diff --git a/cpp/src/analysis/typeinference.cpp b/cpp/src/analysis/typeinference.cpp index 564650c..53888e3 100644 --- a/cpp/src/analysis/typeinference.cpp +++ b/cpp/src/analysis/typeinference.cpp @@ -1,55 +1,55 @@ /* * typeinference.cpp * * Author: pgess * Created on April 16, 2017, 10:13 AM */ #include "typeinference.h" #include "llvmlayer.h" #include "llvm/IR/Function.h" #include "llvm/IR/DerivedTypes.h" -namespace xreate {namespace analysis {namespace typeinference { +namespace xreate {namespace typeinference { llvm::Value* doAutomaticTypeConversion(llvm::Value* source, llvm::Type* tyTarget, llvm::IRBuilder<>& builder){ if (tyTarget->isIntegerTy() && source->getType()->isIntegerTy()) { llvm::IntegerType* tyTargetInt = llvm::dyn_cast(tyTarget); llvm::IntegerType* tySourceInt = llvm::dyn_cast(source->getType()); if (tyTargetInt->getBitWidth() < tySourceInt->getBitWidth()){ return builder.CreateCast(llvm::Instruction::Trunc, source, tyTarget); } if (tyTargetInt->getBitWidth() > tySourceInt->getBitWidth()){ return builder.CreateCast(llvm::Instruction::SExt, source, tyTarget); } } if (source->getType()->isIntegerTy() && tyTarget->isFloatingPointTy()){ return builder.CreateCast(llvm::Instruction::SIToFP, source, tyTarget); } return source; } ExpandedType getType(const Expression& expression, const AST& ast){ if (expression.type.isValid()){ return ast.expandType(expression.type); } if (expression.__state == Expression::IDENT){ Symbol s = Attachments::get(expression); return getType(CodeScope::getDeclaration(s), ast); } assert(false && "Type can't be determined for an expression"); } -} } } \ No newline at end of file +} } //end of namespace xreate::typeinference \ No newline at end of file diff --git a/cpp/src/analysis/typeinference.h b/cpp/src/analysis/typeinference.h index 621a5a7..a35e33e 100644 --- a/cpp/src/analysis/typeinference.h +++ b/cpp/src/analysis/typeinference.h @@ -1,27 +1,27 @@ /* * File: typeinference.h * Author: pgess * * Created on April 16, 2017, 10:17 AM */ #ifndef TYPEINFERENCE_H #define TYPEINFERENCE_H #include "ast.h" #include "llvm/IR/IRBuilder.h" namespace llvm { class Value; class Type; }; -namespace xreate {namespace analysis {namespace typeinference { +namespace xreate { namespace typeinference { llvm::Value* doAutomaticTypeConversion(llvm::Value* source, llvm::Type* tyTarget, llvm::IRBuilder<>& builder); ExpandedType getType(const Expression& expression, const AST& ast); -} } } //namespace xreate +} }//namespace xreate::typeinference #endif /* TYPEINFERENCE_H */ diff --git a/cpp/src/ast.cpp b/cpp/src/ast.cpp index d11b636..01b0842 100644 --- a/cpp/src/ast.cpp +++ b/cpp/src/ast.cpp @@ -1,926 +1,926 @@ #include "ast.h" #include "ExternLayer.h" #include "analysis/typeinference.h" #include #include namespace std{ std::size_t hash::operator()(xreate::ScopedSymbol const& s) const {return s.id ^ (s.version << 2);} bool equal_to::operator()(const xreate::ScopedSymbol& __x, const xreate::ScopedSymbol& __y) const { return __x.id == __y.id && __x.version == __y.version; } size_t hash::operator()(xreate::Symbol const& s) const{ return hash()(s.identifier) ^ ((long int) s.scope << 1); } bool equal_to::operator()(const xreate::Symbol& __x, const xreate::Symbol& __y) const{ return __x == __y; }; } using namespace std; namespace xreate { Atom::Atom(const std::wstring& value) { __value = wstring_to_utf8(value); } Atom::Atom(std::string && name) : __value(name) {} const std::string& Atom::get() const { return __value; } Atom::Atom(wchar_t* value) { //DEBT reconsider number literal recognition __value = wcstol(value, 0, 10); } Atom::Atom(int value) : __value(value) { } double Atom::get()const { return __value; } Atom::Atom(const std::wstring& value) { assert(value.size() >=2); __value = wstring_to_utf8(value.substr(1, value.size() -2)); } const std::string& Atom::get() const { return __value; } class ExpressionHints { public: static bool isStringValueValid(const Expression& e) { switch (e.__state) { case Expression::INVALID: assert(false); case Expression::IDENT: case Expression::STRING: return true; case Expression::NUMBER: case Expression::BINDING: case Expression::VARIANT: return false; case Expression::COMPOUND: { switch (e.op) { case Operator::CALL: return true; default: return false; } } } return false; } static bool isDoubleValueValid(const Expression& e) { switch (e.__state) { case Expression::NUMBER: case Expression::VARIANT: return true; case Expression::INVALID: assert(false); case Expression::IDENT: case Expression::STRING: case Expression::COMPOUND: case Expression::BINDING: return false; } return false; } }; class TypesResolver { private: const AST* ast; std::map scope; std::map signatures; ExpandedType expandType(const TypeAnnotation &t, const std::vector &args = std::vector()) { return TypesResolver(ast, scope, signatures)(t, args); } std::vector expandOperands(const std::vector& operands) { std::vector pack; pack.reserve(operands.size()); std::transform(operands.begin(), operands.end(), std::inserter(pack, pack.end()), [this](const TypeAnnotation & t) { return expandType(t); }); return pack; } public: TypesResolver(const AST* root, const std::map& scopeOuter = std::map(), std::map signaturesOuter = std::map()) : ast(root), scope(scopeOuter), signatures(signaturesOuter) { } ExpandedType operator()(const TypeAnnotation &t, const std::vector &args = std::vector()) { //assert(args.size() == t.bindings.size()); // invalid number of arguments for (size_t i = 0; i < args.size(); ++i) { scope[t.bindings.at(i)] = args.at(i); } switch (t.__operator) { case TypeOperator::ARRAY: { assert(t.__operands.size() == 1); Expanded elTy = expandType(t.__operands.at(0)); return ExpandedType(TypeAnnotation(tag_array, elTy, 0)); } case TypeOperator::STRUCT: { assert(t.__operands.size()); std::vector&& packOperands = expandOperands(t.__operands); auto typNew = TypeAnnotation(TypeOperator::STRUCT, move(packOperands)); typNew.fields = t.fields; return ExpandedType(move(typNew)); }; case TypeOperator::CALL: { std::string alias = t.__valueCustom; //find in local scope: TypeAnnotation ty; if (scope.count(alias)) { ty = scope.at(alias); } else if (ast->__indexTypeAliases.count(alias)) { ty = ast->__indexTypeAliases.at(alias); } else { assert(false && "Undefined or external type"); } std::vector&& operands = expandOperands(t.__operands); TypeAnnotation signature(TypeOperator::CALL, move(operands)); signature.__valueCustom = alias; if (signatures.count(signature)) { auto link = TypeAnnotation(TypeOperator::LINK,{}); link.conjuctionId = signatures.at(signature); return ExpandedType(move(link)); } int cid = signatures.size(); signatures[signature] = cid; TypeAnnotation tyResult = expandType(ty, operands); tyResult.conjuctionId = cid; return ExpandedType(move(tyResult)); }; case TypeOperator::CUSTOM: { std::string alias = t.__valueCustom; /* if (signatures.count(alias)) { return ExpandedType(TypeAnnotation(TypeOperator::LINK, {t})); } signatures[alias].emplace(t); */ //find in local scope: if (scope.count(alias)) { return expandType(scope.at(alias)); } // find in general scope: if (ast->__indexTypeAliases.count(alias)) { return expandType(ast->__indexTypeAliases.at(t.__valueCustom)); } //if type is unknown keep it as is. return ExpandedType(TypeAnnotation(t)); }; case TypeOperator::ACCESS: { std::string alias = t.__valueCustom; ExpandedType tyAlias = ExpandedType(TypeAnnotation()); //find in local scope: if (scope.count(alias)) { tyAlias = expandType(scope.at(alias)); //find in global scope: } else if ((ast->__indexTypeAliases.count(alias))) { tyAlias = expandType(ast->__indexTypeAliases.at(alias)); } else { assert(false && "Undefined or external type"); } assert(tyAlias->__operator == TypeOperator::STRUCT); for (const string& field : t.fields) { auto fieldIt = std::find(tyAlias->fields.begin(), tyAlias->fields.end(), field); assert(fieldIt != tyAlias->fields.end() && "unknown field"); int fieldId = fieldIt - tyAlias->fields.begin(); tyAlias = expandType(tyAlias->__operands.at(fieldId)); } return tyAlias; } case TypeOperator::VARIANT: { return ExpandedType(TypeAnnotation(t)); } case TypeOperator::NONE: { return ExpandedType(TypeAnnotation(t)); } default: assert(false); } assert(false); return ExpandedType(TypeAnnotation()); } }; TypeAnnotation::TypeAnnotation() : __operator(TypeOperator::NONE), __value(TypePrimitive::Invalid) {} TypeAnnotation::TypeAnnotation(TypePrimitive typ) : __value(typ) { } TypeAnnotation::TypeAnnotation(TypeOperator op, std::initializer_list operands) : __operator(op), __operands(operands) { } TypeAnnotation::TypeAnnotation(TypeOperator op, std::vector&& operands) : __operator(op), __operands(operands) { } TypeAnnotation::TypeAnnotation(llvm_array_tag, TypeAnnotation typ, int size) : TypeAnnotation(TypeOperator::ARRAY,{typ}) { __size = size; } bool TypeAnnotation::isValid() const{ return !(__value == TypePrimitive::Invalid && __operator == TypeOperator::NONE); } bool TypeAnnotation::operator<(const TypeAnnotation& t) const { if (__operator != t.__operator) return __operator < t.__operator; if (__operator == TypeOperator::NONE) return __value < t.__value; if (__operator == TypeOperator::CALL || __operator == TypeOperator::CUSTOM || __operator == TypeOperator::ACCESS) { if (__valueCustom != t.__valueCustom) return __valueCustom < t.__valueCustom; } return __operands < t.__operands; } /* TypeAnnotation (struct_tag, std::initializer_list) {} */ void TypeAnnotation::addBindings(std::vector>&& params) { bindings.reserve(bindings.size() + params.size()); std::transform(params.begin(), params.end(), std::inserter(bindings, bindings.end()), [](const Atom& ident) { return ident.get(); }); } void TypeAnnotation::addFields(std::vector>&& listFields) { fields.reserve(fields.size() + listFields.size()); std::transform(listFields.begin(), listFields.end(), std::inserter(fields, fields.end()), [](const Atom& ident) { return ident.get(); }); } unsigned int Expression::nextVacantId = 0; Expression::Expression(const Atom& number) : Expression() { __state=NUMBER; op=Operator::NONE; __valueD=number.get(); } Expression::Expression(const Atom& a) : Expression(){ __state=STRING; op=Operator::NONE; __valueS=a.get(); } Expression::Expression(const Atom &ident) : Expression() { __state=IDENT; op=Operator::NONE; __valueS=ident.get(); } Expression::Expression(const Operator &oprt, std::initializer_list params) : Expression() { __state=COMPOUND; op=oprt; if (op == Operator::CALL) { assert(params.size() > 0); Expression arg = *params.begin(); assert(arg.__state == Expression::IDENT); __valueS = std::move(arg.__valueS); operands.insert(operands.end(), params.begin() + 1, params.end()); return; } operands.insert(operands.end(), params.begin(), params.end()); } void Expression::setOp(Operator oprt) { op = oprt; switch (op) { case Operator::NONE: __state = INVALID; break; default: __state = COMPOUND; break; } } void Expression::addArg(Expression &&arg) { operands.push_back(arg); } void Expression::addTags(const std::list tags) const{ std::transform(tags.begin(), tags.end(), std::inserter(this->tags, this->tags.end()), [](const Expression& tag){ return make_pair(tag.getValueString(), tag); }); } void Expression::addBindings(std::initializer_list> params) { addBindings(params.begin(), params.end()); } void Expression::bindType(TypeAnnotation t) { type = move(t); } void Expression::addBlock(ManagedScpPtr scope) { blocks.push_back(scope.operator->()); } const std::vector& Expression::getOperands() const { return operands; } double Expression::getValueDouble() const { return __valueD; } const std::string& Expression::getValueString() const { return __valueS; } void Expression::setValue(const Atom&& v) { __valueS = v.get(); } void Expression::setValueDouble(double value) { __valueD = value; } bool Expression::isValid() const { return (__state != INVALID); } bool Expression::isDefined() const { return (__state != BINDING); } Expression::Expression() : __state(INVALID), op(Operator::NONE), id(nextVacantId++) { } namespace details { namespace incomplete { AST::AST() { Attachments::init(); Attachments::init(); } void AST::addInterfaceData(const ASTInterface& interface, Expression&& data) { __interfacesData.emplace(interface, move(data)); } void AST::addDFAData(Expression &&data) { __dfadata.push_back(data); } void AST::addExternData(ExternData &&data) { __externdata.insert(__externdata.end(), data.entries.begin(), data.entries.end()); } void AST::add(Function* f) { __functions.push_back(f); __indexFunctions.emplace(f->getName(), __functions.size() - 1); } void AST::add(MetaRuleAbstract *r) { __rules.push_back(r); } void AST::add(TypeAnnotation t, Atom alias) { if (t.__operator == TypeOperator::VARIANT) { for (int i = 0, size = t.fields.size(); i < size; ++i) { __dictVariants.emplace(t.fields[i], make_pair(t, i)); } } __indexTypeAliases.emplace(alias.get(), move(t)); } ManagedScpPtr AST::add(CodeScope* scope) { this->__scopes.push_back(scope); return ManagedScpPtr(this->__scopes.size() - 1, &this->__scopes); } std::string AST::getModuleName() { const std::string name = "moduleTest"; return name; } ManagedPtr AST::findFunction(const std::string& name) { int count = __indexFunctions.count(name); if (!count) { return ManagedFnPtr::Invalid(); } assert(count == 1); auto range = __indexFunctions.equal_range(name); return ManagedPtr(range.first->second, &this->__functions); } std::list AST::getAllFunctions() const { const size_t size = __functions.size(); std::list result; for (size_t i = 0; i < size; ++i) { result.push_back(ManagedFnPtr(i, &this->__functions)); } return result; } //TASK select default specializations std::list AST::getFunctionVariants(const std::string& name) const { auto functions = __indexFunctions.equal_range(name); std::list result; std::transform(functions.first, functions.second, inserter(result, result.end()), [this](auto f) { return ManagedFnPtr(f.second, &this->__functions); }); return result; } template<> ManagedPtr AST::begin() { return ManagedPtr(0, &this->__functions); } template<> ManagedPtr AST::begin() { return ManagedPtr(0, &this->__scopes); } template<> ManagedPtr AST::begin() { return ManagedPtr(0, &this->__rules); } bool AST::recognizeVariantIdentifier(Expression& identifier) { assert(identifier.__state == Expression::IDENT); std::string variant = identifier.getValueString(); if (!__dictVariants.count(variant)) { return false; } auto record = __dictVariants.at(variant); const TypeAnnotation& typ = record.first; identifier.__state = Expression::VARIANT; identifier.setValueDouble(record.second); identifier.type = typ; return true; } void AST::postponeIdentifier(CodeScope* scope, const Expression& id) { bucketUnrecognizedIdentifiers.emplace(scope, id); } void AST::recognizePostponedIdentifiers() { for(const auto& identifier: bucketUnrecognizedIdentifiers){ if (!identifier.first->recognizeIdentifier(identifier.second)){ //exception: Ident not found std::cout << "Unknown symbol: "<< identifier.second.getValueString() << std::endl; assert(false && "Symbol not found"); } } } xreate::AST* AST::finalize() { //all finalization steps: recognizePostponedIdentifiers(); return reinterpret_cast(this); } }} //namespace details::incomplete Expanded AST::findType(const std::string& name) { // find in general scope: if (__indexTypeAliases.count(name)) return expandType(__indexTypeAliases.at(name)); //if type is unknown keep it as is. TypeAnnotation t(TypeOperator::CUSTOM,{}); t.__valueCustom = name; return ExpandedType(move(t)); } Expanded AST::expandType(const TypeAnnotation &t) const { return TypesResolver(this)(t); } ExpandedType AST::getType(const Expression& expression){ - return analysis::typeinference::getType(expression, *this); + return typeinference::getType(expression, *this); } Function::Function(const Atom& name) : __entry(new CodeScope(0)) { __name = name.get(); } void Function::addTag(Expression&& tag, const TagModifier mod) { string name = tag.getValueString(); __tags.emplace(move(name), move(tag)); } const std::map& Function::getTags() const { return __tags; } CodeScope* Function::getEntryScope() const { return __entry; } void Function::addBinding(Atom && name, Expression&& argument) { __entry->addBinding(move(name), move(argument)); } const std::string& Function::getName() const { return __name; } ScopedSymbol CodeScope::registerIdentifier(const Expression& identifier) { VariableVersion version = Attachments::get(identifier, VERSION_NONE); auto result = __identifiers.emplace(identifier.getValueString(), __vCounter); if (result.second){ ++__vCounter; return {__vCounter-1, version}; } return {result.first->second, version}; } bool CodeScope::recognizeIdentifier(const Expression& identifier) const{ VariableVersion version = Attachments::get(identifier, VERSION_NONE); const std::string& name = identifier.getValueString(); //search identifier in the current block if (__identifiers.count(name)){ VNameId id = __identifiers.at(name); Symbol s; s.identifier = ScopedSymbol{id, version}; s.scope = const_cast(this); Attachments::put(identifier, s); return true; } //search in the parent scope if (__parent) { return __parent->recognizeIdentifier(identifier); } return false; } ScopedSymbol CodeScope::getSymbol(const std::string& alias){ assert(__identifiers.count(alias)); VNameId id = __identifiers.at(alias); return {id, VERSION_NONE}; } void CodeScope::addBinding(Expression&& var, Expression&& argument) { argument.__state = Expression::BINDING; __bindings.push_back(var.getValueString()); ScopedSymbol binding = registerIdentifier(var); __declarations[binding] = move(argument); } void CodeScope::addDeclaration(Expression&& var, Expression&& body) { ScopedSymbol s = registerIdentifier(var); __declarations[s] = move(body); } CodeScope::CodeScope(CodeScope* parent) : __parent(parent) { } CodeScope::~CodeScope() { } void CodeScope::setBody(const Expression &body) { __declarations[ScopedSymbol::RetSymbol] = body; } Expression& CodeScope::getBody() { return __declarations[ScopedSymbol::RetSymbol]; } const Expression& CodeScope::getDeclaration(const Symbol& symbol) { CodeScope* self = symbol.scope; return self->getDeclaration(symbol.identifier); } const Expression& CodeScope::getDeclaration(const ScopedSymbol& symbol){ assert(__declarations.count(symbol) && "Symbol's declaration not found"); return __declarations.at(symbol); } void RuleArguments::add(const Atom &arg, DomainAnnotation typ) { emplace_back(arg.get(), typ); } void RuleGuards::add(Expression&& e) { push_back(e); } MetaRuleAbstract:: MetaRuleAbstract(RuleArguments&& args, RuleGuards&& guards) : __args(std::move(args)), __guards(std::move(guards)) { } MetaRuleAbstract::~MetaRuleAbstract() { } RuleWarning:: RuleWarning(RuleArguments&& args, RuleGuards&& guards, Expression&& condition, Atom&& message) : MetaRuleAbstract(std::move(args), std::move(guards)), __message(message.get()), __condition(condition) { } RuleWarning::~RuleWarning() { } void RuleWarning::compile(ClaspLayer& layer) { //TODO restore addRuleWarning //layer.addRuleWarning(*this); } bool operator<(const ScopedSymbol& s1, const ScopedSymbol& s2) { return (s1.id < s2.id) || (s1.id==s2.id && s1.version < s2.version); } bool operator==(const ScopedSymbol& s1, const ScopedSymbol& s2) { return (s1.id == s2.id) && (s1.version == s2.version); } bool operator<(const Symbol& s1, const Symbol& s2) { return (s1.scope < s2.scope) || (s1.scope == s2.scope && s1.identifier < s2.identifier); } bool operator==(const Symbol& s1, const Symbol& s2) { return (s1.scope == s2.scope) && (s1.identifier == s2.identifier); } bool operator<(const Expression&a, const Expression&b) { if (a.__state != b.__state) return a.__state < b.__state; assert(a.__state != Expression::INVALID); switch (a.__state) { case Expression::IDENT: case Expression::STRING: case Expression::VARIANT: return a.getValueString() < b.getValueString(); case Expression::NUMBER: return a.getValueDouble() < b.getValueDouble(); case Expression::COMPOUND: { assert(a.blocks.size() == 0); assert(b.blocks.size() == 0); if (a.op != b.op){ return a.op < b.op; } bool flagAValid = ExpressionHints::isStringValueValid(a); bool flagBValid = ExpressionHints::isStringValueValid(b); if (flagAValid != flagBValid) { return flagAValid < flagBValid; } if (flagAValid){ if (a.getValueString() != b.getValueString()) { return a.getValueString() < b.getValueString(); } } flagAValid = ExpressionHints::isDoubleValueValid(a); flagBValid = ExpressionHints::isDoubleValueValid(b); if (flagAValid != flagBValid) { return flagAValid < flagBValid; } if (flagAValid){ if (a.getValueDouble() != b.getValueDouble()) { return a.getValueDouble() < b.getValueDouble(); } } if (a.operands.size() != b.operands.size()) { return (a.operands.size() < b.operands.size()); } for (size_t i = 0; i < a.operands.size(); ++i) { bool result = a.operands[i] < b.operands[i]; if (result) return true; } return false; } case Expression::BINDING: case Expression::INVALID: assert(false); } return false; } bool Expression::operator==(const Expression& other) const { if (this->__state != other.__state) return false; if (ExpressionHints::isStringValueValid(*this)) { if (this->__valueS != other.__valueS) return false; } if (ExpressionHints::isDoubleValueValid(*this)) { if (this->__valueD != other.__valueD) return false; } if (this->__state != Expression::COMPOUND) { return true; } if (this->op != other.op) { return false; } if (this->operands.size() != other.operands.size()) { return false; } for (size_t i = 0; ioperands.size(); ++i) { if (!(this->operands[i] == other.operands[i])) return false; } assert(!this->blocks.size()); assert(!other.blocks.size()); return true; } const ScopedSymbol ScopedSymbol::RetSymbol = ScopedSymbol{0, VERSION_NONE}; } diff --git a/cpp/src/pass/compilepass.cpp b/cpp/src/pass/compilepass.cpp index b402cb2..c1655de 100644 --- a/cpp/src/pass/compilepass.cpp +++ b/cpp/src/pass/compilepass.cpp @@ -1,769 +1,769 @@ #include "compilepass.h" #include "clasplayer.h" #include #include "llvmlayer.h" #include "query/containers.h" #include "query/context.h" #include "compilation/containers.h" #include "compilation/latecontextcompiler2.h" #include "ExternLayer.h" #include "pass/adhocpass.h" #include "compilation/targetinterpretation.h" #include "pass/versionspass.h" #include "compilation/scopedecorators.h" #include "compilation/adhocfunctiondecorator.h" #include "compilation/operators.h" #include "analysis/typeinference.h" #include #include #include using namespace std; using namespace llvm; //TODO use Scope //SECTIONTAG types/convert implementation //TODO type conversion: //a) automatically expand types int -> bigger int; int -> floating //b) detect exact type of `num` based on max used numeral / function type //c) warning if need to truncate (allow/dissalow based on annotations) namespace xreate { std::string BasicFunctionDecorator::prepareName(){ AST* ast = FunctionUnit::pass->man->root; string name = ast->getFunctionVariants(FunctionUnit::function->__name).size() > 1? FunctionUnit::function->__name + std::to_string(FunctionUnit::function.id()) : FunctionUnit::function->__name; return name; } std::vector BasicFunctionDecorator::prepareArguments(){ LLVMLayer* llvm = FunctionUnit::pass->man->llvm; AST* ast = FunctionUnit::pass->man->root; CodeScope* entry = FunctionUnit::function->__entry; std::vector signature; std::transform(entry->__bindings.begin(), entry->__bindings.end(), std::inserter(signature, signature.end()), [llvm, ast, entry](const std::string &arg)->llvm::Type* { assert(entry->__identifiers.count(arg)); ScopedSymbol argid{entry->__identifiers.at(arg), VERSION_NONE}; return llvm->toLLVMType(ast->expandType(entry->__declarations.at(argid).type)); }); return signature; } llvm::Type* BasicFunctionDecorator::prepareResult(){ LLVMLayer* llvm = FunctionUnit::pass->man->llvm; AST* ast = FunctionUnit::pass->man->root; CodeScope* entry = FunctionUnit::function->__entry; return llvm->toLLVMType(ast->expandType(entry->__declarations.at(ScopedSymbol::RetSymbol).type)); } llvm::Function::arg_iterator BasicFunctionDecorator::prepareBindings(){ CodeScope* entry = FunctionUnit::function->__entry; AbstractCodeScopeUnit* entryCompilation = FunctionUnit::getScopeUnit(entry); llvm::Function::arg_iterator fargsI = FunctionUnit::raw->arg_begin(); for (std::string &arg : entry->__bindings) { ScopedSymbol argid{entry->__identifiers[arg], VERSION_NONE}; entryCompilation->bindArg(&*fargsI, argid); fargsI->setName(arg); ++fargsI; } return fargsI; } //SECTIONTAG late-context FunctionDecorator template class LateContextFunctionDecorator: public Parent{ public: LateContextFunctionDecorator(ManagedFnPtr f, CompilePass* p) : Parent(f, p), contextCompiler(this, p) {} protected: std::vector prepareArguments(){ std::vector&& arguments = Parent::prepareArguments(); size_t sizeLateContextDemand = contextCompiler.getFunctionDemandSize(); if (sizeLateContextDemand) { llvm::Type* ty32 = llvm::Type::getInt32Ty(llvm::getGlobalContext()); llvm::Type* tyDemand = llvm::ArrayType::get(ty32, sizeLateContextDemand); arguments.push_back(tyDemand); } return arguments; } llvm::Function::arg_iterator prepareBindings(){ llvm::Function::arg_iterator fargsI = Parent::prepareBindings(); size_t sizeLateContextDemand = contextCompiler.getFunctionDemandSize(); if (sizeLateContextDemand){ fargsI->setName("latecontext"); contextCompiler.rawContextArgument = &*fargsI; ++fargsI; } return fargsI; } public: context::LateContextCompiler2 contextCompiler; }; //DEBT compiler rigidly depends on exact definition of DefaultFunctionUnit typedef LateContextFunctionDecorator< adhoc::AdhocFunctionDecorator< BasicFunctionDecorator>> DefaultFunctionUnit; AbstractCodeScopeUnit::AbstractCodeScopeUnit(CodeScope* codeScope, FunctionUnit* f, CompilePass* compilePass) : pass(compilePass), function(f), scope(codeScope) {} llvm::Value* CallStatementRaw::operator() (std::vector&& args, const std::string& hintDecl) { llvm::Function* calleeInfo = dyn_cast(__callee); if (calleeInfo){ auto argsFormal = calleeInfo->args(); int pos=0; //SECTIONTAG types/convert function ret value for (auto argFormal = argsFormal.begin(); argFormal!=argsFormal.end(); ++argFormal, ++pos){ - args[pos] = analysis::typeinference::doAutomaticTypeConversion(args[pos], argFormal->getType(), llvm->builder); + args[pos] = typeinference::doAutomaticTypeConversion(args[pos], argFormal->getType(), llvm->builder); } } return llvm->builder.CreateCall(__calleeTy, __callee, args, hintDecl); } //DESABLEDFEATURE implement inlining class CallStatementInline: public CallStatement{ public: CallStatementInline(FunctionUnit* caller, FunctionUnit* callee, LLVMLayer* l) : __caller(caller), __callee(callee), llvm(l) {} llvm::Value* operator() (std::vector&& args, const std::string& hintDecl) { //TOTEST inlining // CodeScopeUnit* entryCompilation = outer->getScopeUnit(function->__entry); // for(int i=0, size = args.size(); ibindArg(args.at(i), string(entryCompilation->scope->__bindings.at(i))); // } // // // return entryCompilation->compile(); return nullptr; } private: FunctionUnit* __caller; FunctionUnit* __callee; LLVMLayer* llvm; bool isInline(){ // Symbol ret = Symbol{0, function->__entry}; // bool flagOnTheFly = SymbolAttachments::get(ret, false); //TODO consider inlining return false; } }; BasicCodeScopeUnit::BasicCodeScopeUnit(CodeScope* codeScope, FunctionUnit* f, CompilePass* compilePass) : AbstractCodeScopeUnit(codeScope, f, compilePass) {} llvm::Value* BasicCodeScopeUnit::processSymbol(const Symbol& s, std::string hintRetVar){ Expression declaration = CodeScope::getDeclaration(s); CodeScope* scope = s.scope; AbstractCodeScopeUnit* self = AbstractCodeScopeUnit::function->getScopeUnit(scope); return self->process(declaration, hintRetVar); } //SECTIONTAG late-context find callee function //TOTEST static late context decisions //TOTEST dynamic late context decisions CallStatement* BasicCodeScopeUnit::findFunction(const std::string& calleeName){ LLVMLayer* llvm = pass->man->llvm; ClaspLayer* clasp = pass->man->clasp; DefaultFunctionUnit* function = dynamic_cast(this->function); context::ContextQuery* queryContext = pass->queryContext; const std::list& specializations = pass->man->root->getFunctionVariants(calleeName); //if no specializations registered - check external function if (specializations.size()==0){ llvm::Function* external = llvm->layerExtern->lookupFunction(calleeName); llvm::outs() << "Debug/External function: " << calleeName; external->getType()->print(llvm::outs(), true); llvm::outs() << "\n"; return new CallStatementRaw(external, llvm); } //no decisions required if (specializations.size()==1){ if (!specializations.front()->guardContext.isValid()) { return new CallStatementRaw( pass->getFunctionUnit(specializations.front())->compile(), llvm); } } //TODO move dictSpecialization over to a separate function in order to perform cache, etc. //prepare specializations dictionary std::map dictSpecializations; boost::optional variantDefault; boost::optional variant; for(const ManagedFnPtr& f: specializations){ const Expression& guard = f->guardContext; //default case: if (!guard.isValid()){ variantDefault = f; continue; } assert(dictSpecializations.emplace(guard, f).second && "Found several identical specializations"); } //check static context ScopePacked scopeCaller = clasp->pack(this->scope); const string atomSpecialization = "specialization"; const Expression topicSpecialization(Operator::CALL, {(Atom(string(atomSpecialization))), (Atom(string(calleeName))), (Atom(scopeCaller))}); const context::Decisions& decisions = queryContext->getFinalDecisions(scopeCaller); if (decisions.count(topicSpecialization)){ variant = dictSpecializations.at(decisions.at(topicSpecialization)); } //TODO check only demand for this particular topic. size_t sizeDemand = function->contextCompiler.getFunctionDemandSize(); //decision made if static context found or no late context exists(and there is default variant) bool flagHasStaticDecision = variant || (variantDefault && !sizeDemand); //if no late context exists if (flagHasStaticDecision) { FunctionUnit* calleeUnit = pass->getFunctionUnit(variant? *variant: *variantDefault); //inlining possible based on static decision only // if (calleeUnit->isInline()) { // return new CallStatementInline(function, calleeUnit); // } return new CallStatementRaw(calleeUnit->compile(), llvm); } //require default variant if no static decision made assert(variantDefault); llvm::Function* functionVariantDefault = this->pass->getFunctionUnit(*variantDefault)->compile(); llvm::Value* resultFn = function->contextCompiler.findFunction(calleeName, functionVariantDefault, scopeCaller); llvm::PointerType *resultPTy = cast(resultFn->getType()); llvm::FunctionType *resultFTy = cast(resultPTy->getElementType()); return new CallStatementRaw(resultFn, resultFTy, llvm); } //DISABLEDFEATURE transformations // if (pass->transformations->isAcceptable(expr)){ // return pass->transformations->transform(expr, result, ctx); // } llvm::Value* BasicCodeScopeUnit::process(const Expression& expr, const std::string& hintVarDecl){ #define DEFAULT(x) (hintVarDecl.empty()? x: hintVarDecl) llvm::Value *left; llvm::Value *right; LLVMLayer& l = *pass->man->llvm; xreate::compilation::Advanced instructions = xreate::compilation::Advanced({this, function, pass}); switch (expr.op) { case Operator::SUB: case Operator::MUL: case Operator::DIV: case Operator::EQU: case Operator::LSS: case Operator::GTR: case Operator::NE: case Operator::LSE: case Operator::GTE: assert(expr.__state == Expression::COMPOUND); assert(expr.operands.size() == 2); left = process(expr.operands[0]); right = process(expr.operands[1]); //SECTIONTAG types/convert binary operation - right = analysis::typeinference::doAutomaticTypeConversion(right, left->getType(), l.builder); + right = typeinference::doAutomaticTypeConversion(right, left->getType(), l.builder); break; default:; } switch (expr.op) { case Operator::ADD:{ left = process(expr.operands[0]); Context context{this, function, pass}; llvm::Value* resultSU = StructUpdate::add(expr.operands[0], left, expr.operands[1], context, DEFAULT("tmp_add")); if (resultSU) return resultSU; right = process(expr.operands[1]); llvm::Value* resultAddPA = pointerarithmetic::PointerArithmetic::add(left, right, context,DEFAULT("tmp_add")); if (resultAddPA) {return resultAddPA;} return l.builder.CreateAdd(left, right, DEFAULT("tmp_add")); break; } case Operator::SUB: return l.builder.CreateSub(left, right, DEFAULT("tmp_sub")); break; case Operator::MUL: return l.builder.CreateMul(left, right, DEFAULT("tmp_mul")); break; case Operator::DIV: return l.builder.CreateSDiv(left, right, DEFAULT("tmp_div")); break; case Operator::EQU: if (left->getType()->isIntegerTy()) return l.builder.CreateICmpEQ(left, right, DEFAULT("tmp_equ")); if (left->getType()->isFloatingPointTy()) return l.builder.CreateFCmpOEQ(left, right, DEFAULT("tmp_equ")); break; case Operator::NE: return l.builder.CreateICmpNE(left, right, DEFAULT("tmp_ne")); break; case Operator::LSS: return l.builder.CreateICmpSLT(left, right, DEFAULT("tmp_lss")); break; case Operator::LSE: return l.builder.CreateICmpSLE(left, right, DEFAULT("tmp_lse")); break; case Operator::GTR: return l.builder.CreateICmpSGT(left, right, DEFAULT("tmp_gtr")); break; case Operator::GTE: return l.builder.CreateICmpSGE(left, right, DEFAULT("tmp_gte")); break; case Operator::NEG: left = process(expr.operands[0]); return l.builder.CreateNeg(left, DEFAULT("tmp_neg")); break; case Operator::CALL: { assert(expr.__state == Expression::COMPOUND); std::string nameCallee = expr.getValueString(); shared_ptr callee(findFunction(nameCallee)); //prepare arguments std::vector args; args.reserve(expr.operands.size()); std::transform(expr.operands.begin(), expr.operands.end(), std::inserter(args, args.end()), [this](const Expression &operand) { return process(operand); } ); ScopePacked outerScopeId = pass->man->clasp->pack(this->scope); //TASK a) refactor CALL/ADHOC/find function //SECTIONTAG late-context propagation arg size_t calleeDemandSize = pass->queryContext->getFunctionDemand(nameCallee).size(); if (calleeDemandSize){ DefaultFunctionUnit* function = dynamic_cast(this->function); llvm::Value* argLateContext = function->contextCompiler.compileContextArgument(nameCallee, outerScopeId); args.push_back(argLateContext); } return (*callee)(move(args), DEFAULT("res_"+nameCallee)); } case Operator::IF: { return instructions.compileIf(expr, DEFAULT("tmp_if")); } case Operator::SWITCH: { return instructions.compileSwitch(expr, DEFAULT("tmp_switch")); } case Operator::LOOP_CONTEXT: { assert(false); return nullptr; //return instructions.compileLoopContext(expr, DEFAULT("tmp_loop")); } case Operator::LOGIC_AND: { assert(expr.operands.size() == 1); return process (expr.operands[0]); } case Operator::LIST: { return instructions.compileListAsSolidArray(expr, DEFAULT("tmp_list")); }; case Operator::LIST_RANGE: { assert(false); //no compilation phase for a range list // return InstructionList(this).compileConstantArray(expr, l, hintRetVar); }; case Operator::LIST_NAMED: { typedef Expanded ExpandedType; ExpandedType tyStructLiteral = l.ast->getType(expr); const std::vector fieldsFormal = (tyStructLiteral.get().__operator == TypeOperator::CUSTOM)? l.layerExtern->getStructFields(l.layerExtern->lookupType(tyStructLiteral.get().__valueCustom)) : tyStructLiteral.get().fields; std::map indexFields; for(size_t i=0, size = fieldsFormal.size(); i(l.toLLVMType(tyStructLiteral)); llvm::Value* record = llvm::UndefValue::get(tyLiteralRaw); for (size_t i=0; igetElementType(fieldId); // result = llvm::UndefValue::get(tyNullField); // // } else { result = process(operand); // } assert (result); record = l.builder.CreateInsertValue(record, result, llvm::ArrayRef({fieldId})); } return record; }; case Operator::MAP: { assert(expr.blocks.size()); return instructions.compileMapSolidOutput(expr, DEFAULT("map")); }; case Operator::FOLD: { return instructions.compileFold(expr, DEFAULT("fold")); }; case Operator::FOLD_INF: { return instructions.compileFoldInf(expr, DEFAULT("fold")); }; case Operator::INDEX: { //TODO allow multiindex assert(expr.operands.size()==2); assert(expr.operands[0].__state == Expression::IDENT); const std::string& hintIdent= expr.operands[0].getValueString(); Symbol s = Attachments::get(expr.operands[0]); const ExpandedType& t2 = pass->man->root->getType(expr.operands[0]); llvm::Value* aggr = processSymbol(s, hintIdent); switch (t2.get().__operator) { case TypeOperator::STRUCT: case TypeOperator::CUSTOM: { std::string idxField; const Expression& idx = expr.operands.at(1); switch (idx.__state) { //named struct field case Expression::STRING: idxField = idx.getValueString(); break; //anonymous struct field case Expression::NUMBER: idxField = to_string((int)idx.getValueDouble()); break; default: assert(false&& "Wrong index for a struct"); } return instructions.compileStructIndex(aggr, t2, idxField); }; case TypeOperator::ARRAY: { std::vector indexes; std::transform(++expr.operands.begin(), expr.operands.end(), std::inserter(indexes, indexes.end()), [this] (const Expression& op){ return process(op); } ); return instructions.compileArrayIndex(aggr, indexes, DEFAULT(string("el_") + hintIdent)); }; default: assert(false); } }; //SECTIONTAG adhoc actual compilation //TODO a) make sure that it's correct: function->adhocImplementation built for Entry scope and used in another scope case Operator::ADHOC: { DefaultFunctionUnit* function = dynamic_cast(this->function); assert(function->adhocImplementation && "Adhoc implementation not found"); const Expression& comm = adhoc::AdhocExpression(expr).getCommand(); CodeScope* scope = function->adhocImplementation->getCommandImplementation(comm); AbstractCodeScopeUnit* unitScope = function->getScopeUnit(scope); //SECTIONTAG types/convert ADHOC ret convertation llvm::Type* resultTy = l.toLLVMType( pass->man->root->expandType(function->adhocImplementation->getResultType())); - return analysis::typeinference::doAutomaticTypeConversion(unitScope->compile(), resultTy, l.builder); + return typeinference::doAutomaticTypeConversion(unitScope->compile(), resultTy, l.builder); }; case Operator::CALL_INTRINSIC:{ const std::string op = expr.getValueString(); if (op == "copy") { llvm::Value* result = process(expr.getOperands().at(0)); auto decoratorVersions = Decorators::getInterface(this); llvm::Value* storage = decoratorVersions->processIntrinsicInit(result->getType()); decoratorVersions->processIntrinsicCopy(result, storage); return l.builder.CreateLoad(storage, hintVarDecl); } assert(false && "undefined intrinsic"); } case Operator::NONE: assert(expr.__state != Expression::COMPOUND); switch (expr.__state) { case Expression::IDENT: { Symbol s = Attachments::get(expr); return processSymbol(s, expr.getValueString()); } case Expression::NUMBER: { llvm::Type* typConst; if (expr.type.isValid()){ typConst = l.toLLVMType(pass->man->root->getType(expr)); } else { typConst = llvm::Type::getInt32Ty(llvm::getGlobalContext()); } int literal = expr.getValueDouble(); return llvm::ConstantInt::get(typConst, literal); } case Expression::STRING: { return instructions.compileConstantStringAsPChar(expr.getValueString(), DEFAULT("tmp_str")); }; case Expression::VARIANT: { const ExpandedType& typVariant = pass->man->root->getType(expr); llvm::Type* typRaw = l.toLLVMType(typVariant); int value = expr.getValueDouble(); return llvm::ConstantInt::get(typRaw, value); } default: { break; } }; break; default: break; } assert(false); return 0; } llvm::Value* BasicCodeScopeUnit::compile(const std::string& hintBlockDecl){ if (!hintBlockDecl.empty()) { llvm::BasicBlock *block = llvm::BasicBlock::Create(llvm::getGlobalContext(), hintBlockDecl, function->raw); pass->man->llvm->builder.SetInsertPoint(block); } Symbol symbScope = Symbol{ScopedSymbol::RetSymbol, scope}; return processSymbol(symbScope); } AbstractCodeScopeUnit::~AbstractCodeScopeUnit() {} FunctionUnit::~FunctionUnit() {} llvm::Function* FunctionUnit::compile(){ if (raw != nullptr) return raw; LLVMLayer* llvm = pass->man->llvm; llvm::IRBuilder<>& builder = llvm->builder; string&& functionName = prepareName(); std::vector&& types = prepareArguments(); llvm::Type* expectedResultType = prepareResult(); llvm::FunctionType *ft = llvm::FunctionType::get(expectedResultType, types, false); raw = llvm::cast(llvm->module->getOrInsertFunction(functionName, ft)); prepareBindings(); const std::string&blockName = "entry"; llvm::BasicBlock* blockCurrent = builder.GetInsertBlock(); llvm::Value* result =getScopeUnit(function->__entry)->compile(blockName); assert(result); //SECTIONTAG types/convert function ret value - builder.CreateRet(analysis::typeinference::doAutomaticTypeConversion(result, expectedResultType, llvm->builder)); + builder.CreateRet(typeinference::doAutomaticTypeConversion(result, expectedResultType, llvm->builder)); if (blockCurrent){ builder.SetInsertPoint(blockCurrent); } llvm->moveToGarbage(ft); return raw; } AbstractCodeScopeUnit* FunctionUnit::getScopeUnit(CodeScope* scope){ if (__scopes.count(scope)) { auto result = __scopes.at(scope).lock(); if (result){ return result.get(); } } std::shared_ptr unit(new DefaultScopeUnit(scope, this, pass)); if (scope->__parent != nullptr){ auto parentUnit = Decorators::getInterface(getScopeUnit(scope->__parent)); parentUnit->registerChildScope(unit); } else { __orphanedScopes.push_back(unit); } if (!__scopes.emplace(scope, unit).second){ __scopes[scope] = unit; } return unit.get(); } AbstractCodeScopeUnit* FunctionUnit::getScopeUnit(ManagedScpPtr scope){ return getScopeUnit(&*scope); } AbstractCodeScopeUnit* FunctionUnit::getEntry(){ return getScopeUnit(function->getEntryScope()); } FunctionUnit* CompilePass::getFunctionUnit(const ManagedFnPtr& function){ unsigned int id = function.id(); if (!functions.count(id)){ FunctionUnit* unit = new DefaultFunctionUnit(function, this); functions.emplace(id, unit); return unit; } return functions.at(id); } void CompilePass::run(){ managerTransformations = new TransformationsManager(); targetInterpretation = new interpretation::TargetInterpretation(this->man->root, this); queryContext = reinterpret_cast (man->clasp->getQuery(QueryId::ContextQuery)); //Find out main function; ClaspLayer::ModelFragment model = man->clasp->query(Config::get("function-entry")); assert(model && "Error: No entry function found"); assert(model->first != model->second && "Error: Ambiguous entry function"); string nameMain = std::get<0>(ClaspLayer::parse(model->first->second)); FunctionUnit* unitMain = getFunctionUnit(man->root->findFunction(nameMain)); entry = unitMain->compile(); } llvm::Function* CompilePass::getEntryFunction(){ assert(entry); return entry; } void CompilePass::prepareQueries(ClaspLayer* clasp){ clasp->registerQuery(new containers::Query(), QueryId::ContainersQuery); clasp->registerQuery(new context::ContextQuery(), QueryId::ContextQuery); } } //end of namespace xreate