow, /*Linkage=*/GlobalValue::ExternalLinkage, /*Name=*/"__cxa_throw", module); // (external, no body) } if (!module->getFunction("__cxa_allocate_exception")) { std::vectorfAllocateSignature{IntegerType::get(module->getContext(), 64)}; FunctionType* tyFAllocate = FunctionType::get( /*Result=*/typInt8Ptr, /*Params=*/fAllocateSignature, /*isVarArg=*/false); llvm::Function::Create( /*Type=*/tyFAllocate, /*Linkage=*/GlobalValue::ExternalLinkage, /*Name=*/"__cxa_allocate_exception", module); // (external, no body) } } bool TypeUtils::isStruct(const ExpandedType& ty){ const TypeAnnotation& t = ty.get(); if (t.__operator==TypeOperator::STRUCT) { return true; } if (t.__operator != TypeOperator::CUSTOM) { return false; } clang::QualType tqual = llvm->layerExtern->lookupType(t.__valueCustom); const clang::Type * raw = tqual.getTypePtr(); // TODO skip ALL the pointers until non-pointer type found if (raw->isStructureType()) return true; if (!raw->isAnyPointerType()) return false; clang::QualType pointee = raw->getPointeeType(); return pointee->isStructureType(); } bool TypeUtils::isPointer(const ExpandedType &ty) { if (ty.get().__operator != TypeOperator::CUSTOM) return false; clang::QualType qt = llvm->layerExtern->lookupType(ty.get().__valueCustom); return llvm->layerExtern->isPointer(qt); } std::vector TypeUtils::getStructFields(const ExpandedType &t) { return (t.get().__operator == TypeOperator::STRUCT) ? t.get().fields : llvm->layerExtern->getStructFields( llvm->layerExtern->lookupType(t.get().__valueCustom)); } diff --git a/cpp/src/pass/compilepass.cpp b/cpp/src/pass/compilepass.cpp index b1967c8..e9e7d12 100644 --- a/cpp/src/pass/compilepass.cpp +++ b/cpp/src/pass/compilepass.cpp @@ -1,765 +1,799 @@ #include "compilepass.h" #include "clasplayer.h" #include #include "llvmlayer.h" #include "query/containers.h" #include "query/context.h" #include "compilation/containers.h" #include "compilation/latecontextcompiler2.h" #include "ExternLayer.h" #include "pass/adhocpass.h" #include "compilation/targetinterpretation.h" #include "pass/versionspass.h" #include "compilation/scopedecorators.h" +#include "compilation/pointerarithmetic.h" #include #include #include using namespace std; using namespace xreate; using namespace xreate::compilation; using namespace llvm; //TODO use Scope //SECTIONTAG types/convert implementation //TODO type conversion: //a) automatically expand types int -> bigger int; int -> floating //b) detect exact type of `num` based on max used numeral / function type //c) warning if need to truncate (allow/dissalow based on annotations) namespace xreate { llvm::Value* doAutomaticTypeConversion(llvm::Value* source, llvm::Type* tyTarget, llvm::IRBuilder<>& builder){ if (tyTarget->isIntegerTy() && source->getType()->isIntegerTy()) { llvm::IntegerType* tyTargetInt = llvm::dyn_cast(tyTarget); llvm::IntegerType* tySourceInt = llvm::dyn_cast(source->getType()); if (tyTargetInt->getBitWidth() < tySourceInt->getBitWidth()){ return builder.CreateCast(llvm::Instruction::Trunc, source, tyTarget); } if (tyTargetInt->getBitWidth() > tySourceInt->getBitWidth()){ return builder.CreateCast(llvm::Instruction::SExt, source, tyTarget); } } if (source->getType()->isIntegerTy() && tyTarget->isFloatingPointTy()){ return builder.CreateCast(llvm::Instruction::SIToFP, source, tyTarget); } return source; } std::string BasicFunctionDecorator::prepareName(){ AST* ast = FunctionUnit::pass->man->root; string name = ast->getFunctionVariants(FunctionUnit::function->__name).size() > 1? FunctionUnit::function->__name + std::to_string(FunctionUnit::function.id()) : FunctionUnit::function->__name; return name; } std::vector BasicFunctionDecorator::prepareArguments(){ LLVMLayer* llvm = FunctionUnit::pass->man->llvm; AST* ast = FunctionUnit::pass->man->root; CodeScope* entry = FunctionUnit::function->__entry; std::vector signature; std::transform(entry->__bindings.begin(), entry->__bindings.end(), std::inserter(signature, signature.end()), [llvm, ast, entry](const std::string &arg)->llvm::Type* { assert(entry->__identifiers.count(arg)); ScopedSymbol argid{entry->__identifiers.at(arg), VERSION_NONE}; return llvm->toLLVMType(ast->expandType(entry->__declarations.at(argid).type)); }); return signature; } llvm::Type* BasicFunctionDecorator::prepareResult(){ LLVMLayer* llvm = FunctionUnit::pass->man->llvm; AST* ast = FunctionUnit::pass->man->root; CodeScope* entry = FunctionUnit::function->__entry; return llvm->toLLVMType(ast->expandType(entry->__declarations.at(ScopedSymbol::RetSymbol).type)); } llvm::Function::arg_iterator BasicFunctionDecorator::prepareBindings(){ CodeScope* entry = FunctionUnit::function->__entry; AbstractCodeScopeUnit* entryCompilation = FunctionUnit::getScopeUnit(entry); llvm::Function::arg_iterator fargsI = FunctionUnit::raw->arg_begin(); for (std::string &arg : entry->__bindings) { ScopedSymbol argid{entry->__identifiers[arg], VERSION_NONE}; entryCompilation->bindArg(&*fargsI, argid); fargsI->setName(arg); ++fargsI; } return fargsI; } //SECTIONTAG late-context FunctionDecorator template class LateContextFunctionDecorator: public Parent{ public: LateContextFunctionDecorator(ManagedFnPtr f, CompilePass* p) : Parent(f, p), contextCompiler(this, p) {} protected: std::vector prepareArguments(){ std::vector&& arguments = Parent::prepareArguments(); size_t sizeLateContextDemand = contextCompiler.getFunctionDemandSize(); if (sizeLateContextDemand) { llvm::Type* ty32 = llvm::Type::getInt32Ty(llvm::getGlobalContext()); llvm::Type* tyDemand = llvm::ArrayType::get(ty32, sizeLateContextDemand); arguments.push_back(tyDemand); } return arguments; } llvm::Function::arg_iterator prepareBindings(){ llvm::Function::arg_iterator fargsI = Parent::prepareBindings(); size_t sizeLateContextDemand = contextCompiler.getFunctionDemandSize(); if (sizeLateContextDemand){ fargsI->setName("latecontext"); contextCompiler.rawContextArgument = &*fargsI; ++fargsI; } return fargsI; } public: LateContextCompiler2 contextCompiler; }; //SECTIONTAG adhoc FunctionDecorator template class AdhocFunctionDecorator: public Parent{ public: AdhocFunctionDecorator(ManagedFnPtr f, CompilePass* p) : Parent(f, p) {} protected: llvm::Type* prepareResult(){ PassManager* man = Parent::pass->man; CodeScope* entry = Parent::function->__entry; LLVMLayer* llvm = Parent::pass->man->llvm; AST* ast = Parent::pass->man->root; AdhocPass* adhocpass = reinterpret_cast(man->getPassById(PassId::AdhocPass)); if (! Parent::function->isPrefunction){ return Parent::prepareResult(); } adhocImplementation = adhocpass->findAssotiatedScheme(entry); return llvm->toLLVMType(ast->expandType(adhocImplementation->getResultType())); } public: AdhocScheme* adhocImplementation=nullptr; }; //DEBT compiler rigidly depends on exact definition of DefaultFunctionUnit typedef LateContextFunctionDecorator< AdhocFunctionDecorator< BasicFunctionDecorator>> DefaultFunctionUnit; AbstractCodeScopeUnit::AbstractCodeScopeUnit(CodeScope* codeScope, FunctionUnit* f, CompilePass* compilePass) : pass(compilePass), function(f), scope(codeScope) {} llvm::Value* CallStatementRaw::operator() (std::vector&& args, const std::string& hintDecl) { llvm::Function* calleeInfo = dyn_cast(__callee); if (calleeInfo){ auto argsFormal = calleeInfo->args(); int pos=0; //SECTIONTAG types/convert function ret value for (auto argFormal = argsFormal.begin(); argFormal!=argsFormal.end(); ++argFormal, ++pos){ args[pos] = doAutomaticTypeConversion(args[pos], argFormal->getType(), llvm->builder); } } return llvm->builder.CreateCall(__calleeTy, __callee, args, hintDecl); } //DESABLEDFEATURE implement inlining class CallStatementInline: public CallStatement{ public: CallStatementInline(FunctionUnit* caller, FunctionUnit* callee, LLVMLayer* l) : __caller(caller), __callee(callee), llvm(l) {} llvm::Value* operator() (std::vector&& args, const std::string& hintDecl) { //TOTEST inlining // CodeScopeUnit* entryCompilation = outer->getScopeUnit(function->__entry); // for(int i=0, size = args.size(); ibindArg(args.at(i), string(entryCompilation->scope->__bindings.at(i))); // } // // // return entryCompilation->compile(); return nullptr; } private: FunctionUnit* __caller; FunctionUnit* __callee; LLVMLayer* llvm; bool isInline(){ // Symbol ret = Symbol{0, function->__entry}; // bool flagOnTheFly = SymbolAttachments::get(ret, false); //TODO consider inlining return false; } }; } BasicCodeScopeUnit::BasicCodeScopeUnit(CodeScope* codeScope, FunctionUnit* f, CompilePass* compilePass) : AbstractCodeScopeUnit(codeScope, f, compilePass) {} llvm::Value* BasicCodeScopeUnit::processSymbol(const Symbol& s, std::string hintRetVar){ Expression declaration = CodeScope::getDeclaration(s); CodeScope* scope = s.scope; AbstractCodeScopeUnit* self = AbstractCodeScopeUnit::function->getScopeUnit(scope); return self->process(declaration, hintRetVar); } //SECTIONTAG late-context find callee function //TOTEST static late context decisions //TOTEST dynamic late context decisions CallStatement* BasicCodeScopeUnit::findFunction(const std::string& calleeName){ LLVMLayer* llvm = pass->man->llvm; ClaspLayer* clasp = pass->man->clasp; DefaultFunctionUnit* function = dynamic_cast(this->function); ContextQuery* queryContext = pass->queryContext; const std::list& specializations = pass->man->root->getFunctionVariants(calleeName); //if no specializations registered - check external function if (specializations.size()==0){ llvm::Function* external = llvm->layerExtern->lookupFunction(calleeName); + llvm::outs() << "Debug/External function: " << calleeName; + external->getType()->print(llvm::outs(), true); + llvm::outs() << "\n"; + return new CallStatementRaw(external, llvm); } //no decisions required if (specializations.size()==1){ if (!specializations.front()->guardContext.isValid()) { return new CallStatementRaw( pass->getFunctionUnit(specializations.front())->compile(), llvm); } } //TODO move dictSpecialization over to a separate function in order to perform cache, etc. //prepare specializations dictionary std::map dictSpecializations; boost::optional variantDefault; boost::optional variant; for(const ManagedFnPtr& f: specializations){ const Expression& guard = f->guardContext; //default case: if (!guard.isValid()){ variantDefault = f; continue; } assert(dictSpecializations.emplace(guard, f).second && "Found several identical specializations"); } //check static context ScopePacked scopeCaller = clasp->pack(this->scope); const string atomSpecialization = "specialization"; const Expression topicSpecialization(Operator::CALL, {(Atom(string(atomSpecialization))), (Atom(string(calleeName))), (Atom(scopeCaller))}); const Decisions& decisions = queryContext->getFinalDecisions(scopeCaller); if (decisions.count(topicSpecialization)){ variant = dictSpecializations.at(decisions.at(topicSpecialization)); } //TODO check only demand for this particular topic. size_t sizeDemand = function->contextCompiler.getFunctionDemandSize(); //decision made if static context found or no late context exists(and there is default variant) bool flagHasStaticDecision = variant || (variantDefault && !sizeDemand); //if no late context exists if (flagHasStaticDecision) { FunctionUnit* calleeUnit = pass->getFunctionUnit(variant? *variant: *variantDefault); //inlining possible based on static decision only // if (calleeUnit->isInline()) { // return new CallStatementInline(function, calleeUnit); // } return new CallStatementRaw(calleeUnit->compile(), llvm); } //require default variant if no static decision made assert(variantDefault); llvm::Function* functionVariantDefault = this->pass->getFunctionUnit(*variantDefault)->compile(); llvm::Value* resultFn = function->contextCompiler.findFunction(calleeName, functionVariantDefault, scopeCaller); llvm::PointerType *resultPTy = cast(resultFn->getType()); llvm::FunctionType *resultFTy = cast(resultPTy->getElementType()); return new CallStatementRaw(resultFn, resultFTy, llvm); } //DISABLEDFEATURE transformations // if (pass->transformations->isAcceptable(expr)){ // return pass->transformations->transform(expr, result, ctx); // } llvm::Value* BasicCodeScopeUnit::process(const Expression& expr, const std::string& hintVarDecl){ #define DEFAULT(x) (hintVarDecl.empty()? x: hintVarDecl) llvm::Value *left; llvm::Value *right; LLVMLayer& l = *pass->man->llvm; xreate::compilation::Advanced instructions = xreate::compilation::Advanced({this, function, pass}); switch (expr.op) { case Operator::ADD: case Operator::SUB: case Operator::MUL: case Operator::DIV: case Operator::EQU: case Operator::LSS: case Operator::GTR: case Operator::NE: case Operator::LSE: case Operator::GTE: assert(expr.__state == Expression::COMPOUND); assert(expr.operands.size() == 2); left = process(expr.operands[0]); right = process(expr.operands[1]); //SECTIONTAG types/convert binary operation right = doAutomaticTypeConversion(right, left->getType(), l.builder); break; default:; } switch (expr.op) { - case Operator::ADD: + case Operator::ADD:{ + llvm::Value* resultAdd = PointerArithmetic::add(left, right, {this, function, pass}, DEFAULT("tmp_add")); + if (resultAdd) {return resultAdd;} + return l.builder.CreateAdd(left, right, DEFAULT("tmp_add")); break; + } case Operator::SUB: return l.builder.CreateSub(left, right, DEFAULT("tmp_sub")); break; case Operator::MUL: return l.builder.CreateMul(left, right, DEFAULT("tmp_mul")); break; case Operator::DIV: return l.builder.CreateSDiv(left, right, DEFAULT("tmp_div")); break; case Operator::EQU: if (left->getType()->isIntegerTy()) return l.builder.CreateICmpEQ(left, right, DEFAULT("tmp_equ")); if (left->getType()->isFloatingPointTy()) return l.builder.CreateFCmpOEQ(left, right, DEFAULT("tmp_equ")); break; case Operator::NE: return l.builder.CreateICmpNE(left, right, DEFAULT("tmp_ne")); break; case Operator::LSS: return l.builder.CreateICmpSLT(left, right, DEFAULT("tmp_lss")); break; case Operator::LSE: return l.builder.CreateICmpSLE(left, right, DEFAULT("tmp_lse")); break; case Operator::GTR: return l.builder.CreateICmpSGT(left, right, DEFAULT("tmp_gtr")); break; case Operator::GTE: return l.builder.CreateICmpSGE(left, right, DEFAULT("tmp_gte")); break; case Operator::NEG: left = process(expr.operands[0]); return l.builder.CreateNeg(left, DEFAULT("tmp_neg")); break; case Operator::CALL: { assert(expr.__state == Expression::COMPOUND); std::string nameCallee = expr.getValueString(); shared_ptr callee(findFunction(nameCallee)); //prepare arguments std::vector args; args.reserve(expr.operands.size()); std::transform(expr.operands.begin(), expr.operands.end(), std::inserter(args, args.end()), [this](const Expression &operand) { return process(operand); } ); ScopePacked outerScopeId = pass->man->clasp->pack(this->scope); //TASK a) refactor CALL/ADHOC/find function //SECTIONTAG late-context propagation arg size_t calleeDemandSize = pass->queryContext->getFunctionDemand(nameCallee).size(); if (calleeDemandSize){ DefaultFunctionUnit* function = dynamic_cast(this->function); llvm::Value* argLateContext = function->contextCompiler.compileContextArgument(nameCallee, outerScopeId); args.push_back(argLateContext); } return (*callee)(move(args), DEFAULT("res_"+nameCallee)); } case Operator::IF: { return instructions.compileIf(expr, DEFAULT("tmp_if")); } case Operator::SWITCH: { return instructions.compileSwitch(expr, DEFAULT("tmp_switch")); } case Operator::LOOP_CONTEXT: { assert(false); return nullptr; //return instructions.compileLoopContext(expr, DEFAULT("tmp_loop")); } case Operator::LOGIC_AND: { assert(expr.operands.size() == 1); return process (expr.operands[0]); } case Operator::LIST: { return instructions.compileListAsSolidArray(expr, DEFAULT("tmp_list")); }; case Operator::LIST_RANGE: { assert(false); //no compilation phase for a range list // return InstructionList(this).compileConstantArray(expr, l, hintRetVar); }; case Operator::LIST_NAMED: { typedef Expanded ExpandedType; ExpandedType tyRaw = l.ast->expandType(expr.type); const std::vector fields = (tyRaw.get().__operator == TypeOperator::CUSTOM)? l.layerExtern->getStructFields(l.layerExtern->lookupType(tyRaw.get().__valueCustom)) : tyRaw.get().fields; std::map indexFields; for(size_t i=0, size = fields.size(); i(l.toLLVMType(tyRaw)); llvm::Value* record = llvm::UndefValue::get(tyRecord); for (size_t i=0; igetElementType(fieldId); // result = llvm::UndefValue::get(tyNullField); // // } else { result = process(operand); // } assert (result); record = l.builder.CreateInsertValue(record, result, llvm::ArrayRef({fieldId})); } return record; }; case Operator::MAP: { assert(expr.blocks.size()); return instructions.compileMapSolidOutput(expr, DEFAULT("map")); }; case Operator::FOLD: { return instructions.compileFold(expr, DEFAULT("fold")); }; case Operator::FOLD_INF: { return instructions.compileFoldInf(expr, DEFAULT("fold")); }; case Operator::INDEX: { //TODO allow multiindex assert(expr.operands.size()==2); assert(expr.operands[0].__state == Expression::IDENT); const std::string& hintIdent= expr.operands[0].getValueString(); Symbol s = Attachments::get(expr.operands[0]); const ExpandedType& t2 = pass->man->root->expandType(CodeScope::getDeclaration(s).type); llvm::Value* aggr = processSymbol(s, hintIdent); switch (t2.get().__operator) { case TypeOperator::STRUCT: case TypeOperator::CUSTOM: { const Expression& idx = expr.operands.at(1); assert(idx.__state == Expression::STRING); std::string idxField = idx.getValueString(); return instructions.compileStructIndex(aggr, t2, idxField); }; case TypeOperator::ARRAY: { std::vector indexes; std::transform(++expr.operands.begin(), expr.operands.end(), std::inserter(indexes, indexes.end()), [this] (const Expression& op){ return process(op); } ); return instructions.compileArrayIndex(aggr, indexes, DEFAULT(string("el_") + hintIdent)); }; default: assert(false); } }; //SECTIONTAG adhoc actual compilation //TODO a) make sure that it's correct: function->adhocImplementation built for Entry scope and used in another scope case Operator::ADHOC: { DefaultFunctionUnit* function = dynamic_cast(this->function); assert(function->adhocImplementation && "Adhoc implementation not found"); const Expression& comm = AdhocExpression(expr).getCommand(); CodeScope* scope = function->adhocImplementation->getCommandImplementation(comm); AbstractCodeScopeUnit* unitScope = function->getScopeUnit(scope); //SECTIONTAG types/convert ADHOC ret convertation llvm::Type* resultTy = l.toLLVMType( pass->man->root->expandType(function->adhocImplementation->getResultType())); return doAutomaticTypeConversion(unitScope->compile(), resultTy, l.builder); }; case Operator::CALL_INTRINSIC:{ const std::string op = expr.getValueString(); if (op == "copy") { llvm::Value* result = process(expr.getOperands().at(0)); auto decoratorVersions = Decorators::getInterface(this); llvm::Value* storage = decoratorVersions->processIntrinsicInit(result->getType()); decoratorVersions->processIntrinsicCopy(result, storage); return l.builder.CreateLoad(storage, hintVarDecl); } assert(false && "undefined intrinsic"); } case Operator::NONE: assert(expr.__state != Expression::COMPOUND); switch (expr.__state) { case Expression::IDENT: { Symbol s = Attachments::get(expr); return processSymbol(s, expr.getValueString()); } case Expression::NUMBER: { llvm::Type* typConst; if (expr.type.isValid()){ typConst = l.toLLVMType(pass->man->root->expandType(expr.type)); } else { typConst = llvm::Type::getInt32Ty(llvm::getGlobalContext()); } int literal = expr.getValueDouble(); return llvm::ConstantInt::get(typConst, literal); } case Expression::STRING: { return instructions.compileConstantStringAsPChar(expr.getValueString(), DEFAULT("tmp_str")); }; case Expression::VARIANT: { const ExpandedType& typVariant = pass->man->root->expandType(expr.type); llvm::Type* typRaw = l.toLLVMType(typVariant); int value = expr.getValueDouble(); return llvm::ConstantInt::get(typRaw, value); } default: { break; } }; break; default: break; } assert(false); return 0; } llvm::Value* BasicCodeScopeUnit::compile(const std::string& hintBlockDecl){ if (!hintBlockDecl.empty()) { llvm::BasicBlock *block = llvm::BasicBlock::Create(llvm::getGlobalContext(), hintBlockDecl, function->raw); pass->man->llvm->builder.SetInsertPoint(block); } Symbol symbScope = Symbol{ScopedSymbol::RetSymbol, scope}; return processSymbol(symbScope); } +AbstractCodeScopeUnit::~AbstractCodeScopeUnit() +{} + +FunctionUnit::~FunctionUnit() +{} + llvm::Function* FunctionUnit::compile(){ if (raw != nullptr) return raw; LLVMLayer* llvm = pass->man->llvm; llvm::IRBuilder<>& builder = llvm->builder; string&& functionName = prepareName(); std::vector&& types = prepareArguments(); llvm::Type* expectedResultType = prepareResult(); llvm::FunctionType *ft = llvm::FunctionType::get(expectedResultType, types, false); raw = llvm::cast(llvm->module->getOrInsertFunction(functionName, ft)); prepareBindings(); const std::string&blockName = "entry"; llvm::BasicBlock* blockCurrent = builder.GetInsertBlock(); llvm::Value* result =getScopeUnit(function->__entry)->compile(blockName); assert(result); //SECTIONTAG types/convert function ret value builder.CreateRet(doAutomaticTypeConversion(result, expectedResultType, llvm->builder)); if (blockCurrent){ builder.SetInsertPoint(blockCurrent); } llvm->moveToGarbage(ft); return raw; } AbstractCodeScopeUnit* FunctionUnit::getScopeUnit(CodeScope* scope){ - if (!scopes.count(scope)){ - AbstractCodeScopeUnit* unit = new DefaultScopeUnit(scope, this, pass); - scopes.emplace(scope, std::unique_ptr(unit)); + if (__scopes.count(scope)) { + auto result = __scopes.at(scope).lock(); + + if (result){ + return result.get(); + } } - return scopes.at(scope).get(); -} + std::shared_ptr unit(new DefaultScopeUnit(scope, this, pass)); -AbstractCodeScopeUnit* -FunctionUnit::getEntry(){ - return getScopeUnit(function->getEntryScope()); + if (scope->__parent != nullptr){ + auto parentUnit = Decorators::getInterface(getScopeUnit(scope->__parent)); + parentUnit->registerChildScope(unit); + + } else { + __orphanedScopes.push_back(unit); + } + + if (!__scopes.emplace(scope, unit).second){ + __scopes[scope] = unit; + } + + return unit.get(); } AbstractCodeScopeUnit* FunctionUnit::getScopeUnit(ManagedScpPtr scope){ return getScopeUnit(&*scope); } +AbstractCodeScopeUnit* +FunctionUnit::getEntry(){ + return getScopeUnit(function->getEntryScope()); +} + + + FunctionUnit* CompilePass::getFunctionUnit(const ManagedFnPtr& function){ unsigned int id = function.id(); if (!functions.count(id)){ FunctionUnit* unit = new DefaultFunctionUnit(function, this); functions.emplace(id, unit); return unit; } return functions.at(id); } void CompilePass::run(){ managerTransformations = new TransformationsManager(); targetInterpretation = new TargetInterpretation(this->man->root, this); queryContext = reinterpret_cast (man->clasp->getQuery(QueryId::ContextQuery)); //Find out main function; ClaspLayer::ModelFragment model = man->clasp->query(Config::get("function-entry")); assert(model && "Error: No entry function found"); assert(model->first != model->second && "Error: Ambiguous entry function"); string nameMain = std::get<0>(ClaspLayer::parse(model->first->second)); FunctionUnit* unitMain = getFunctionUnit(man->root->findFunction(nameMain)); entry = unitMain->compile(); } llvm::Function* CompilePass::getEntryFunction(){ assert(entry); return entry; } void CompilePass::prepareQueries(ClaspLayer* clasp){ clasp->registerQuery(new containers::Query(), QueryId::ContainersQuery); clasp->registerQuery(new ContextQuery(), QueryId::ContextQuery); -} \ No newline at end of file +} diff --git a/cpp/src/pass/compilepass.h b/cpp/src/pass/compilepass.h index 2c84988..24b666a 100644 --- a/cpp/src/pass/compilepass.h +++ b/cpp/src/pass/compilepass.h @@ -1,167 +1,168 @@ #ifndef COMPILEPASS_H #define COMPILEPASS_H #include "abstractpass.h" #include "llvm/IR/Function.h" namespace xreate { class AdhocScheme; class ClaspLayer; class ContextQuery; class LLVMLayer; } //namespace llvm { // class Function; // class Value; // class Type; //} namespace xreate { class CompilePass; namespace compilation { class AbstractCodeScopeUnit; class FunctionUnit; class TargetInterpretation; class TransformationsManager; struct Context{ AbstractCodeScopeUnit* scope; FunctionUnit* function; CompilePass* pass; }; class CallStatement { public: virtual llvm::Value* operator() (std::vector&& args, const std::string& hintDecl="") = 0; }; class CallStatementRaw: public CallStatement{ public: CallStatementRaw(llvm::Function* callee, LLVMLayer* l) : __callee(callee), __calleeTy(callee->getFunctionType()), llvm(l) {} CallStatementRaw(llvm::Value* callee, llvm::FunctionType* ty, LLVMLayer* l) : __callee(callee), __calleeTy(ty), llvm(l) {} llvm::Value* operator() (std::vector&& args, const std::string& hintDecl=""); private: llvm::Value* __callee; llvm::FunctionType* __calleeTy; LLVMLayer* llvm; }; class AbstractCodeScopeUnit{ public: CompilePass* const pass; FunctionUnit* const function; CodeScope* const scope; AbstractCodeScopeUnit(CodeScope* codeScope, FunctionUnit* f, CompilePass* compilePass); - ~AbstractCodeScopeUnit(){} + virtual ~AbstractCodeScopeUnit(); virtual llvm::Value* compile(const std::string& hintBlockDecl="")=0; virtual llvm::Value* processSymbol(const Symbol& s, std::string hintRetVar="")=0; virtual llvm::Value* process(const Expression& expr, const std::string& hintVarDecl="")=0; virtual void bindArg(llvm::Value* value, std::string&& alias)=0; virtual void bindArg(llvm::Value* value, const ScopedSymbol& s)=0; protected: virtual CallStatement* findFunction(const std::string& callee)=0; }; class BasicCodeScopeUnit: public AbstractCodeScopeUnit{ public: BasicCodeScopeUnit(CodeScope* codeScope, FunctionUnit* f, CompilePass* compilePass); - ~BasicCodeScopeUnit(){} llvm::Value* processSymbol(const Symbol& s, std::string hintRetVar=""); llvm::Value* process(const Expression& expr, const std::string& hintVarDecl=""); llvm::Value* compile(const std::string& hintBlockDecl=""); protected: CallStatement* findFunction(const std::string& callee); }; class IFunctionDecorator { protected: virtual std::string prepareName() = 0; virtual std::vector prepareArguments() = 0; virtual llvm::Type* prepareResult() = 0; virtual llvm::Function::arg_iterator prepareBindings() = 0; virtual ~IFunctionDecorator(){} }; class FunctionUnit: public IFunctionDecorator{ public: FunctionUnit(ManagedFnPtr f, CompilePass* p) : function(f), pass(p) {} + ~FunctionUnit(); llvm::Function* compile(); AbstractCodeScopeUnit* getEntry(); AbstractCodeScopeUnit* getScopeUnit(CodeScope* scope); AbstractCodeScopeUnit* getScopeUnit(ManagedScpPtr scope); ManagedFnPtr function; llvm::Function* raw = nullptr; protected: CompilePass* pass=nullptr; private: - std::map> scopes; + std::map> __scopes; + std::list> __orphanedScopes; }; class BasicFunctionDecorator: public FunctionUnit{ public: BasicFunctionDecorator(ManagedFnPtr f, CompilePass* p) : FunctionUnit(f, p) {} protected: std::string prepareName(); virtual std::vector prepareArguments(); virtual llvm::Type* prepareResult(); virtual llvm::Function::arg_iterator prepareBindings(); }; } // end of namespace `xreate::compilation` class CompilePass : public AbstractPass { friend class LateContextCompiler; friend class LateContextCompiler2; friend class compilation::BasicCodeScopeUnit; friend class compilation::FunctionUnit; public: compilation::TransformationsManager* managerTransformations; compilation::TargetInterpretation* targetInterpretation; CompilePass(PassManager* manager): AbstractPass(manager) {} compilation::FunctionUnit* getFunctionUnit(const ManagedFnPtr& function); void run() override; llvm::Function* getEntryFunction(); static void prepareQueries(ClaspLayer* clasp); private: //TODO free `functions` in destructor std::map functions; llvm::Function* entry = 0; ContextQuery* queryContext; }; } #endif // COMPILEPASS_H diff --git a/cpp/tests/dfa.cpp b/cpp/tests/dfa.cpp index f9a4fb8..c8bc714 100644 --- a/cpp/tests/dfa.cpp +++ b/cpp/tests/dfa.cpp @@ -1,12 +1,14 @@ /* * DFGtests.cpp * * Created on: Jul 23, 2015 * Author: pgess */ #include "passmanager.h" #include "pass/dfapass.h" #include "gtest/gtest.h" using namespace xreate; -using namespace std; \ No newline at end of file +using namespace std; + +//DEBT dfa tests: dfa scheme, dfa scheme + return value annoation (example: script/testpass/containers...) diff --git a/cpp/tests/interpretation.cpp b/cpp/tests/interpretation.cpp index 8d0ade4..62419e9 100644 --- a/cpp/tests/interpretation.cpp +++ b/cpp/tests/interpretation.cpp @@ -1,369 +1,381 @@ #include "attachments.h" using namespace xreate; #include "passmanager.h" #include "compilation/targetinterpretation.h" #include "gtest/gtest.h" #include "boost/scoped_ptr.hpp" #define private public #include "Parser.h" #include "pass/interpretationpass.h" using namespace xreate; using namespace xreate::compilation; TEST(Interpretation, Analysis_StatementIF_1){ PassManager* man = PassManager::prepareForCode( R"Code( main = function::bool { x = "a":: string. y = if (x=="b"):: bool; interpretation(force) { true } else { false }. y } )Code" ); InterpretationPass* pass = new InterpretationPass(man); pass->run(); CodeScope* scopeEntry = man->root->findFunction("main")->getEntryScope(); Symbol symbolY{scopeEntry->getSymbol("y"), scopeEntry}; InterpretationData& dataSymbolY = Attachments::get(symbolY); ASSERT_EQ(INTR_ONLY, dataSymbolY.resolution); } TEST(Interpretation, Compilation_StatementIF_1){ PassManager* man = PassManager::prepareForCode( R"Code( main = function::int; entry { x = "a":: string. y = if (x=="b"):: string; interpretation(force) { 1 } else { 0 }. y } )Code" ); man->runWithoutCompilation(); InterpretationPass* pass; if (man->isPassRegistered(PassId::InterpretationPass)){ pass = (InterpretationPass*) man->getPassById(PassId::InterpretationPass); } else { pass = new InterpretationPass(man); pass->run(); } int (*main)() = (int (*)())man->run(); int result = main(); ASSERT_EQ(0, result); } TEST(Interpretation, Analysis_StatementIF_InterpretCondition_1){ PassManager* man = PassManager::prepareForCode( R"Code( main = function(x:: int):: int { comm= "inc":: string; interpretation(force). y = if (comm == "inc")::int {x+1} else {x}. y } )Code" ); InterpretationPass* pass = new InterpretationPass(man); pass->run(); CodeScope* scopeEntry = man->root->findFunction("main")->getEntryScope(); Symbol symbolY{scopeEntry->getSymbol("y"), scopeEntry}; InterpretationData& dataSymbolY = Attachments::get(symbolY); ASSERT_EQ(CMPL_ONLY, dataSymbolY.resolution); ASSERT_EQ(IF_INTERPRET_CONDITION, dataSymbolY.op); } TEST(Interpretation, Compilation_StatementIF_InterpretCondition_1){ PassManager* man = PassManager::prepareForCode( R"Code( main = function(x:: int):: int; entry { comm= "inc":: string; interpretation(force). y = if (comm == "inc")::int {x+1} else {x}. y } )Code" ); man->runWithoutCompilation(); InterpretationPass* pass; if (man->isPassRegistered(PassId::InterpretationPass)){ pass = (InterpretationPass*) man->getPassById(PassId::InterpretationPass); } else { pass = new InterpretationPass(man); pass->run(); } int (*main)(int) = (int (*)(int))man->run(); int result = main(1); ASSERT_EQ(2, result); } TEST(Interpretation, Compilation_StatementFOLD_INTERPRET_INPUT_1){ PassManager* man = PassManager::prepareForCode( R"Code( main = function(x:: int):: int; entry { commands = ["inc", "double", "dec"]:: [string]; interpretation(force). loop fold(commands->comm::string, x->operand):: int{ switch(comm)::int case ("inc"){ operand + 1 } case ("dec"){ operand - 1 } case ("double"){ operand * 2 } } } )Code" ); man->runWithoutCompilation(); InterpretationPass* pass; if (man->isPassRegistered(PassId::InterpretationPass)){ pass = (InterpretationPass*) man->getPassById(PassId::InterpretationPass); } else { pass = new InterpretationPass(man); pass->run(); } const ManagedFnPtr& funcMain = man->root->findFunction("main"); InterpretationData& dataBody = Attachments::get(funcMain); ASSERT_EQ(FOLD_INTERPRET_INPUT, dataBody.op); int (*main)(int) = (int (*)(int))man->run(); int result = main(10); ASSERT_EQ(21, result); } TEST(Interpretation, StatementCall_RecursionNo_1){ PassManager* man = PassManager::prepareForCode( R"Code( unwrap = function(data::undef, keys::undef):: undef; interpretation(force){ loop fold(keys->key::string, data->a):: undef { a[key] } } start = function::num; entry{ result = unwrap( { a = { b = { c = "core" } } }, ["a", "b", "c"])::undef. result == "core" } )Code" ); man->runWithoutCompilation(); InterpretationPass* pass; if (man->isPassRegistered(PassId::InterpretationPass)){ pass = (InterpretationPass*) man->getPassById(PassId::InterpretationPass); } else { pass = new InterpretationPass(man); pass->run(); } int (*main)() = (int (*)())man->run(); int result = main(); ASSERT_EQ(1, result); } TEST(Interpretation, StatementCall_RecursionDirect_1){ PassManager* man = PassManager::prepareForCode( R"Code( unwrap = function(data:: X):: Y { if (data[0] == "a")::Y {0} else {unwrap(data[0])} } entry = function:: i8; entry { unwrap([[[["a"]]]]):: i8; interpretation(force) } )Code" ); man->runWithoutCompilation(); InterpretationPass* pass; if (man->isPassRegistered(PassId::InterpretationPass)){ pass = (InterpretationPass*) man->getPassById(PassId::InterpretationPass); } else { pass = new InterpretationPass(man); pass->run(); } InterpretationResolution resolutionActual = pass->process(man->root->findFunction("unwrap")); ASSERT_EQ(ANY, resolutionActual); int (*main)() = (int (*)())man->run(); int result = main(); ASSERT_EQ(0, result); } TEST(Interpretation, StatementCall_RecursionIndirect_1){ PassManager* man = PassManager::prepareForCode( R"Code( funcA = function(data:: X):: Y { if (data == "a")::Y {0} else {funcB(data)} } funcB = function(data:: X):: Y { if (data == "b")::Y {1} else {funcA(data)} } entry = function:: i8; entry { funcA(""):: i8; interpretation(force) } )Code" ); InterpretationPass* pass = new InterpretationPass(man); ASSERT_DEATH(pass->run(), "Indirect recursion detected"); } TEST(Interpretation, PartialIntr_1){ PassManager* man = PassManager::prepareForCode( R"Code( evaluate= function(argument:: num, code:: string; interpretation(force)):: num { switch(code)::int case ("inc") {argument + 1} case ("dec") {argument - 1} case ("double") {argument * 2} } main = function::int; entry { commands= ["inc", "double", "dec"]:: [string]; interpretation(force). loop fold(commands->comm::string, 10->operand):: int{ evaluate(operand, comm) } } )Code" ); InterpretationPass* pass = new InterpretationPass(man); pass->run(); ManagedFnPtr fnEvaluate = man->root->findFunction("evaluate"); InterpretationResolution resFnEvaluate= pass->process(fnEvaluate); ASSERT_EQ(CMPL_ONLY, resFnEvaluate); ASSERT_TRUE(FunctionInterpretationHelper::needPartialInterpretation(fnEvaluate)); const Expression& exprLoop = man->root->findFunction("main")->__entry->getBody(); Symbol symbCallEv{{0, VERSION_NONE}, exprLoop.blocks.front()}; InterpretationData dataCallEv = Attachments::get(symbCallEv); ASSERT_EQ(CMPL_ONLY, dataCallEv.resolution); ASSERT_EQ(CALL_INTERPRET_PARTIAL, dataCallEv.op); } TEST(Interpretation, Compilation_PartialIntr_2){ PassManager* man = PassManager::prepareForCode( R"Code( evaluate= function(argument:: num, code:: string; interpretation(force)):: num { switch(code)::int case ("inc") {argument + 1} case ("dec") {argument - 1} case ("double") {argument * 2} case default {argument} } main = function::int; entry { commands= ["inc", "double", "dec"]:: [string]; interpretation(force). loop fold(commands->comm::string, 10->operand):: int{ evaluate(operand, comm) } } )Code" ); man->runWithoutCompilation(); if (!man->isPassRegistered(PassId::InterpretationPass)){ InterpretationPass* pass = new InterpretationPass(man); pass->run(); } int (*main)() = (int (*)())man->run(); int result = main(); ASSERT_EQ(21, result); } TEST(Interpretation, PartialIntr_3){ PassManager* man = PassManager::prepareForCode( R"Code( Command= type variant (INC, DEC, DOUBLE). evaluate= function(argument:: num, code:: Command; interpretation(force)):: num { switch(code)::int case (INC) {argument + 1} case (DEC) {argument - 1} case (DOUBLE) {argument * 2} case default {argument} } main = function::int; entry { commands= [INC, DOUBLE, DEC]:: [Command]; interpretation(force). loop fold(commands->comm::Command, 10->operand):: int{ evaluate(operand, comm) } } )Code" ); man->runWithoutCompilation(); if (!man->isPassRegistered(PassId::InterpretationPass)){ InterpretationPass* pass = new InterpretationPass(man); pass->run(); } int (*main)() = (int (*)())man->run(); int result = main(); ASSERT_EQ(21, result); } +TEST(InterpretationExamples, Regexp1){ + FILE* input = fopen("scripts/dsl/regexp.xreate","r"); + assert(input != nullptr); + + std::unique_ptr man(PassManager::prepareForCode(input)); + + int (*main)() = (int (*)())man->run(); + int result = main(); + + ASSERT_EQ(9, result); +} + //TOTEST call indirect recursion(w/o tags) -//TASK implement and test Loop Inf (fix acc types in coco grammar) \ No newline at end of file +//TASk implement and test Loop Inf (fix acc types in coco grammar)