diff --git a/cpp/src/ast.cpp b/cpp/src/ast.cpp index 483b048..4f92561 100644 --- a/cpp/src/ast.cpp +++ b/cpp/src/ast.cpp @@ -1,966 +1,972 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * Author: pgess * File: ast.cpp */ #include "ast.h" #include "analysis/typeinference.h" #include "analysis/predefinedanns.h" #ifdef XREATE_ENABLE_EXTERN #include "ExternLayer.h" #endif #include #include //TODO BDecl. forbid multiple body declaration (ExprTyped) namespace std { std::size_t hash::operator()(xreate::ScopedSymbol const& s) const { return s.id ^ (s.version << 2); } bool equal_to::operator()(const xreate::ScopedSymbol& __x, const xreate::ScopedSymbol& __y) const { return __x.id == __y.id && __x.version == __y.version; } size_t hash::operator()(xreate::Symbol const& s) const { return hash()(s.identifier) ^ ((long int) s.scope << 1); } bool equal_to::operator()(const xreate::Symbol& __x, const xreate::Symbol& __y) const { return __x == __y; }; } using namespace std; namespace xreate { Atom::Atom(const std::wstring& value) { __value = wstring_to_utf8(value); } Atom::Atom(std::string && name) : __value(name) { } const std::string& Atom::get() const { return __value; } Atom::Atom(wchar_t* value) { //DEBT reconsider number literal recognition __value = wcstol(value, 0, 10); } Atom::Atom(int value) : __value(value) { } double Atom::get()const { return __value; } Atom::Atom(const std::wstring& value) { assert(value.size() >= 2); __value = wstring_to_utf8(value.substr(1, value.size() - 2)); } Atom::Atom(std::string && name) : __value(name) {} const std::string& Atom::get() const { return __value; } /** \brief xreate::Expression static information*/ class ExpressionHints { public: static bool isStringValueValid(const Expression& e) { switch (e.__state) { case Expression::INVALID: assert(false); case Expression::IDENT: case Expression::STRING: return true; case Expression::NUMBER: case Expression::BINDING: return false; case Expression::COMPOUND: { switch (e.op) { case Operator::CALL: return true; default: return false; } } } return false; } static bool isDoubleValueValid(const Expression& e) { switch (e.__state) { case Expression::NUMBER: return true; case Expression::INVALID: assert(false); case Expression::IDENT: case Expression::STRING: case Expression::BINDING: return false; case Expression::COMPOUND: { switch (e.op) { case Operator::VARIANT: return true; default: return false; } } } return false; } }; class TypeResolver { public: TypeResolver(const AST* ast, TypeResolver * parent, std::set trace, const std::map& scope = std::map()) : __ast(ast), __scope(scope), __trace(trace), __parent(parent) {} ExpandedType operator()(const TypeAnnotation &t, const std::vector &args = std::vector()) { assert(args.size() == t.bindings.size()); // invalid number of arguments for (size_t i = 0; i < args.size(); ++i) { __scope[t.bindings.at(i)] = args.at(i); } switch (t.__operator) { case TypeOperator::ARRAY:{ assert(t.__operands.size() == 1); Expanded elTy = this->operator()(t.__operands.at(0)); return ExpandedType(TypeAnnotation(TypeOperator::ARRAY, {elTy.get()})); } case TypeOperator::RECORD: { std::vector&& packOperands = expandOperands(t.__operands); auto typNew = TypeAnnotation(TypeOperator::RECORD, move(packOperands)); typNew.fields = t.fields; return ExpandedType(move(typNew)); }; case TypeOperator::VARIANT: { std::vector&& packOperands = expandOperands(t.__operands); auto typNew = TypeAnnotation(TypeOperator::VARIANT, move(packOperands)); typNew.fields = t.fields; return ExpandedType(move(typNew)); }; case TypeOperator::ALIAS: { std::string alias = t.__valueCustom; if (__trace.count(alias)){ assert(false && "Recursive Type"); return ExpandedType(TypeAnnotation()); } const TypeAnnotation& tyAlias = findType(alias); std::vector&& operands = expandOperands(t.__operands); auto traceNew =__trace; traceNew.insert(alias); return TypeResolver(__ast, this, traceNew, __scope)(tyAlias, operands); }; case TypeOperator::ACCESS: { std::string alias = t.__valueCustom; const TypeAnnotation& ty = findType(alias); TypeAnnotation tyAggr = this->operator()(ty).get(); for (const string& field : t.fields) { auto fieldIt = std::find(tyAggr.fields.begin(), tyAggr.fields.end(), field); assert(fieldIt != tyAggr.fields.end() && "unknown field"); int fieldId = fieldIt - tyAggr.fields.begin(); tyAggr = tyAggr.__operands.at(fieldId); } return ExpandedType(tyAggr); } case TypeOperator::NONE: case TypeOperator::VOID: case TypeOperator::SLAVE: case TypeOperator::REF: { return ExpandedType(t); } default: assert(false); } assert(false); return ExpandedType(TypeAnnotation()); } private: const AST* __ast; std::map __scope; std::set __trace; TypeResolver* __parent; std::vector expandOperands(const std::vector& operands) { std::vector pack; pack.reserve(operands.size()); std::transform(operands.begin(), operands.end(), std::inserter(pack, pack.end()), [this](const TypeAnnotation & t) { return this->operator()(t).get(); }); return pack; } TypeAnnotation findType(const std::string& alias){ if (__scope.count(alias)) { return __scope.at(alias); } else if (__parent){ return __parent->findType(alias); } else if (__ast->__registryTypes.count(alias)){ return __ast->__registryTypes.at(alias); } assert(false && "Undefined or external type"); return TypeAnnotation(); } }; TypeAnnotation::TypeAnnotation() : __operator(TypeOperator::NONE), __value(TypePrimitive::Invalid) { } TypeAnnotation::TypeAnnotation(TypePrimitive typ) : __value(typ) {} TypeAnnotation::TypeAnnotation(TypeOperator op, std::initializer_list operands) : __operator(op), __operands(operands) { } TypeAnnotation::TypeAnnotation(TypeOperator op, std::vector&& operands) : __operator(op), __operands(operands) { } bool TypeAnnotation::isValid() const { return !(__value == TypePrimitive::Invalid && __operator == TypeOperator::NONE); } bool TypeAnnotation::operator<(const TypeAnnotation& t) const { if (__operator != t.__operator) return __operator < t.__operator; if (__operator == TypeOperator::NONE) return __value < t.__value; if (__operator == TypeOperator::ALIAS || __operator == TypeOperator::ACCESS) { if (__valueCustom != t.__valueCustom) return __valueCustom < t.__valueCustom; } return __operands < t.__operands; } TypeAnnotation TypeAnnotation::alias(const std::string& alias) { TypeAnnotation aliasT(TypeOperator::ALIAS, {}); aliasT.__valueCustom = alias; return aliasT; } void TypeAnnotation::addBindings(std::vector>&& params) { bindings.reserve(bindings.size() + params.size()); std::transform(params.begin(), params.end(), std::inserter(bindings, bindings.end()), [](const Atom& ident) { return ident.get(); }); } void TypeAnnotation::addFields(std::vector>&& listFields) { fields.reserve(fields.size() + listFields.size()); std::transform(listFields.begin(), listFields.end(), std::inserter(fields, fields.end()), [](const Atom& ident) { return ident.get(); }); } unsigned int Expression::nextVacantId = 0; Expression::Expression(const Atom& number) : Expression() { __state = NUMBER; op = Operator::INVALID; __valueD = number.get(); } Expression::Expression(const Atom& a) : Expression() { __state = STRING; op = Operator::INVALID; __valueS = a.get(); } Expression::Expression(const Atom &ident) : Expression() { __state = IDENT; op = Operator::INVALID; __valueS = ident.get(); } Expression::Expression(const Operator &oprt, std::initializer_list params) : Expression() { __state = COMPOUND; op = oprt; if (op == Operator::CALL) { assert(params.size() > 0); Expression arg = *params.begin(); assert(arg.__state == Expression::IDENT); __valueS = std::move(arg.__valueS); operands.insert(operands.end(), params.begin() + 1, params.end()); return; } operands.insert(operands.end(), params.begin(), params.end()); } void Expression::setOp(Operator oprt) { op = oprt; switch (op) { case Operator::INVALID: __state = INVALID; break; default: __state = COMPOUND; break; } } void Expression::addArg(Expression &&arg) { operands.push_back(arg); } void Expression::addTags(const std::list tags) const { std::transform(tags.begin(), tags.end(), std::inserter(this->tags, this->tags.end()), [](const Expression & tag) { return make_pair(tag.getValueString(), tag); }); } void Expression::addBindings(std::initializer_list> params) { addBindings(params.begin(), params.end()); } void Expression::bindType(TypeAnnotation t) { type = move(t); } void Expression::addBlock(ManagedScpPtr scope) { blocks.push_back(scope.operator->()); } const std::vector& Expression::getOperands() const { return operands; } double Expression::getValueDouble() const { return __valueD; } const std::string& Expression::getValueString() const { return __valueS; } void Expression::setValue(const Atom&& v) { __valueS = v.get(); } void Expression::setValueDouble(double value) { __valueD = value; } bool Expression::isValid() const { return (__state != INVALID); } bool Expression::isDefined() const { return (__state != BINDING && __state != INVALID); } Expression::Expression() : __state(INVALID), op(Operator::INVALID), id(nextVacantId++) { } namespace details { namespace inconsistent { std::map AST::__registryIntrinsics = {}; AST::AST() { Attachments::init(); Attachments::init(); Attachments::init(); Attachments::init(); Attachments::init(); initIntrinsics(); analysis::PredefinedAnns man = analysis::PredefinedAnns::instance(); man.registerVariants(__registryVariants); man.registerAliases(__registryTypes); } void AST::addInterfaceData(const ASTInterface& interface, Expression&& data) { __interfacesData.emplace(interface, move(data)); } void AST::addDFAData(Expression &&data) { __dfadata.push_back(data); } void AST::addExternData(ExternData &&entry) { //__externdata.push_back(entry); } void AST::add(Function* f) { __functions.push_back(f); __dictFunctions.emplace(f->getName(), __functions.size() - 1); } void AST::add(MetaRuleAbstract *r) { __rules.push_back(r); } void AST::add(TypeAnnotation t, Atom alias) { if (t.__operator == TypeOperator::VARIANT) { for (int i = 0, size = t.fields.size(); i < size; ++i) { __registryVariants.emplace(t.fields[i], make_pair(t, i)); } } __registryTypes.emplace(alias.get(), move(t)); } ManagedScpPtr AST::add(CodeScope* scope) { this->__scopes.push_back(scope); return ManagedScpPtr(this->__scopes.size() - 1, &this->__scopes); } std::string AST::getModuleName() { const std::string name = "main"; return name; } ManagedPtr AST::findFunction(const std::string& name) { int count = __dictFunctions.count(name); if (!count) { return ManagedFnPtr::Invalid(); } assert(count == 1); auto range = __dictFunctions.equal_range(name); return ManagedPtr(range.first->second, &this->__functions); } std::list AST::getAllFunctions() const { const size_t size = __functions.size(); std::list result; for (size_t i = 0; i < size; ++i) { result.push_back(ManagedFnPtr(i, &this->__functions)); } return result; } //TASK select default specializations std::list AST::getFnSpecializations(const std::string& fnName) const { auto functions = __dictFunctions.equal_range(fnName); std::list result; std::transform(functions.first, functions.second, inserter(result, result.end()), [this](auto f) { return ManagedFnPtr(f.second, &this->__functions); }); return result; } template<> ManagedPtr AST::begin() { return ManagedPtr(0, &this->__functions); } template<> ManagedPtr AST::begin() { return ManagedPtr(0, &this->__scopes); } template<> ManagedPtr AST::begin() { return ManagedPtr(0, &this->__rules); } void AST::recognizeIntrinsic(Expression& fn) const { assert(fn.op == Operator::CALL_INTRINSIC); if (!__registryIntrinsics.count(fn.getValueString())){ assert(false); } IntrinsicFn fnCode = __registryIntrinsics.at(fn.getValueString()); fn.op = Operator::CALL_INTRINSIC; fn.setValueDouble((int) fnCode); } bool AST::recognizeVariantConstructor(Expression& function) { assert(function.op == Operator::CALL); std::string variant = function.getValueString(); if (!__registryVariants.count(variant)) { return false; } auto record = __registryVariants.at(variant); const TypeAnnotation& typ = record.first; function.op = Operator::VARIANT; function.setValueDouble(record.second); function.type = typ; return true; } Atom AST::recognizeVariantConstructor(Atom ident) { std::string variant = ident.get(); assert(__registryVariants.count(variant) && "Can't recognize variant constructor"); auto record = __registryVariants.at(variant); return Atom(record.second); } void AST::postponeIdentifier(CodeScope* scope, const Expression& id) { __bucketUnrecognizedIdentifiers.emplace(scope, id); } void AST::recognizePostponedIdentifiers() { for (const auto& identifier : __bucketUnrecognizedIdentifiers) { if (!identifier.first->recognizeIdentifier(identifier.second)) { //exception: Ident not found std::cout << "Unknown identifier: " << identifier.second.getValueString() << std::endl; assert(false && "Unknown identifier"); } } } xreate::AST* AST::finalize() { //all finalization steps: recognizePostponedIdentifiers(); return reinterpret_cast (this); } void AST::initIntrinsics(){ if (__registryIntrinsics.size()) return; __registryIntrinsics = { {"array_init", IntrinsicFn::ARR_INIT}, {"rec_fields", IntrinsicFn::REC_FIELDS} }; } } } //namespace details::incomplete Expanded AST::findType(const std::string& name) { // find in general scope: if (__registryTypes.count(name)) return expandType(__registryTypes.at(name)); //if type is unknown keep it as is. TypeAnnotation t(TypeOperator::ALIAS, {}); t.__valueCustom = name; return ExpandedType(move(t)); } Expanded AST::expandType(const TypeAnnotation &t) const { return TypeResolver(this, nullptr, {}, {})(t); } ExpandedType AST::getType(const Expression& e, const TypeAnnotation& expectedT) { return typeinference::getType(e, expectedT, *this); } Function::Function(const Atom& name) : __entry(new CodeScope(0)) { __name = name.get(); } void Function::addTag(Expression&& tag, const TagModifier mod) { string name = tag.getValueString(); __tags.emplace(move(name), move(tag)); } const std::map& Function::getTags() const { return __tags; } CodeScope* Function::getEntryScope() const { return __entry; } void Function::addBinding(Atom && name, Expression&& argument, const VNameId hintBindingId) { __entry->addBinding(move(name), move(argument), hintBindingId); } const std::string& Function::getName() const { return __name; } ScopedSymbol CodeScope::registerIdentifier(const Expression& identifier, const VNameId hintBindingId) { versions::VariableVersion version = Attachments::get(identifier, versions::VERSION_NONE); auto result = __identifiers.emplace(identifier.getValueString(), hintBindingId? hintBindingId: __identifiers.size() + 1); return { result.first->second, version }; } bool -CodeScope::recognizeIdentifier(const Expression& identifier) const { - versions::VariableVersion version = Attachments::get(identifier, versions::VERSION_NONE); - const std::string& name = identifier.getValueString(); +CodeScope::recognizeIdentifier(const Expression& identE) { + versions::VariableVersion version = Attachments::get(identE, versions::VERSION_NONE); + const std::string& identStr = identE.getValueString(); - //search identifier in the current block - if (__identifiers.count(name)) { - VNameId id = __identifiers.at(name); + //search identifier in the current block + if (__identifiers.count(identStr)) { + VNameId id = __identifiers.at(identStr); - Symbol s; - s.identifier = ScopedSymbol{id, version}; - s.scope = const_cast (this); - Attachments::put(identifier, s); + Symbol identS; + identS.identifier = ScopedSymbol{id, version}; + identS.scope = const_cast (this); + Attachments::put(identE, identS); - return true; - } + return true; + } - //search in the parent scope - if (__parent) { - return __parent->recognizeIdentifier(identifier); - } + //search in the parent scope + bool result = false; + if (__parent) { + result = __parent->recognizeIdentifier(identE); + } - return false; + if (trackExternalSymbs && result){ + Symbol identS = Attachments::get(identE); + boundExternalSymbs.insert(identS); + } + + return result; } ScopedSymbol -CodeScope::getSymbol(const std::string& alias) { +CodeScope::findSymbolByAlias(const std::string& alias) { assert(__identifiers.count(alias)); VNameId id = __identifiers.at(alias); return {id, versions::VERSION_NONE }; } void CodeScope::addBinding(Expression&& var, Expression&& argument, const VNameId hintBindingId) { argument.__state = Expression::BINDING; __bindings.push_back(var.getValueString()); ScopedSymbol binding = registerIdentifier(var, hintBindingId); __declarations[binding] = move(argument); } Symbol CodeScope::addDefinition(Expression&& var, Expression&& body) { ScopedSymbol s = registerIdentifier(var); __declarations[s] = move(body); return Symbol{s, this}; } CodeScope::CodeScope(CodeScope* parent) : __parent(parent) { } CodeScope::~CodeScope() { } void CodeScope::setBody(const Expression &body) { assert(__declarations.count(ScopedSymbol::RetSymbol)==0 && "Attempt to reassign scope body"); __declarations[ScopedSymbol::RetSymbol] = body; } const Expression& CodeScope::getBody() const{ return __declarations.at(ScopedSymbol::RetSymbol); } const Expression& CodeScope::getDefinition(const Symbol& symbol, bool flagAllowUndefined){ const CodeScope* self = symbol.scope; return self->getDefinition(symbol.identifier, flagAllowUndefined); } const Expression& CodeScope::getDefinition(const ScopedSymbol& symbol, bool flagAllowUndefined) const{ static Expression expressionInvalid; if (!__declarations.count(symbol)){ if (flagAllowUndefined) return expressionInvalid; assert(false && "Symbol's declaration not found"); } return __declarations.at(symbol); } void RuleArguments::add(const Atom &arg, DomainAnnotation typ) { emplace_back(arg.get(), typ); } void RuleGuards::add(Expression&& e) { push_back(e); } MetaRuleAbstract:: MetaRuleAbstract(RuleArguments&& args, RuleGuards&& guards) : __args(std::move(args)), __guards(std::move(guards)) { } MetaRuleAbstract::~MetaRuleAbstract() { } RuleWarning:: RuleWarning(RuleArguments&& args, RuleGuards&& guards, Expression&& condition, Atom&& message) : MetaRuleAbstract(std::move(args), std::move(guards)), __message(message.get()), __condition(condition) { } RuleWarning::~RuleWarning() { } void RuleWarning::compile(TranscendLayer& layer) { //TODO restore addRuleWarning //layer.addRuleWarning(*this); } bool operator<(const ScopedSymbol& s1, const ScopedSymbol& s2) { return (s1.id < s2.id) || (s1.id == s2.id && s1.version < s2.version); } bool operator==(const ScopedSymbol& s1, const ScopedSymbol& s2) { return (s1.id == s2.id) && (s1.version == s2.version); } bool operator<(const Symbol& s1, const Symbol& s2) { return (s1.scope < s2.scope) || (s1.scope == s2.scope && s1.identifier < s2.identifier); } bool operator==(const Symbol& s1, const Symbol& s2) { return (s1.scope == s2.scope) && (s1.identifier == s2.identifier); } bool operator< (const ASTSite& s1, const ASTSite& s2){ return s1.id < s2.id; } bool operator<(const Expression&a, const Expression&b) { if (a.__state != b.__state) return a.__state < b.__state; assert(a.__state != Expression::INVALID); switch (a.__state) { case Expression::IDENT: case Expression::STRING: return a.getValueString() < b.getValueString(); case Expression::NUMBER: return a.getValueDouble() < b.getValueDouble(); case Expression::COMPOUND: { assert(a.blocks.size() == 0); assert(b.blocks.size() == 0); if (a.op != b.op) { return a.op < b.op; } bool flagAValid = ExpressionHints::isStringValueValid(a); bool flagBValid = ExpressionHints::isStringValueValid(b); if (flagAValid != flagBValid) { return flagAValid < flagBValid; } if (flagAValid) { if (a.getValueString() != b.getValueString()) { return a.getValueString() < b.getValueString(); } } flagAValid = ExpressionHints::isDoubleValueValid(a); flagBValid = ExpressionHints::isDoubleValueValid(b); if (flagAValid != flagBValid) { return flagAValid < flagBValid; } if (flagAValid) { if (a.getValueDouble() != b.getValueDouble()) { return a.getValueDouble() < b.getValueDouble(); } } if (a.operands.size() != b.operands.size()) { return (a.operands.size() < b.operands.size()); } for (size_t i = 0; i < a.operands.size(); ++i) { bool result = a.operands[i] < b.operands[i]; if (result) return true; } return false; } case Expression::BINDING: case Expression::INVALID: assert(false); } return false; } bool Expression::operator==(const Expression& other) const { if (this->__state != other.__state) return false; if (ExpressionHints::isStringValueValid(*this)) { if (this->__valueS != other.__valueS) return false; } if (ExpressionHints::isDoubleValueValid(*this)) { if (this->__valueD != other.__valueD) return false; } if (this->__state != Expression::COMPOUND) { return true; } if (this->op != other.op) { return false; } if (this->operands.size() != other.operands.size()) { return false; } for (size_t i = 0; ioperands.size(); ++i) { if (!(this->operands[i] == other.operands[i])) return false; } assert(!this->blocks.size()); assert(!other.blocks.size()); return true; } const ScopedSymbol ScopedSymbol::RetSymbol = ScopedSymbol{0, versions::VERSION_NONE}; Expression ASTSite::getDefinition() const{ if (Attachments::exists(id)){ const Symbol& siteS = Attachments::get(id); return CodeScope::getDefinition(siteS, true); } return Attachments::get(id); } } //end of namespace xreate diff --git a/cpp/src/ast.h b/cpp/src/ast.h index 06517c4..db518d6 100644 --- a/cpp/src/ast.h +++ b/cpp/src/ast.h @@ -1,751 +1,754 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * Author: pgess * File: ast.h */ /** * \file ast.h * \brief A syntax tree representation and related code * * \sa xreate::AST */ #ifndef AST_H #define AST_H #include "attachments.h" #include "utils.h" #include #include #include #include #include #include #include #include #include namespace xreate { struct ScopedSymbol; struct Symbol; } namespace std { template<> struct hash { std::size_t operator()(xreate::ScopedSymbol const& s) const; }; template<> struct equal_to { bool operator()(const xreate::ScopedSymbol& __x, const xreate::ScopedSymbol& __y) const; }; template<> struct hash { size_t operator()(xreate::Symbol const& s) const; }; template<> struct equal_to { bool operator()(const xreate::Symbol& __x, const xreate::Symbol& __y) const; }; } namespace xreate { struct String_t { }; struct Identifier_t { }; struct Number_t { }; struct Type_t { }; template class Atom { }; //DEBT store line:col for all atoms/identifiers template<> class Atom { public: Atom(const std::wstring& value); Atom(std::string && name); const std::string& get() const; private: std::string __value; }; template<> class Atom { public: Atom(wchar_t* value); Atom(int value); double get()const; private: double __value; }; template<> class Atom { public: Atom(const std::wstring& value); Atom(std::string && name); const std::string& get() const; private: std::string __value; }; enum class TypePrimitive { Invalid, Bool, I8, I32, I64, Int, Float, String }; enum class TypeOperator { NONE, VOID, REF, ALIAS, VARIANT, ARRAY, RECORD, ACCESS, SLAVE, GUARD }; struct struct_tag { }; const struct_tag tag_struct = struct_tag(); /** * \brief A type representation to support type system * * The class represents type in a denormalized form, i.e. with no arguments and aliases substitution * \sa AST::expandType() */ class TypeAnnotation { public: TypeAnnotation(); TypeAnnotation(TypePrimitive typ); TypeAnnotation(TypeOperator op, std::initializer_list operands); TypeAnnotation(TypeOperator op, std::vector&& operands); static TypeAnnotation alias(const std::string& alias); void addBindings(std::vector>&& params); void addFields(std::vector>&& listFields); bool operator<(const TypeAnnotation& t) const; // TypeAnnotation (struct_tag, std::initializer_list); bool isValid() const; TypeOperator __operator = TypeOperator::NONE; std::vector __operands; TypePrimitive __value; std::string __valueCustom; std::vector fields; std::vector bindings; private: }; enum class Operator { INVALID, UNDEF, AND, OR, ADD, SUB, MUL, DIV, MOD, EQU, NE, NEG, LSS, LSE, GTR, GTE, LIST, LIST_INDEX, LIST_RANGE, CALL, CALL_INTRINSIC, QUERY, QUERY_LATE, IMPL/* implication */, MAP, FOLD, FOLD_INF, INDEX, IF, SWITCH, SWITCH_VARIANT, SWITCH_LATE, CASE, CASE_DEFAULT, LOGIC_AND, CONTEXT_RULE, VARIANT, SEQUENCE, UPDATE }; class Function; class AST; class CodeScope; class MetaRuleAbstract; typedef ManagedPtr ManagedFnPtr; typedef ManagedPtr ManagedScpPtr; typedef ManagedPtr ManagedRulePtr; const ManagedScpPtr NO_SCOPE = ManagedScpPtr(UINT_MAX, 0); /** * \brief AST node to represent a single instruction or an annotation * \attention In case of any changes update \ref xreate::ExpressionHints auxiliary helper as well * * %Expression is a generic building block of syntax tree which is able to hold node data * along with child nodes as operands. * * \note For types the %expression-like data structure \ref TypeAnnotation is used rather than Expression itself. * \sa xreate::AST, xreate::TypeAnnotation */ struct Expression { friend class CodeScope; friend class TranscendLayer; friend class CFAPass; friend class ExpressionHints; Expression(const Operator &oprt, std::initializer_list params); Expression(const Atom& ident); Expression(const Atom& number); Expression(const Atom& a); Expression(); void setOp(Operator oprt); void addArg(Expression&& arg); void addBindings(std::initializer_list> params); void bindType(TypeAnnotation t); template void addBindings(InputIt paramsBegin, InputIt paramsEnd); void addTags(const std::list tags) const; void addBlock(ManagedScpPtr scope); const std::vector& getOperands() const; double getValueDouble() const; void setValueDouble(double value); const std::string& getValueString() const; void setValue(const Atom&& v); bool isValid() const; bool isDefined() const; bool operator==(const Expression& other) const; /** * \brief is it string, number, compound operation and so on */ enum { INVALID, COMPOUND, IDENT, NUMBER, STRING, BINDING } __state = INVALID; /** * \brief Valid for compound State. Holds type of compound operator */ Operator op; /** * \brief Unique id to identify expression within syntax tree */ unsigned int id; /** * \brief Exact meaning depends on particular instruction * \details As an example, named lists/structs hold field names in bindings */ std::vector bindings; /** * \brief Holds child instructions as arguments */ std::vector operands; /** * \brief Holds type of instruction's result */ TypeAnnotation type; /** * \brief Holds additional annotations */ mutable std::map tags; /** * \brief Child code blocks * \details For example, If statement holds TRUE-branch as first and FALSE-branch as second block here */ std::list blocks; private: std::string __valueS; double __valueD; static unsigned int nextVacantId; }; bool operator<(const Expression&, const Expression&); template void Expression::addBindings(InputIt paramsBegin, InputIt paramsEnd) { size_t index = bindings.size(); std::transform(paramsBegin, paramsEnd, std::inserter(bindings, bindings.end()), [&index, this] (const Atom atom) { std::string key = atom.get(); return key; }); } typedef std::list ExpressionList; enum class TagModifier { NONE, ASSERT, REQUIRE }; enum class DomainAnnotation { FUNCTION, VARIABLE }; class RuleArguments : public std::vector> { public: void add(const Atom& name, DomainAnnotation typ); }; class RuleGuards : public std::vector { public: void add(Expression&& e); }; class TranscendLayer; class LLVMLayer; class MetaRuleAbstract { public: MetaRuleAbstract(RuleArguments&& args, RuleGuards&& guards); virtual ~MetaRuleAbstract(); virtual void compile(TranscendLayer& layer) = 0; protected: RuleArguments __args; RuleGuards __guards; }; class RuleWarning : public MetaRuleAbstract { friend class TranscendLayer; public: RuleWarning(RuleArguments&& args, RuleGuards&& guards, Expression&& condition, Atom&& message); virtual void compile(TranscendLayer& layer); ~RuleWarning(); private: std::string __message; Expression __condition; }; typedef unsigned int VNameId; namespace versions { typedef int VariableVersion; const VariableVersion VERSION_NONE = -2; const VariableVersion VERSION_INIT = 0; } template<> struct AttachmentsDict { typedef versions::VariableVersion Data; static const unsigned int key = 6; }; struct ScopedSymbol { VNameId id; versions::VariableVersion version; static const ScopedSymbol RetSymbol; }; struct Symbol { ScopedSymbol identifier; const CodeScope * scope; }; struct ASTSite { unsigned int id; Expression getDefinition() const; //static Ast registerSite(const Expression& e); }; struct IdentifierSymbol{}; struct ExprAlias_A{}; struct ExprId_A{}; template<> struct AttachmentsDict { typedef Symbol Data; static const unsigned int key = 7; }; template<> struct AttachmentsDict { typedef Symbol Data; static const unsigned int key = 9; }; template<> struct AttachmentsDict{ typedef Expression Data; static const unsigned int key = 12; }; typedef std::pair Tag; bool operator<(const ScopedSymbol& s1, const ScopedSymbol& s2); bool operator==(const ScopedSymbol& s1, const ScopedSymbol& s2); bool operator<(const Symbol& s1, const Symbol& s2); bool operator==(const Symbol& s1, const Symbol& s2); bool operator< (const ASTSite& s1, const ASTSite& s2); /** * \brief AST node to represent a single code block/a scope of visibility * * Holds a single expression as a `body` along with set of variable assignments(declarations) used in body's expression. * \sa xreate::AST */ class CodeScope { friend class Function; friend class PassManager; public: CodeScope(CodeScope* parent = 0); ~CodeScope(); /** \brief Set expression as a body */ void setBody(const Expression& body); /** \brief Returns current code scope body */ const Expression& getBody() const; /** \brief Adds variable definition to be used in body as well as in other declarations */ Symbol addDefinition(Expression&& var, Expression&& body); /** \brief Returns symbols' definition */ static const Expression& getDefinition(const Symbol& symbol, bool flagAllowUndefined = false); const Expression& getDefinition(const ScopedSymbol& symbol, bool flagAllowUndefined = false) const; /** \brief Adds variable defined elsewhere */ void addBinding(Expression&& var, Expression&& argument, const VNameId hintBindingId = 0); std::vector __bindings; std::map __identifiers; CodeScope* __parent; //TODO move __definitions to SymbolsAttachments data //NOTE: definition of return type has index 0 std::unordered_map __declarations; std::vector tags; std::vector contextRules; - + + bool trackExternalSymbs = false; + std::set boundExternalSymbs; + private: ScopedSymbol registerIdentifier(const Expression& identifier, const VNameId hintBindingId = 0); public: - bool recognizeIdentifier(const Expression& identifier) const; - ScopedSymbol getSymbol(const std::string& alias); + bool recognizeIdentifier(const Expression& identE); + ScopedSymbol findSymbolByAlias(const std::string& alias); }; /** * \brief AST node to represent a single function * * Holds an `__entry` entry code scope along with `guard` to denote the different specializations. * \sa xreate::AST */ class Function { friend class Expression; friend class CodeScope; friend class AST; public: Function(const Atom& name); /** * \brief Adds function arguments */ void addBinding(Atom && name, Expression&& argument, const VNameId hintBindingId=0); /** * \brief Adds additional function annotations */ void addTag(Expression&& tag, const TagModifier mod); const std::string& getName() const; const std::map& getTags() const; CodeScope* getEntryScope() const; CodeScope* __entry; std::string __name; Expression guard; private: std::map __tags; }; class ExternData; typedef Expanded ExpandedType; struct TypeInferred{}; template<> struct AttachmentsDict { typedef ExpandedType Data; static const unsigned int key = 11; }; enum ASTInterface { CFA, DFA, Extern, Adhoc }; struct FunctionSpecialization { std::string guard; size_t id; }; struct FunctionSpecializationQuery { std::unordered_set context; }; template<> struct AttachmentsId{ static unsigned int getId(const Expression& expression){ return expression.id; } }; template<> struct AttachmentsId{ static unsigned int getId(const Symbol& s){ return s.scope->__declarations.at(s.identifier).id; } }; template<> struct AttachmentsId{ static unsigned int getId(const ManagedFnPtr& f){ const Symbol symbolFunction{ScopedSymbol::RetSymbol, f->getEntryScope()}; return AttachmentsId::getId(symbolFunction); } }; template<> struct AttachmentsId{ static unsigned int getId(const CodeScope* scope){ const Symbol symbolScope{ScopedSymbol::RetSymbol, scope}; return AttachmentsId::getId(symbolScope); } }; template<> struct AttachmentsId{ static unsigned int getId(const unsigned int id){ return id; } }; class TypeResolver; enum class IntrinsicFn { ARR_INIT, REC_FIELDS }; namespace details { namespace inconsistent { /** * \brief AST in an inconsistent form during construction * * Represents AST under construction(**inconsistent state**). * \attention Clients should use rather xreate::AST unless client's code explicitly works with Syntax Tree during construction. * * Typically an instance is created by xreate::XreateManager only and filled out by the parser * \sa xreate::XreateManager::prepare(std::string&&) */ class AST { friend class xreate::TypeResolver; public: AST(); /** * \brief Adds new function to AST * \param f Function to register */ void add(Function* f); /** * \brief Adds new declarative rule to AST * \param r Declarative Rule */ void add(MetaRuleAbstract* r); /** \brief Registers new code block */ ManagedScpPtr add(CodeScope* scope); /** * \brief Add new type to AST * @param t Type definition * @param alias Typer name */ void add(TypeAnnotation t, Atom alias); /** \brief Current module's name */ std::string getModuleName(); /** * \brief Looks for function with given name * \param name Function name to find * \note Requires that only one function exists under given name * \return Found function */ ManagedPtr findFunction(const std::string& name); /** \brief Returns all function in AST */ std::list getAllFunctions() const; /** * \brief Returns all specializations of a function with a given name * \param fnName function to find * \return list of found function specializations */ std::list getFnSpecializations(const std::string& fnName) const; /** * \return First element in Functions/Scopes/Rules list depending on template parameter * \tparam Target either Function or CodeScope or MetaRuleAbstract */ template ManagedPtr begin(); /** * \brief Performs all necessary steps after AST is built * * Performs all finalization steps and moves AST into consistent state represented by xreate::AST * \sa xreate::AST * \return AST in consistent state */ xreate::AST* finalize(); typedef std::multimap FUNCTIONS_REGISTRY; //std::list __externdata; std::list __dfadata; //TODO move to more appropriate place std::list __rawImports; //TODO move to more appropriate place std::multimap __interfacesData; //TODO CFA data here. private: std::vector __rules; std::vector __functions; std::vector __scopes; FUNCTIONS_REGISTRY __dictFunctions; protected: std::map __registryTypes; public: /** * \brief Stores DFA scheme for later use by DFA Pass * * Treats expression as a DFA scheme and feeds to the DFA Pass later * \param data DFA Scheme * \sa xreate::DFAPass */ void addDFAData(Expression&& data); /** \brief Stores data for later use by xreate::ExternLayer */ void addExternData(ExternData&& entry); /** * \brief Generalized function to store particular data for later use by particular pass * \param interface Particular Interface * \param data Particular data */ void addInterfaceData(const ASTInterface& interface, Expression&& data); /**\name Symbols Recognition */ ///@{ public: //TODO revisit enums/variants, move to codescope /** * \brief Tries to find out whether expression is Variant constructor */ bool recognizeVariantConstructor(Expression& function); Atom recognizeVariantConstructor(Atom ident); /** * \brief Postpones unrecognized identifier for future second round of recognition * \param scope Code block identifier is encountered * \param id Identifier */ void postponeIdentifier(CodeScope* scope, const Expression& id); /** \brief Second round of identifiers recognition done right after AST is fully constructed */ void recognizePostponedIdentifiers(); void recognizeIntrinsic(Expression& fn) const; private: std::map> __registryVariants; static std::map __registryIntrinsics; std::set> __bucketUnrecognizedIdentifiers; static void initIntrinsics(); public: ///@} }; template<> ManagedPtr AST::begin(); template<> ManagedPtr AST::begin(); template<> ManagedPtr AST::begin(); } } // namespace details::incomplete /** * \brief AST in a consistent state * * AST has two mutually exclusive possible states: * - an inconsistent state while AST is under construction. Represented by xreate::details::inconsistent::AST * - a consistent state when AST is built and finalize() is invoked. * * This class represents a consistent state and should be used by clients unless client's code explicitly works with AST under construction. * Consistent AST enables access to additional functions(such as type management). * \sa xreate::details::inconsistent::AST */ class AST : public details::inconsistent::AST { public: AST() : details::inconsistent::AST() {} /** * \brief Computes fully expanded form of type by substituting all arguments and aliases * \param t Type to expand * \return Expdanded or normal form of type * \sa TypeAnnotation */ ExpandedType expandType(const TypeAnnotation &t) const; /** * Searches type by given name * \param name Typename to search * \return Expanded or normal form of desired type * \note if type name is not found returns new undefined type with this name */ ExpandedType findType(const std::string& name); /** * Invokes Type Inference Analysis to find out expanded(normal) form expressions's type * \sa typeinference.h * \param e * \param expectedT expected type * \return Type of expression */ ExpandedType getType(const Expression& e, const TypeAnnotation& expectedT = TypeAnnotation()); }; } #endif // AST_H diff --git a/cpp/src/compilation/control.cpp b/cpp/src/compilation/control.cpp index 6eb5fc6..7780fa9 100644 --- a/cpp/src/compilation/control.cpp +++ b/cpp/src/compilation/control.cpp @@ -1,393 +1,393 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * File: control.cpp * Author: pgess * * Created on June 26, 2016, 6:00 PM */ #include "analysis/typeinference.h" #include "compilation/control.h" #include "compilation/containers.h" #include "compilation/transformersaturation.h" #include "query/containers.h" #include "llvmlayer.h" #include "ast.h" using namespace std; using namespace llvm; using namespace xreate; using namespace xreate::containers; using namespace xreate::compilation; #define NAME(x) (hintRetVar.empty()? x : hintRetVar) #define UNUSED(x) (void)(x) #define EXPAND_CONTEXT \ LLVMLayer* llvm = context.pass->man->llvm; \ compilation::IBruteScope* scope = context.scope; \ compilation::IBruteFunction* function = context.function; ControlIR::ControlIR(compilation::Context ctx) : context(ctx), tyNum(static_cast (ctx.pass->man->llvm->toLLVMType(ExpandedType(TypeAnnotation(TypePrimitive::Int))))) { } Value* ControlIR::compileStructIndex(llvm::Value* aggregate, ExpandedType aggrT, const list& indices) { EXPAND_CONTEXT UNUSED(scope); UNUSED(function); TypesHelper types(llvm); llvm::Value* result = aggregate; assert(indices.size()); for (const string& indexField: indices){ const std::vector& tyfields = types.getRecordFields(aggrT); unsigned idx = -1; bool flagFound = false; for (unsigned i = 0, size = tyfields.size(); i < size; ++i) { if (tyfields.at(i) == indexField) { idx = i; flagFound = true; break; } } if (flagFound){ result = llvm->irBuilder.CreateExtractValue(result, llvm::ArrayRef{idx}); aggrT = typeinference::getSubtype(aggrT, indexField); } else { assert(false && "not found required struct field"); } } return result; //dereference pointer //if (types.isPointerT(t)) { // llvm::Value* addr = llvm->irBuilder.CreateConstGEP2_32(nullptr, aggregate, 0, i); // return llvm->irBuilder.CreateLoad(addr); //} } llvm::Value* ControlIR::compileFold(const Expression& loopE, const std::string& hintAlias) { EXPAND_CONTEXT assert(loopE.op == Operator::FOLD); AST* ast = context.pass->man->root; //initialization: const Expression aggrE = loopE.getOperands().at(0); const ExpandedType& aggrT = ast->getType(aggrE); llvm::Value* aggrRaw = context.scope->process(aggrE); IFwdIteratorIR* aggrItIR = IFwdIteratorIR::create(aggrE, aggrT, context); llvm::Value* idxBeginRaw = aggrItIR->begin(aggrRaw); llvm::Value* idxEndRaw = aggrItIR->end(aggrRaw); ExpandedType loopT = ast->getType(loopE); std::string elAlias = loopE.bindings[0]; std::string accumAlias = loopE.bindings[1]; const Expression& accumE = loopE.getOperands().at(1); ExpandedType accumT = ast->getType(accumE, loopT.get()); llvm::Type* accumRawT = llvm->toLLVMType(accumT); llvm::Value* accumInitRaw = scope->process(accumE, accumAlias, accumT.get()); llvm::BasicBlock *blockProlog = llvm::BasicBlock::Create(llvm->llvmContext, "fold_prlg", function->raw); llvm::BasicBlock *blockHeader = llvm::BasicBlock::Create(llvm->llvmContext, "fold_hdr", function->raw); llvm::BasicBlock *blockBody = llvm::BasicBlock::Create(llvm->llvmContext, "fold", function->raw); llvm::BasicBlock *blockFooter = llvm::BasicBlock::Create(llvm->llvmContext, "fold_ftr", function->raw); llvm::BasicBlock *blockEpilog = llvm::BasicBlock::Create(llvm->llvmContext, "fold_eplg", function->raw); std::unique_ptr transformerSaturation(new TransformerSaturation(blockProlog, context.pass->managerTransformations)); //Header: // * create phi llvm->irBuilder.SetInsertPoint(blockHeader); llvm::PHINode *accum = llvm->irBuilder.CreatePHI(accumRawT, 2, accumAlias); accum->addIncoming(accumInitRaw, blockProlog); llvm::PHINode *idxCurrentRaw = llvm->irBuilder.CreatePHI(idxBeginRaw->getType(), 2, "foldIt"); idxCurrentRaw->addIncoming(idxBeginRaw, blockProlog); // * loop checks Value* condRange = llvm->irBuilder.CreateICmpNE(idxCurrentRaw, idxEndRaw); llvm->irBuilder.CreateCondBr(condRange, blockBody, blockEpilog); //Body: llvm->irBuilder.SetInsertPoint(blockBody); CodeScope* scopeLoop = loopE.blocks.front(); compilation::IBruteScope* loopUnit = function->getBruteScope(scopeLoop); Value* elIn = aggrItIR->get(aggrRaw, idxCurrentRaw); loopUnit->bindArg(accum, move(accumAlias)); loopUnit->bindArg(elIn, move(elAlias)); Value* accumNext = loopUnit->compile(); // * Loop saturation checks bool flagSaturationTriggered = transformerSaturation->insertSaturationChecks(blockFooter, blockEpilog, context); llvm::BasicBlock* blockSaturation = llvm->irBuilder.GetInsertBlock(); if (!flagSaturationTriggered){ llvm->irBuilder.CreateBr(blockFooter); } //Footer: // * computing next iteration state llvm->irBuilder.SetInsertPoint(blockFooter); Value *itLoopNext = aggrItIR->advance(idxCurrentRaw); accum->addIncoming(accumNext, llvm->irBuilder.GetInsertBlock()); idxCurrentRaw->addIncoming(itLoopNext, llvm->irBuilder.GetInsertBlock()); llvm->irBuilder.CreateBr(blockHeader); //Prolog: llvm->irBuilder.SetInsertPoint(context.scope->lastBlockRaw); llvm->irBuilder.CreateBr(blockProlog); llvm->irBuilder.SetInsertPoint(blockProlog); llvm->irBuilder.CreateBr(blockHeader); // Epilog: llvm->irBuilder.SetInsertPoint(blockEpilog); if (!flagSaturationTriggered){ return accum; } llvm::PHINode* result = llvm->irBuilder.CreatePHI(accumRawT, 2, hintAlias); result->addIncoming(accum, blockHeader); result->addIncoming(accumNext, blockSaturation); return result; } llvm::Value* ControlIR::compileFoldInf(const Expression& fold, const std::string& hintRetVar) { EXPAND_CONTEXT assert(fold.op == Operator::FOLD_INF); std::string accumName = fold.bindings[0]; llvm::Value* accumInit = scope->process(fold.getOperands()[0]); llvm::BasicBlock *blockBeforeLoop = llvm->irBuilder.GetInsertBlock(); llvm::BasicBlock *blockLoop = llvm::BasicBlock::Create(llvm->llvmContext, "foldinf", function->raw); llvm::BasicBlock *blockNext = llvm::BasicBlock::Create(llvm->llvmContext, "foldinf_next", function->raw); llvm::BasicBlock *blockAfterLoop = llvm::BasicBlock::Create(llvm->llvmContext, "foldinf_post", function->raw); std::unique_ptr transformerSaturation(new TransformerSaturation(blockBeforeLoop, context.pass->managerTransformations)); llvm->irBuilder.CreateBr(blockLoop); // * create phi llvm->irBuilder.SetInsertPoint(blockLoop); llvm::PHINode *accum = llvm->irBuilder.CreatePHI(accumInit->getType(), 2, accumName); accum->addIncoming(accumInit, blockBeforeLoop); // * loop body CodeScope* scopeLoop = fold.blocks.front(); compilation::IBruteScope* unitLoop = function->getBruteScope(scopeLoop); unitLoop->bindArg(accum, move(accumName)); Value* accumNext = unitLoop->compile(); // * Loop saturation checks bool flagSaturationTriggered = transformerSaturation->insertSaturationChecks(blockNext, blockAfterLoop, context); assert(flagSaturationTriggered); // * computing next iteration state llvm->irBuilder.SetInsertPoint(blockNext); accum->addIncoming(accumNext, llvm->irBuilder.GetInsertBlock()); llvm->irBuilder.CreateBr(blockLoop); // finalization: llvm->irBuilder.SetInsertPoint(blockAfterLoop); return accumNext; } llvm::Value* ControlIR::compileIf(const Expression& exprIf, const std::string& hintRetVar) { EXPAND_CONTEXT const Expression& condExpr = exprIf.getOperands()[0]; llvm::IRBuilder<>& builder = llvm->irBuilder; assert(builder.GetInsertBlock() == scope->lastBlockRaw); //initialization: llvm::BasicBlock *blockEpilog = llvm::BasicBlock::Create(llvm->llvmContext, "ifAfter", function->raw); llvm::BasicBlock *blockTrue = llvm::BasicBlock::Create(llvm->llvmContext, "ifTrue", function->raw); llvm::BasicBlock *blockFalse = llvm::BasicBlock::Create(llvm->llvmContext, "ifFalse", function->raw); llvm::Value* cond = scope->process(condExpr); builder.SetInsertPoint(blockTrue); CodeScope* scopeTrue = exprIf.blocks.front(); llvm::Value* resultTrue = function->getBruteScope(scopeTrue)->compile(); llvm::BasicBlock * blockTrueEnd = builder.GetInsertBlock(); builder.CreateBr(blockEpilog); builder.SetInsertPoint(blockFalse); CodeScope* scopeFalse = exprIf.blocks.back(); llvm::Value* resultFalse = function->getBruteScope(scopeFalse)->compile(); llvm::BasicBlock * blockFalseEnd = builder.GetInsertBlock(); builder.CreateBr(blockEpilog); builder.SetInsertPoint(scope->lastBlockRaw); llvm->irBuilder.CreateCondBr(cond, blockTrue, blockFalse); builder.SetInsertPoint(blockEpilog); - llvm::PHINode *ret = builder.CreatePHI(resultTrue->getType(), 2, NAME("if")); + llvm::PHINode *ret = builder.CreatePHI(resultTrue->getType(), 2, hintRetVar); ret->addIncoming(resultTrue, blockTrueEnd); ret->addIncoming(resultFalse, blockFalseEnd); return ret; } //TODO Switch: default variant no needed when all possible conditions are considered llvm::Value* ControlIR::compileSwitch(const Expression& exprSwitch, const std::string& hintRetVar) { EXPAND_CONTEXT UNUSED(function); AST* root = context.pass->man->root; llvm::IRBuilder<>& builder = llvm->irBuilder; assert(exprSwitch.operands.size() >= 2); assert(exprSwitch.operands[1].op == Operator::CASE_DEFAULT && "No default case in Switch Statement"); int countCases = exprSwitch.operands.size() - 1; llvm::BasicBlock* blockProlog = builder.GetInsertBlock(); llvm::BasicBlock *blockEpilog = llvm::BasicBlock::Create(llvm->llvmContext, "switchAfter", function->raw); builder.SetInsertPoint(blockEpilog); llvm::Type* exprSwitchType = llvm->toLLVMType(root->getType(exprSwitch)); - llvm::PHINode *ret = builder.CreatePHI(exprSwitchType, countCases, NAME("switch")); + llvm::PHINode *ret = builder.CreatePHI(exprSwitchType, countCases, hintRetVar); llvm::Type* typI8 = llvm::Type::getInt8Ty(llvm->llvmContext); builder.SetInsertPoint(blockProlog); llvm::Value * conditionSwitch = scope->process(exprSwitch.operands[0]); llvm::BasicBlock *blockDefault = llvm::BasicBlock::Create(llvm->llvmContext, "caseDefault", function->raw); llvm::SwitchInst * instructionSwitch = builder.CreateSwitch( typeinference::doAutomaticTypeConversion(conditionSwitch, typI8, builder), blockDefault, countCases); for (int size = exprSwitch.operands.size(), i = 2; i < size; ++i) { llvm::BasicBlock *blockCase = llvm::BasicBlock::Create(llvm->llvmContext, "case" + std::to_string(i), function->raw); llvm::Value* condCase = function->getBruteScope(exprSwitch.operands[i].blocks.front())->compile(); builder.SetInsertPoint(blockCase); llvm::Value* resultCase = function->getBruteScope(exprSwitch.operands[i].blocks.back())->compile(); builder.CreateBr(blockEpilog); ret->addIncoming(resultCase, builder.GetInsertBlock()); builder.SetInsertPoint(blockProlog); instructionSwitch->addCase( dyn_cast( typeinference::doAutomaticTypeConversion(condCase, typI8, builder)), blockCase); } //compile default block: builder.SetInsertPoint(blockDefault); CodeScope* scopeDefault = exprSwitch.operands[1].blocks.front(); llvm::Value* resultDefault = function->getBruteScope(scopeDefault)->compile(); builder.CreateBr(blockEpilog); ret->addIncoming(resultDefault, builder.GetInsertBlock()); builder.SetInsertPoint(blockEpilog); return ret; } llvm::Value* ControlIR::compileSwitchVariant(const Expression& exprSwitch, const std::string& hintRetVar) { EXPAND_CONTEXT UNUSED(function); AST* root = context.pass->man->root; llvm::IRBuilder<>& builder = llvm->irBuilder; llvm::Type* typI8= llvm::Type::getInt8Ty(llvm->llvmContext); const ExpandedType& typVariant = root->getType(exprSwitch.operands.at(0)); llvm::Type* typVariantRaw = llvm->toLLVMType(typVariant); assert(typVariant->__operands.size() == exprSwitch.operands.size() - 1 && "Ill-formed Switch Variant"); int casesCount = exprSwitch.operands.size(); llvm::BasicBlock* blockProlog = builder.GetInsertBlock(); llvm::BasicBlock *blockEpilog = llvm::BasicBlock::Create(llvm->llvmContext, "switchAfter", function->raw); builder.SetInsertPoint(blockEpilog); llvm::Type* resultType = llvm->toLLVMType(root->getType(exprSwitch)); - llvm::PHINode *ret = builder.CreatePHI(resultType, casesCount, NAME("switch")); + llvm::PHINode *ret = builder.CreatePHI(resultType, casesCount, hintRetVar); builder.SetInsertPoint(blockProlog); llvm::Value * conditionSwitchRaw = scope->process(exprSwitch.operands.at(0)); llvm::Value* idRaw = builder.CreateExtractValue(conditionSwitchRaw, llvm::ArrayRef({0})); //Dereference preparation const bool flagPrepareDerefence = std::any_of(typVariant->__operands.begin(), typVariant->__operands.end(), [](const TypeAnnotation& op){ return op.isValid(); }); llvm::Value* addrAsStorage = nullptr; if (flagPrepareDerefence){ assert(exprSwitch.bindings.size() && "Switch condition alias not found"); llvm::Type* typStorageRaw = llvm::cast(typVariantRaw)->getElementType(1); llvm::Value* storageRaw = builder.CreateExtractValue(conditionSwitchRaw, llvm::ArrayRef({1})); addrAsStorage = llvm->irBuilder.CreateAlloca(typStorageRaw); llvm->irBuilder.CreateStore(storageRaw, addrAsStorage); } llvm::SwitchInst * instructionSwitch = builder.CreateSwitch(idRaw, nullptr, casesCount); llvm::BasicBlock* blockDefaultUndefined; std::list::const_iterator scopeCaseIt = exprSwitch.blocks.begin(); for (int instancesSize = exprSwitch.operands.size()-1, instId = 0; instId < instancesSize; ++instId) { llvm::BasicBlock *blockCase = llvm::BasicBlock::Create(llvm->llvmContext, "case" + std::to_string(instId), function->raw); builder.SetInsertPoint(blockCase); IBruteScope* unitCase = function->getBruteScope(*scopeCaseIt); const ExpandedType& instType = ExpandedType(typVariant->__operands.at(instId)); //Actual variant derefence if (instType->isValid()) { string identCondition = exprSwitch.bindings.front(); llvm::Type* instTypeRaw = llvm->toLLVMType(instType); llvm::Value* addrAsInst = llvm->irBuilder.CreateBitOrPointerCast(addrAsStorage, instTypeRaw->getPointerTo()); llvm::Value* instRaw = llvm->irBuilder.CreateLoad(instTypeRaw, addrAsInst); const Symbol& identSymb = unitCase->bindArg(instRaw, move(identCondition)); Attachments::put(identSymb, instType); } llvm::Value* resultCase = function->getBruteScope(*scopeCaseIt)->compile(); builder.CreateBr(blockEpilog); ret->addIncoming(resultCase, blockDefaultUndefined = builder.GetInsertBlock()); builder.SetInsertPoint(blockProlog); instructionSwitch->addCase(dyn_cast(llvm::ConstantInt::get(typI8, exprSwitch.operands.at(instId+1).getValueDouble())), blockCase); ++scopeCaseIt; } instructionSwitch->setDefaultDest(blockDefaultUndefined); builder.SetInsertPoint(blockEpilog); return ret; } llvm::Value* ControlIR::compileConstantStringAsPChar(const string& data, const std::string& hintRetVar) { EXPAND_CONTEXT UNUSED(function); UNUSED(scope); Type* typPchar = PointerType::getUnqual(Type::getInt8Ty(llvm->llvmContext)); //ArrayType* typStr = (ArrayType*) (llvm->toLLVMType(ExpandedType(TypeAnnotation(tag_array, TypePrimitive::I8, size+1)))); /* std::vector chars; chars.reserve(size+1); for (size_t i=0; i< size; ++i){ chars[i] = ConstantInt::get(typI8, (unsigned char) data[i]); } chars[size] = ConstantInt::get(typI8, 0); */ Value* rawData = ConstantDataArray::getString(llvm->llvmContext, data); Value* rawPtrData = llvm->irBuilder.CreateAlloca(rawData->getType(), ConstantInt::get(Type::getInt32Ty(llvm->llvmContext), 1, false)); llvm->irBuilder.CreateStore(rawData, rawPtrData); return llvm->irBuilder.CreateCast(llvm::Instruction::BitCast, rawPtrData, typPchar, hintRetVar); } llvm::Value* ControlIR::compileSequence(const Expression &expr){ EXPAND_CONTEXT UNUSED(scope); UNUSED(llvm); llvm::Value* result; for(CodeScope* scope: expr.blocks){ result = function->getBruteScope(scope)->compile(); } return result; } diff --git a/cpp/src/compilation/decorators.h b/cpp/src/compilation/decorators.h index 4e78236..61b4f65 100644 --- a/cpp/src/compilation/decorators.h +++ b/cpp/src/compilation/decorators.h @@ -1,237 +1,254 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * File: scopedecorators.h * Author: pgess * * Created on February 24, 2017, 11:35 AM */ /** * \file scopedecorators.h * \brief Basic code block compilation xreate::compilation::IBruteScope decorators */ #ifndef SCOPEDECORATORS_H #define SCOPEDECORATORS_H #include "ast.h" #include "compilation/transformations.h" #include "analysis/typeinference.h" #include "compilation/demand.h" #include "compilation/polymorph.h" #include "compilation/targetinterpretation.h" #ifndef XREATE_CONFIG_MIN #include "compilation/versions.h" #include "compilation/polymorph.h" #endif #include namespace xreate { class CompilePass; namespace compilation { class IBruteScope; class IBruteFunction; /**\brief Provides caching ability for code scope compilation * \extends xreate::compilation::IBruteScope */ template class CachedScopeDecorator: public Parent{ - typedef CachedScopeDecorator SELF; + typedef CachedScopeDecorator SELF; public: - CachedScopeDecorator(const CodeScope* const codeScope, IBruteFunction* f, CompilePass* compilePass): Parent(codeScope, f, compilePass){} - - Symbol bindArg(llvm::Value* value, std::string&& alias) - { - //ensure existence of an alias - assert(Parent::scope->__identifiers.count(alias)); - - //memorize new value for an alias - ScopedSymbol id{Parent::scope->__identifiers.at(alias), versions::VERSION_NONE}; - __rawVars[id] = value; - - return Symbol{id, Parent::scope}; + CachedScopeDecorator(const CodeScope* const codeScope, IBruteFunction* f, CompilePass* compilePass): Parent(codeScope, f, compilePass){} + + Symbol + bindArg(llvm::Value* value, std::string&& alias) + { + //ensure existence of an alias + assert(Parent::scope->__identifiers.count(alias)); + + //memorize new value for an alias + ScopedSymbol id{Parent::scope->__identifiers.at(alias), versions::VERSION_NONE}; + __rawVars[id] = value; + + return Symbol{id, Parent::scope}; + } + + void + bindArg(llvm::Value* value, const ScopedSymbol& s) override{ + __rawVars[s] = value; + } + + void + bindExternalSymb(llvm::Value* value, const Symbol& s) override { + __rawExternals[s] = value; + } + + llvm::Value* + compile(const std::string& aliasBlock="") override{ + if (__rawVars.count(ScopedSymbol::RetSymbol)){ + return __rawVars[ScopedSymbol::RetSymbol]; } - void bindArg(llvm::Value* value, const ScopedSymbol& s) { - __rawVars[s] = value; - } + return Parent::compile(aliasBlock); + } - llvm::Value* compile(const std::string& aliasBlock="") override{ - if (__rawVars.count(ScopedSymbol::RetSymbol)){ - return __rawVars[ScopedSymbol::RetSymbol]; + llvm::Value* + processSymbol(const Symbol& s, std::string hintRetVar) override{ + if (Parent::function->isLambda){ + SELF* self = dynamic_cast(Parent::function->getEntry()); + if (self->__rawExternals.count(s)){ + return self->__rawExternals.at(s); } - - return Parent::compile(aliasBlock); } - llvm::Value* - processSymbol(const Symbol& s, std::string hintRetVar) override{ - const CodeScope* scope = s.scope; - SELF* self = dynamic_cast(Parent::function->getBruteScope(scope)); + const CodeScope* scope = s.scope; + SELF* self = dynamic_cast(Parent::function->getBruteScope(scope)); - if (self->__rawVars.count(s.identifier)){ - return self->__rawVars[s.identifier]; - } + if (self->__rawVars.count(s.identifier)){ + return self->__rawVars.at(s.identifier); + } - //Declaration could be overriden - /* - Expression declaration = CodeScope::getDefinition(s, true); - if (!declaration.isDefined()){ - assert(__declarationsOverriden.count(s.identifier)); - declaration = __declarationsOverriden[s.identifier]; + //Declaration could be overriden + /* + Expression declaration = CodeScope::getDefinition(s, true); + if (!declaration.isDefined()){ + assert(__declarationsOverriden.count(s.identifier)); + declaration = __declarationsOverriden[s.identifier]; - } else { - (false); //in case of binding there should be raws provided. - } + } else { + (false); //in case of binding there should be raws provided. } - */ - - llvm::Value* resultRaw = Parent::processSymbol(s, hintRetVar); - self->__rawVars.emplace(s.identifier, resultRaw); - return resultRaw; } + */ - void - overrideDeclarations(std::list> bindings){ - reset(); + llvm::Value* resultRaw = Parent::processSymbol(s, hintRetVar); + self->__rawVars.emplace(s.identifier, resultRaw); + return resultRaw; + } - for (auto entry: bindings){ - SELF* self = dynamic_cast(Parent::function->getBruteScope(entry.first.scope)); - assert(self == this); + void + overrideDeclarations(std::list> bindings){ + reset(); - self->__declarationsOverriden.emplace(entry.first.identifier, entry.second); - } - } + for (auto entry: bindings){ + SELF* self = dynamic_cast(Parent::function->getBruteScope(entry.first.scope)); + assert(self == this); - void registerChildScope(std::shared_ptr scope){ - __childScopes.push_back(scope); + self->__declarationsOverriden.emplace(entry.first.identifier, entry.second); } + } - void reset(){ - __rawVars.clear(); - __declarationsOverriden.clear(); - __childScopes.clear(); - } + void registerChildScope(std::shared_ptr scope){ + __childScopes.push_back(scope); + } + + void reset(){ + __rawVars.clear(); + __declarationsOverriden.clear(); + __childScopes.clear(); + __rawExternals.clear(); + } private: - std::unordered_map __declarationsOverriden; - std::unordered_map __rawVars; - std::list> __childScopes; + std::unordered_map __declarationsOverriden; + std::unordered_map __rawVars; + std::unordered_map __rawExternals; + std::list> __childScopes; }; /** \brief Provides automatic type conversion * \extends xreate::compilation::IBruteScope */ template class TypeConversionScopeDecorator: public Parent { public: TypeConversionScopeDecorator(const CodeScope* const codeScope, IBruteFunction* f, CompilePass* compilePass): Parent(codeScope, f, compilePass){} llvm::Value* process(const Expression& expr, const std::string& hintVarDecl="", const TypeAnnotation& expectedT = TypeAnnotation()) override { llvm::Value* resultR = Parent::process(expr, hintVarDecl, expectedT); if(!expr.type.isValid()) { return resultR; } ExpandedType exprT = Parent::pass->man->root->getType(expr); llvm::Type* exprTR = Parent::pass->man->llvm->toLLVMType(exprT, expr); return typeinference::doAutomaticTypeConversion(resultR, exprTR, Parent::pass->man->llvm->irBuilder); } }; #ifndef XREATE_CONFIG_MIN /**\brief The default code scope compilation implementation * \extends xreate::compilation::IBruteScope */ typedef CachedScopeDecorator< TypeConversionScopeDecorator< latex::LatexBruteScopeDecorator< polymorph::PolymorphBruteScopeDecorator< compilation::TransformationsScopeDecorator< interpretation::InterpretationScopeDecorator< versions::VersionsScopeDecorator< compilation::BasicBruteScope >>>>>>> DefaultCodeScopeUnit; } //end of compilation namespace struct CachedScopeDecoratorTag; struct VersionsScopeDecoratorTag; template<> struct DecoratorsDict{ typedef compilation::CachedScopeDecorator< compilation::TypeConversionScopeDecorator< latex::LatexBruteScopeDecorator< polymorph::PolymorphBruteScopeDecorator< compilation::TransformationsScopeDecorator< interpretation::InterpretationScopeDecorator< versions::VersionsScopeDecorator< compilation::BasicBruteScope >>>>>>> result; }; template<> struct DecoratorsDict{ typedef versions::VersionsScopeDecorator< compilation::BasicBruteScope > result; }; #else /**\brief The default code scope compilation implementation * \extends xreate::compilation::IBruteScope */ typedef CachedScopeDecorator< TypeConversionScopeDecorator< interpretation::InterpretationScopeDecorator< demand::DemandBruteScopeDecorator< polymorph::PolymorphBruteScopeDecorator< compilation::BasicBruteScope >>>>> DefaultCodeScopeUnit; } //end of compilation namespacef struct CachedScopeDecoratorTag; template<> struct DecoratorsDict{ typedef compilation::CachedScopeDecorator< compilation::TypeConversionScopeDecorator< interpretation::InterpretationScopeDecorator< demand::DemandBruteScopeDecorator< polymorph::PolymorphBruteScopeDecorator< compilation::BasicBruteScope >>>>> result; }; typedef demand::DemandBruteFnDecorator< //polymorph::PolymorphBruteFnDecorator< compilation::BasicBruteFunction > BruteFunctionDefault; #endif } //end of xreate #endif /* SCOPEDECORATORS_H */ diff --git a/cpp/src/compilation/lambdas.cpp b/cpp/src/compilation/lambdas.cpp index b82f971..0bed041 100644 --- a/cpp/src/compilation/lambdas.cpp +++ b/cpp/src/compilation/lambdas.cpp @@ -1,65 +1,71 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * File: lambdas.cpp * Author: pgess * * Created in April, 2020 */ #include "compilation/lambdas.h" #include "llvmlayer.h" #include "compilation/resources.h" using namespace xreate::compilation; using namespace std; unsigned LambdaBruteFn::__counter = 0; std::string LambdaBruteFn::prepareName(){ return string(LAMBDA_PREFIX) + "_" + __hintAlias + "_" + to_string(__counter++); } std::vector LambdaBruteFn::prepareSignature(){ return getScopeSignature(IBruteFunction::__entry); } llvm::Type* LambdaBruteFn::prepareResult(){ LLVMLayer* llvm = IBruteFunction::pass->man->llvm; AST* ast = IBruteFunction::pass->man->root; return llvm->toLLVMType(ast->getType(__entry->getBody())); } llvm::Function::arg_iterator LambdaBruteFn::prepareBindings(){ - CodeScope* entry = IBruteFunction::__entry; - IBruteScope* entryCompilation = IBruteFunction::getBruteScope(entry); + CodeScope* entrySc = IBruteFunction::__entry; + IBruteScope* entryBruteSc = IBruteFunction::getBruteScope(entrySc); llvm::Function::arg_iterator fargsI = IBruteFunction::raw->arg_begin(); - for (std::string &arg : entry->__bindings) { - ScopedSymbol argid{entry->__identifiers[arg], versions::VERSION_NONE}; + for (std::string &arg : entrySc->__bindings) { + ScopedSymbol argid{entrySc->__identifiers[arg], versions::VERSION_NONE}; - entryCompilation->bindArg(&*fargsI, argid); + entryBruteSc->bindArg(&*fargsI, argid); fargsI->setName(arg); ++fargsI; } + for (Symbol symbExtern: entrySc->boundExternalSymbs){ + entryBruteSc->bindExternalSymb(&*fargsI, symbExtern); + //fargsI->setName(arg); + ++fargsI; + } + return fargsI; } void LambdaBruteFn::applyAttributes(){ raw->addFnAttr(llvm::Attribute::AlwaysInline); } llvm::Function* LambdaIR::compile(CodeScope* body, const std::string& hintAlias){ LambdaBruteFn fnLambda(body, __pass, hintAlias); return fnLambda.compile(); } diff --git a/cpp/src/compilation/lambdas.h b/cpp/src/compilation/lambdas.h index 900b151..2f3f355 100644 --- a/cpp/src/compilation/lambdas.h +++ b/cpp/src/compilation/lambdas.h @@ -1,52 +1,55 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * File: lambdas.h * Author: pgess * * Created in April, 2020 */ #ifndef XREATE_LAMBDAS_H #define XREATE_LAMBDAS_H #include "pass/compilepass.h" namespace llvm { class Function; } namespace xreate { namespace compilation { class LambdaBruteFn: public IBruteFunction { public: LambdaBruteFn(CodeScope* entry, CompilePass* p, const std::string& hintAlias) - : IBruteFunction(entry, p), __hintAlias(hintAlias) {} + : IBruteFunction(entry, p), __hintAlias(hintAlias) { + IBruteFunction::isLambda = true; + } -protected: virtual std::string prepareName() override; + +protected: virtual std::vector prepareSignature() override; virtual llvm::Function::arg_iterator prepareBindings() override; virtual llvm::Type* prepareResult() override; virtual void applyAttributes() override; private: std::string __hintAlias; static unsigned __counter; }; class LambdaIR{ public: LambdaIR(CompilePass* p): __pass(p){} llvm::Function* compile(CodeScope* body, const std::string& hintAlias); private: compilation::Context __context; CompilePass* __pass; }; }} #endif //XREATE_LAMBDAS_H diff --git a/cpp/src/compilation/targetinterpretation.cpp b/cpp/src/compilation/targetinterpretation.cpp index 45605dd..d6f93b9 100644 --- a/cpp/src/compilation/targetinterpretation.cpp +++ b/cpp/src/compilation/targetinterpretation.cpp @@ -1,646 +1,646 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * File: targetinterpretation.cpp * Author: pgess * * Created on June 29, 2016, 6:45 PM */ /** * \file targetinterpretation.h * \brief Interpretation support. See more details on [Interpretation](/d/concepts/interpretation/) */ #include "compilation/targetinterpretation.h" #include "pass/interpretationpass.h" #include "analysis/typeinference.h" #include "llvmlayer.h" #include "compilation/decorators.h" #include "compilation/i12ninst.h" #include "compilation/intrinsics.h" #include #include #include using namespace std; using namespace xreate::compilation; namespace xreate{ namespace interpretation{ const Expression EXPRESSION_FALSE = Expression(Atom(0)); const Expression EXPRESSION_TRUE = Expression(Atom(1)); CodeScope* InterpretationScope::processOperatorIf(const Expression& expression) { const Expression& exprCondition = process(expression.getOperands()[0]); if (exprCondition == EXPRESSION_TRUE) { return expression.blocks.front(); } return expression.blocks.back(); } CodeScope* InterpretationScope::processOperatorSwitch(const Expression& expression) { const Expression& exprCondition = process(expression.operands[0]); bool flagHasDefault = expression.operands[1].op == Operator::CASE_DEFAULT; //TODO check that one and only one case variant is appropriate for (size_t size = expression.operands.size(), i = flagHasDefault ? 2 : 1; i < size; ++i) { const Expression& exprCase = process(expression.operands[i]); if (function->getScope((const CodeScope*) exprCase.blocks.front())->processScope() == exprCondition) { return exprCase.blocks.back(); } } if (flagHasDefault) { const Expression& exprCaseDefault = expression.operands[1]; return exprCaseDefault.blocks.front(); } assert(false && "Switch has no appropriate variant"); return nullptr; } CodeScope* InterpretationScope::processOperatorSwitchVariant(const Expression& expression) { const ExpandedType& conditionT = function->__pass->man->root->getType(expression.operands.at(0)); const Expression& conditionE = process(expression.operands.at(0)); assert(conditionE.op == Operator::VARIANT); const string& aliasS = expression.bindings.front(); unsigned caseExpectedId = (int) conditionE.getValueDouble(); auto itFoundValue = std::find_if(++expression.operands.begin(), expression.operands.end(), [caseExpectedId](const auto& caseActualE){ return (unsigned) caseActualE.getValueDouble() == caseExpectedId; }); assert(itFoundValue != expression.operands.end()); int caseScopeId = itFoundValue - expression.operands.begin() - 1; auto caseScopeRef = expression.blocks.begin(); std::advance(caseScopeRef, caseScopeId); InterpretationScope* scopeI12n = function->getScope(*caseScopeRef); if(conditionE.operands.size()) { Expression valueE(Operator::LIST, {}); valueE.operands = conditionE.operands; valueE.bindings = conditionT->__operands.at(caseExpectedId).fields; scopeI12n->overrideBindings({ {valueE, aliasS} }); }; return *caseScopeRef; } llvm::Value* InterpretationScope::processLate(const InterpretationOperator& op, const Expression& expression, const Context& context, const std::string& hintAlias) { switch(op) { case IF_INTERPRET_CONDITION: { CodeScope* scopeResult = processOperatorIf(expression); llvm::Value* result = context.function->getBruteScope(scopeResult)->compile(); return result; } case SWITCH_INTERPRET_CONDITION: { CodeScope* scopeResult = processOperatorSwitch(expression); llvm::Value* result = context.function->getBruteScope(scopeResult)->compile(); return result; } case SWITCH_VARIANT: { CodeScope* scopeResult = processOperatorSwitchVariant(expression); const Expression& condCrudeE = expression.operands.at(0); const Expression& condE = process(condCrudeE); const string identCondition = expression.bindings.front(); auto scopeCompilation = Decorators::getInterface( context.function->getBruteScope(scopeResult)); if(condE.operands.size()) { //override value Symbol symbCondition{ScopedSymbol{scopeResult->__identifiers.at(identCondition), versions::VERSION_NONE}, scopeResult}; scopeCompilation->overrideDeclarations({ {symbCondition, Expression(condE.operands.at(0))}} ); //set correct type for binding: const ExpandedType& typeVariant = function->__pass->man->root->getType(condCrudeE); int conditionIndex = condE.getValueDouble(); - ScopedSymbol symbolInternal = scopeResult->getSymbol(identCondition); + ScopedSymbol symbolInternal = scopeResult->findSymbolByAlias(identCondition); scopeResult->__declarations[symbolInternal].bindType(typeVariant->__operands.at(conditionIndex)); } llvm::Value* result = context.function->getBruteScope(scopeResult)->compile(); return result; } case SWITCH_LATE: { return nullptr; // latereasoning::LateReasoningCompiler compiler(dynamic_cast(this->function), context); // return compiler.processSwitchLateStatement(expression, ""); } case FOLD_INTERPRET_INPUT: { //initialization const Expression& containerE = process(expression.getOperands().at(0)); const TypeAnnotation& accumT = expression.type; assert(containerE.op == Operator::LIST); CodeScope* bodyScope = expression.blocks.front(); const string& elAlias = expression.bindings[0]; Symbol elS{ScopedSymbol{bodyScope->__identifiers.at(elAlias), versions::VERSION_NONE}, bodyScope}; const std::string& accumAlias = expression.bindings[1]; llvm::Value* accumRaw = context.scope->process(expression.getOperands().at(1), accumAlias, accumT); InterpretationScope* bodyI12n = function->getScope(bodyScope); auto bodyBrute = Decorators::getInterface(context.function->getBruteScope(bodyScope)); const std::vector& containerVec = containerE.getOperands(); for(size_t i = 0; i < containerVec.size(); ++i) { const Expression& elE = containerVec[i]; bodyI12n->overrideBindings({ {elE, elAlias} }); bodyBrute->overrideDeclarations({ {elS, elE} }); //resets bodyBrute bodyBrute->bindArg(accumRaw, string(accumAlias)); accumRaw = bodyBrute->compile(); } return accumRaw; } // case FOLD_INF_INTERPRET_INOUT: // { // } //TODO refactor as InterpretationCallStatement class case CALL_INTERPRET_PARTIAL: { const std::string &calleeName = expression.getValueString(); IBruteScope* scopeUnitSelf = context.scope; ManagedFnPtr callee = this->function->__pass->man->root->findFunction(calleeName); const I12nFunctionSpec& calleeData = FunctionInterpretationHelper::getSignature(callee); std::vector argsActual; PIFnSignature sig; sig.declaration = callee; for(size_t no = 0, size = expression.operands.size(); no < size; ++no) { const Expression& op = expression.operands[no]; if (calleeData.signature.at(no) == INTR_ONLY) { sig.bindings.push_back(process(op)); continue; } argsActual.push_back(scopeUnitSelf->process(op)); } TargetInterpretation* man = dynamic_cast (this->function->__pass); PIFunction* pifunction = man->getFunction(move(sig)); llvm::Function* raw = pifunction->compile(); boost::scoped_ptr statement(new BruteFnInvocation(raw, man->pass->man->llvm)); return (*statement)(move(argsActual)); } case QUERY_LATE: { return nullptr; // return IntrinsicQueryInstruction( // dynamic_cast(this->function)) // .processLate(expression, context); } default: break; } assert(false && "Unknown late interpretation operator"); return nullptr; } llvm::Value* InterpretationScope::compile(const Expression& expression, const Context& context, const std::string& hintAlias) { const InterpretationData& data = Attachments::get(expression); if (data.op != InterpretationOperator::NONE) { return processLate(data.op, expression, context, hintAlias); } Expression result = process(expression); return context.scope->process(result, hintAlias); } Expression InterpretationScope::process(const Expression& expression) { #ifndef NDEBUG if (expression.tags.count("bpoint")) { std::raise(SIGINT); } #endif PassManager* man = function->__pass->man; switch (expression.__state) { case Expression::INVALID: assert(false); case Expression::NUMBER: case Expression::STRING: return expression; case Expression::IDENT: { Symbol s = Attachments::get(expression); return Parent::processSymbol(s); } case Expression::COMPOUND: break; default: assert(false); } switch (expression.op) { case Operator::EQU: { const Expression& left = process(expression.operands[0]); const Expression& right = process(expression.operands[1]); if (left == right) return EXPRESSION_TRUE; return EXPRESSION_FALSE; } case Operator::NE: { const Expression& left = process(expression.operands[0]); const Expression& right = process(expression.operands[1]); if (left == right) return EXPRESSION_FALSE; return EXPRESSION_TRUE; } case Operator::LOGIC_AND: { assert(expression.operands.size() == 1); return process (expression.operands[0]); } // case Operator::LOGIC_OR: case Operator::CALL: { const std::string &fnName = expression.getValueString(); ManagedFnPtr fnAst = man->root->findFunction(fnName); InterpretationFunction* fnUnit = this->function->__pass->getFunction(fnAst); vector args; args.reserve(expression.getOperands().size()); for(size_t i = 0, size = expression.getOperands().size(); i < size; ++i) { args.push_back(process(expression.getOperands()[i])); } return fnUnit->process(args); } case Operator::CALL_INTRINSIC: { const Expression& opCallIntrCrude = expression; vector argsActual; argsActual.reserve(opCallIntrCrude.getOperands().size()); for(const auto& op: opCallIntrCrude.getOperands()) { argsActual.push_back(process(op)); } Expression opCallIntr(Operator::CALL_INTRINSIC, {}); opCallIntr.setValueDouble(opCallIntrCrude.getValueDouble()); opCallIntr.operands = argsActual; compilation::IntrinsicCompiler compiler(man); return compiler.interpret(opCallIntr); } case Operator::QUERY: { return Expression(); // return IntrinsicQueryInstruction(dynamic_cast(this->function)) // .process(expression); } case Operator::QUERY_LATE: { assert(false && "Can't be interpretated"); return Expression(); } case Operator::IF: { CodeScope* scopeResult = processOperatorIf(expression); return function->getScope(scopeResult)->processScope(); } case Operator::SWITCH: { CodeScope* scopeResult = processOperatorSwitch(expression); return function->getScope(scopeResult)->processScope(); } case Operator::SWITCH_VARIANT: { CodeScope* scopeResult = processOperatorSwitchVariant(expression); return function->getScope(scopeResult)->processScope(); } case Operator::VARIANT: { Expression result{Operator::VARIANT, {}}; result.setValueDouble(expression.getValueDouble()); for(const Expression& op: expression.operands){ result.operands.push_back(process(op)); } return result; } case Operator::INDEX: { Expression aggrE = process(expression.operands[0]); for (size_t keyId = 1; keyId < expression.operands.size(); ++keyId) { const Expression& keyE = process(expression.operands[keyId]); if (keyE.__state == Expression::STRING) { const string& fieldExpectedS = keyE.getValueString(); unsigned fieldId; for(fieldId = 0; fieldId < aggrE.bindings.size(); ++fieldId){ if (aggrE.bindings.at(fieldId) == fieldExpectedS){break;} } assert(fieldId < aggrE.bindings.size()); aggrE = Expression(aggrE.operands.at(fieldId)); continue; } if (keyE.__state == Expression::NUMBER) { int opId = keyE.getValueDouble(); aggrE = Expression(aggrE.operands.at(opId)); continue; } assert(false && "Inappropriate key"); } return aggrE; } case Operator::FOLD: { const Expression& exprInput = process(expression.getOperands()[0]); const Expression& exprInit = process(expression.getOperands()[1]); const std::string& argEl = expression.bindings[0]; const std::string& argAccum = expression.bindings[1]; InterpretationScope* body = function->getScope(expression.blocks.front()); Expression accum = exprInit; for(size_t size = exprInput.getOperands().size(), i = 0; i < size; ++i) { body->overrideBindings({ {exprInput.getOperands()[i], argEl}, {accum, argAccum} }); accum = body->processScope(); } return accum; } case Operator::LIST: case Operator::LIST_RANGE: { Expression result(expression.op,{}); result.operands.resize(expression.operands.size()); result.bindings = expression.bindings; int keyId = 0; for(const Expression& opCurrent : expression.operands) { result.operands[keyId++] = process(opCurrent); } return result; } // case Operator::MAP: { // break; // } default: break; } return expression; } InterpretationFunction* TargetInterpretation::getFunction(IBruteFunction* unit) { if (__dictFunctionsByUnit.count(unit)) { return __dictFunctionsByUnit.at(unit); } InterpretationFunction* f = new InterpretationFunction(unit->getASTFn(), this); __dictFunctionsByUnit.emplace(unit, f); assert(__functions.emplace(unit->getASTFn().id(), f).second); return f; } PIFunction* TargetInterpretation::getFunction(PIFnSignature&& sig) { auto f = __pifunctions.find(sig); if (f != __pifunctions.end()) { return f->second; } PIFunction* result = new PIFunction(PIFnSignature(sig), __pifunctions.size(), this); __pifunctions.emplace(move(sig), result); assert(__dictFunctionsByUnit.emplace(result->fnRaw, result).second); return result; } InterpretationScope* TargetInterpretation::transformContext(const Context& c) { return this->getFunction(c.function)->getScope(c.scope->scope); } llvm::Value* TargetInterpretation::compile(const Expression& expression, const Context& ctx, const std::string& hintAlias) { return transformContext(ctx)->compile(expression, ctx, hintAlias); } InterpretationFunction::InterpretationFunction(const ManagedFnPtr& function, Target* target) : Function(function, target) { } Expression InterpretationFunction::process(const std::vector& args) { InterpretationScope* body = getScope(__function->__entry); list> bindings; for(size_t i = 0, size = args.size(); i < size; ++i) { bindings.push_back(make_pair(args.at(i), body->scope->__bindings.at(i))); } body->overrideBindings(bindings); return body->processScope(); } // Partial function interpretation typedef BasicBruteFunction BruteFunction; class PIBruteFunction : public BruteFunction{ public: PIBruteFunction(ManagedFnPtr f, std::set&& arguments, size_t id, CompilePass* p) : BruteFunction(f, p), argumentsActual(move(arguments)), __id(id) { } + virtual std::string + prepareName() override { + return BruteFunction::prepareName() + "_" + std::to_string(__id); + } + protected: std::vector prepareSignature() override { LLVMLayer* llvm = BruteFunction::pass->man->llvm; AST* ast = BruteFunction::pass->man->root; CodeScope* entry = IBruteFunction::__entry; std::vector signature; for(size_t no : argumentsActual) { VNameId argId = entry->__identifiers.at(entry->__bindings.at(no)); ScopedSymbol arg{argId, versions::VERSION_NONE}; signature.push_back(llvm->toLLVMType(ast->expandType(entry->__declarations.at(arg).type))); } return signature; } llvm::Function::arg_iterator prepareBindings() override{ CodeScope* entry = IBruteFunction::__entry; IBruteScope* entryCompilation = BruteFunction::getBruteScope(entry); llvm::Function::arg_iterator fargsI = BruteFunction::raw->arg_begin(); for(size_t no : argumentsActual) { ScopedSymbol arg{entry->__identifiers.at(entry->__bindings.at(no)), versions::VERSION_NONE}; entryCompilation->bindArg(&*fargsI, arg); fargsI->setName(entry->__bindings.at(no)); ++fargsI; } return fargsI; } - virtual std::string - prepareName() override { - return BruteFunction::prepareName() + "_" + std::to_string(__id); - } - private: std::set argumentsActual; size_t __id; } ; PIFunction::PIFunction(PIFnSignature&& sig, size_t id, TargetInterpretation* target) : InterpretationFunction(sig.declaration, target), instance(move(sig)) { const I12nFunctionSpec& functionData = FunctionInterpretationHelper::getSignature(instance.declaration); std::set argumentsActual; for (size_t no = 0, size = functionData.signature.size(); no < size; ++no) { if (functionData.signature.at(no) != INTR_ONLY) { argumentsActual.insert(no); } } fnRaw = new PIBruteFunction(instance.declaration, move(argumentsActual), id, target->pass); CodeScope* entry = instance.declaration->__entry; auto entryUnit = Decorators::getInterface<>(fnRaw->getEntry()); InterpretationScope* entryIntrp = InterpretationFunction::getScope(entry); list> bindingsPartial; list> declsPartial; for(size_t no = 0, sigNo = 0, size = entry->__bindings.size(); no < size; ++no) { if(functionData.signature.at(no) == INTR_ONLY) { bindingsPartial.push_back({instance.bindings[sigNo], entry->__bindings[no]}); VNameId argId = entry->__identifiers.at(entry->__bindings[no]); Symbol argSymbol{ScopedSymbol {argId, versions::VERSION_NONE}, entry}; declsPartial.push_back({argSymbol, instance.bindings[sigNo]}); ++sigNo; } } entryIntrp->overrideBindings(bindingsPartial); entryUnit->overrideDeclarations(declsPartial); } llvm::Function* PIFunction::compile() { llvm::Function* raw = fnRaw->compile(); return raw; } bool operator<(const PIFnSignature& lhs, const PIFnSignature& rhs) { if (lhs.declaration.id() != rhs.declaration.id()) { return lhs.declaration.id() < rhs.declaration.id(); } return lhs.bindings < rhs.bindings; } bool operator<(const PIFnSignature& lhs, PIFunction * const rhs) { return lhs < rhs->instance; } bool operator<(PIFunction * const lhs, const PIFnSignature& rhs) { return lhs->instance < rhs; } } } /** \class xreate::interpretation::InterpretationFunction * * Holds list of xreate::interpretation::InterpretationScope 's focused on interpretation of individual code scopes * * There is particulat subclass PIFunction intended to represent partially interpreted functions. *\sa TargetInterpretation, [Interpretation Concept](/d/concepts/interpretation/) */ /** \class xreate::interpretation::TargetInterpretation * * TargetInterpretation is executed during compilation and is intended to preprocess eligible for interpretation parts of a source code. * * Keeps a list of InterpretationFunction / PIFunction that represent interpretation for an individual functions. * * There is \ref InterpretationScopeDecorator that embeds interpretation to an overall compilation process. * \sa InterpretationPass, compilation::Target, [Interpretation Concept](/d/concepts/interpretation/) * */ diff --git a/cpp/src/pass/compilepass.cpp b/cpp/src/pass/compilepass.cpp index 4eb8b7f..cdd9647 100644 --- a/cpp/src/pass/compilepass.cpp +++ b/cpp/src/pass/compilepass.cpp @@ -1,895 +1,908 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * Author: pgess */ /** * \file compilepass.h * \brief Main compilation routine. See \ref xreate::CompilePass */ #include "compilepass.h" #include "transcendlayer.h" #include "ast.h" #include "llvmlayer.h" #include "compilation/decorators.h" #include "compilation/pointers.h" #include "analysis/typeinference.h" #include "compilation/control.h" #include "compilation/demand.h" #include "analysis/resources.h" #ifdef XREATE_ENABLE_EXTERN #include "ExternLayer.h" #endif #include "compilation/containers.h" #include "compilation/containers/arrays.h" #ifndef XREATE_CONFIG_MIN #include "query/containers.h" #include "pass/versionspass.h" #include "compilation/targetinterpretation.h" #endif #include #include using namespace std; using namespace llvm; using namespace xreate::typehints; using namespace xreate::containers; namespace xreate{ namespace compilation{ #define DEFAULT(x) (hintAlias.empty()? x: hintAlias) std::string BasicBruteFunction::prepareName() { AST* ast = IBruteFunction::pass->man->root; string name = ast->getFnSpecializations(__function->__name).size() > 1 ? __function->__name + std::to_string(__function.id()) : __function->__name; return name; } std::vector BasicBruteFunction::prepareSignature() { CodeScope* entry = __function->__entry; return getScopeSignature(entry); } llvm::Type* BasicBruteFunction::prepareResult() { LLVMLayer* llvm = IBruteFunction::pass->man->llvm; AST* ast = IBruteFunction::pass->man->root; CodeScope* entry = __function->__entry; return llvm->toLLVMType(ast->expandType(entry->__declarations.at(ScopedSymbol::RetSymbol).type)); } llvm::Function::arg_iterator BasicBruteFunction::prepareBindings() { CodeScope* entry = __function->__entry; IBruteScope* entryCompilation = IBruteFunction::getBruteScope(entry); llvm::Function::arg_iterator fargsI = IBruteFunction::raw->arg_begin(); for (std::string &arg : entry->__bindings) { ScopedSymbol argid{entry->__identifiers[arg], versions::VERSION_NONE}; entryCompilation->bindArg(&*fargsI, argid); fargsI->setName(arg); ++fargsI; } return fargsI; } void BasicBruteFunction::applyAttributes(){} IBruteScope::IBruteScope(const CodeScope * const codeScope, IBruteFunction* f, CompilePass* compilePass) : pass(compilePass), function(f), scope(codeScope), lastBlockRaw(nullptr) { } llvm::Value* BruteFnInvocation::operator()(std::vector&& args, const std::string& hintDecl) { if (__calleeTy) { auto argsFormalT = __calleeTy->params(); size_t sizeArgsF = __calleeTy->getNumParams(); assert(args.size() >= sizeArgsF); assert(__calleeTy->isVarArg() || args.size() == sizeArgsF); auto argFormalT = argsFormalT.begin(); for(size_t argId = 0; argId < args.size(); ++argId){ if(argFormalT != argsFormalT.end()){ args[argId] = typeinference::doAutomaticTypeConversion( args.at(argId), *argFormalT, llvm->irBuilder); ++argFormalT; } } } //Do not name function call that returns Void. std::string hintName = (!__calleeTy->getReturnType()->isVoidTy()) ? hintDecl : ""; return llvm->irBuilder.CreateCall(__calleeTy, __callee, args, hintName); } llvm::Value* HiddenArgsFnInvocation::operator() (std::vector&& args, const std::string& hintDecl) { args.insert(args.end(), __args.begin(), __args.end()); return __parent->operator ()(std::move(args), hintDecl); } class CallStatementInline : public IFnInvocation{ public: CallStatementInline(IBruteFunction* caller, IBruteFunction* callee, LLVMLayer* l) : __caller(caller), __callee(callee), llvm(l) { } llvm::Value* operator()(std::vector&& args, const std::string& hintDecl) { return nullptr; } private: IBruteFunction* __caller; IBruteFunction* __callee; LLVMLayer* llvm; bool isInline() { // Symbol ret = Symbol{0, function->__entry}; // bool flagOnTheFly = SymbolAttachments::get(ret, false); //TODO consider inlining return false; } } ; BasicBruteScope::BasicBruteScope(const CodeScope * const codeScope, IBruteFunction* f, CompilePass* compilePass) : IBruteScope(codeScope, f, compilePass) { } llvm::Value* BasicBruteScope::processSymbol(const Symbol& s, std::string hintRetVar) { Expression declaration = CodeScope::getDefinition(s); const CodeScope* scopeExternal = s.scope; IBruteScope* scopeBruteExternal = IBruteScope::function->getBruteScope(scopeExternal); assert(scopeBruteExternal->lastBlockRaw); llvm::Value* resultRaw; llvm::BasicBlock* blockOwn = pass->man->llvm->irBuilder.GetInsertBlock(); if (scopeBruteExternal->lastBlockRaw == blockOwn) { resultRaw = scopeBruteExternal->process(declaration, hintRetVar); scopeBruteExternal->lastBlockRaw = lastBlockRaw = pass->man->llvm->irBuilder.GetInsertBlock(); } else { pass->man->llvm->irBuilder.SetInsertPoint(scopeBruteExternal->lastBlockRaw); resultRaw = scopeBruteExternal->processSymbol(s, hintRetVar); pass->man->llvm->irBuilder.SetInsertPoint(blockOwn); } return resultRaw; } IFnInvocation* BasicBruteScope::findFunction(const Expression& opCall) { const std::string& calleeName = opCall.getValueString(); LLVMLayer* llvm = pass->man->llvm; const std::list& specializations = pass->man->root->getFnSpecializations(calleeName); #ifdef XREATE_ENABLE_EXTERN //if no specializations registered - check external function if (specializations.size() == 0) { llvm::Function* external = llvm->layerExtern->lookupFunction(calleeName); llvm::outs() << "Debug/External function: " << calleeName; external->getType()->print(llvm::outs(), true); llvm::outs() << "\n"; return new BruteFnInvocation(external, llvm); } #endif //There should be only one specialization without any valid guards at this point return new BruteFnInvocation(pass->getBruteFn( pass->man->root->findFunction(calleeName))->compile(), llvm); } //DISABLEDFEATURE transformations // if (pass->transformations->isAcceptable(expr)){ // return pass->transformations->transform(expr, result, ctx); // } llvm::Value* BasicBruteScope::process(const Expression& expr, const std::string& hintAlias, const TypeAnnotation& expectedT) { llvm::Value *leftRaw; llvm::Value *rightRaw; LLVMLayer& l = *pass->man->llvm; Context ctx{this, function, pass}; xreate::compilation::ControlIR controlIR = xreate::compilation::ControlIR({this, function, pass}); switch (expr.op) { case Operator::ADD: case Operator::SUB: case Operator::MUL: case Operator::MOD: case Operator::DIV: case Operator::EQU: case Operator::LSS: case Operator::GTR: case Operator::NE: case Operator::LSE: case Operator::GTE: assert(expr.__state == Expression::COMPOUND); assert(expr.operands.size() == 2); leftRaw = process(expr.operands.at(0)); rightRaw = process(expr.operands.at(1)); break; default:; } switch (expr.op) { case Operator::AND: { assert(expr.operands.size()); llvm::Value* resultRaw = process(expr.operands.at(0)); if (expr.operands.size() == 1) return resultRaw; for(size_t i=1; i< expr.operands.size()-1; ++i){ resultRaw = l.irBuilder.CreateAnd(resultRaw, process(expr.operands.at(i))); } return l.irBuilder.CreateAnd(resultRaw, process(expr.operands.at(expr.operands.size()-1)), hintAlias); } case Operator::OR: { assert(expr.operands.size()); llvm::Value* resultRaw = process(expr.operands.at(0)); if (expr.operands.size() == 1) return resultRaw; for(size_t i=1; i< expr.operands.size()-1; ++i){ resultRaw = l.irBuilder.CreateOr(resultRaw, process(expr.operands.at(i))); } return l.irBuilder.CreateOr(resultRaw, process(expr.operands.at(expr.operands.size()-1)), hintAlias); } case Operator::ADD: { - return l.irBuilder.CreateAdd(leftRaw, rightRaw, DEFAULT("addv")); + return l.irBuilder.CreateAdd(leftRaw, rightRaw, hintAlias); } case Operator::SUB: - return l.irBuilder.CreateSub(leftRaw, rightRaw, DEFAULT("tmp_sub")); + return l.irBuilder.CreateSub(leftRaw, rightRaw, hintAlias); break; case Operator::MUL: - return l.irBuilder.CreateMul(leftRaw, rightRaw, DEFAULT("tmp_mul")); + return l.irBuilder.CreateMul(leftRaw, rightRaw, hintAlias); break; case Operator::DIV: - if (leftRaw->getType()->isIntegerTy()) return l.irBuilder.CreateSDiv(leftRaw, rightRaw, DEFAULT("tmp_div")); - if (leftRaw->getType()->isFloatingPointTy()) return l.irBuilder.CreateFDiv(leftRaw, rightRaw, DEFAULT("tmp_div")); + if (leftRaw->getType()->isIntegerTy()) return l.irBuilder.CreateSDiv(leftRaw, rightRaw, hintAlias); + if (leftRaw->getType()->isFloatingPointTy()) return l.irBuilder.CreateFDiv(leftRaw, rightRaw, hintAlias); break; case Operator::MOD:{ return l.irBuilder.CreateSRem(leftRaw, rightRaw, hintAlias); } case Operator::EQU: { - if (leftRaw->getType()->isIntegerTy()) return l.irBuilder.CreateICmpEQ(leftRaw, rightRaw, DEFAULT("tmp_equ")); - if (leftRaw->getType()->isFloatingPointTy()) return l.irBuilder.CreateFCmpOEQ(leftRaw, rightRaw, DEFAULT("tmp_equ")); + if (leftRaw->getType()->isIntegerTy()) return l.irBuilder.CreateICmpEQ(leftRaw, rightRaw, hintAlias); + if (leftRaw->getType()->isFloatingPointTy()) return l.irBuilder.CreateFCmpOEQ(leftRaw, rightRaw, hintAlias); const ExpandedType& leftT = pass->man->root->getType(expr.operands[0]); const ExpandedType& rightT = pass->man->root->getType(expr.operands[1]); if(leftT->__operator == TypeOperator::VARIANT && rightT->__operator == TypeOperator::VARIANT){ llvm::Type* selectorT = llvm::cast(leftRaw->getType())->getElementType(0); llvm::Value* leftUnwapped = typeinference::doAutomaticTypeConversion(leftRaw, selectorT, l.irBuilder); llvm::Value* rightUnwapped = typeinference::doAutomaticTypeConversion(rightRaw, selectorT, l.irBuilder); - return l.irBuilder.CreateICmpEQ(leftUnwapped, rightUnwapped, DEFAULT("tmp_equ")); + return l.irBuilder.CreateICmpEQ(leftUnwapped, rightUnwapped, hintAlias); } break; } case Operator::NE: - return l.irBuilder.CreateICmpNE(leftRaw, rightRaw, DEFAULT("tmp_ne")); + return l.irBuilder.CreateICmpNE(leftRaw, rightRaw, hintAlias); break; case Operator::LSS: - return l.irBuilder.CreateICmpSLT(leftRaw, rightRaw, DEFAULT("tmp_lss")); + return l.irBuilder.CreateICmpSLT(leftRaw, rightRaw, hintAlias); break; case Operator::LSE: - return l.irBuilder.CreateICmpSLE(leftRaw, rightRaw, DEFAULT("tmp_lse")); + return l.irBuilder.CreateICmpSLE(leftRaw, rightRaw, hintAlias); break; case Operator::GTR: - return l.irBuilder.CreateICmpSGT(leftRaw, rightRaw, DEFAULT("tmp_gtr")); + return l.irBuilder.CreateICmpSGT(leftRaw, rightRaw, hintAlias); break; case Operator::GTE: - return l.irBuilder.CreateICmpSGE(leftRaw, rightRaw, DEFAULT("tmp_gte")); + return l.irBuilder.CreateICmpSGE(leftRaw, rightRaw, hintAlias); break; case Operator::NEG: { leftRaw = process(expr.operands[0]); ExpandedType leftTy = pass->man->root->getType(expr.operands[0]); if (leftTy->__value == TypePrimitive::Bool){ return l.irBuilder.CreateNot(leftRaw, hintAlias); } else { return l.irBuilder.CreateNeg(leftRaw, hintAlias); } break; } case Operator::CALL: { assert(expr.__state == Expression::COMPOUND); shared_ptr callee(findFunction(expr)); const std::string& nameCallee = expr.getValueString(); //prepare arguments std::vector args; args.reserve(expr.operands.size()); std::transform(expr.operands.begin(), expr.operands.end(), std::inserter(args, args.end()), [this](const Expression & operand) { return process(operand); } ); - return (*callee)(move(args), DEFAULT("res_" + nameCallee)); + return (*callee)(move(args), hintAlias); } case Operator::IF: { - return controlIR.compileIf(expr, DEFAULT("tmp_if")); + return controlIR.compileIf(expr, hintAlias); } case Operator::SWITCH: { - return controlIR.compileSwitch(expr, DEFAULT("tmp_switch")); + return controlIR.compileSwitch(expr, hintAlias); } case Operator::LOGIC_AND: { assert(expr.operands.size() == 1); return process(expr.operands[0]); } case Operator::LIST: //init record or array { ExpandedType exprT = l.ast->getType(expr, expectedT); TypesHelper helper(pass->man->llvm); enum {RECORD, ARRAY} kind; if (helper.isArrayT(exprT)){ kind = ARRAY; } else if (helper.isRecordT(exprT)){ kind = RECORD; } else { assert(false && "Inapproriate type"); } #ifdef XREATE_ENABLE_EXTERN if (exprT->__operator == TypeOperator::ALIAS){ if (l.layerExtern->isArrayType(exprT->__valueCustom)){ flagIsArray = true; break; } if (l.layerExtern->isRecordType(exprT->__valueCustom)){ flagIsArray = false; break; } assert(false && "Inapproriate external type"); } #endif switch(kind){ case RECORD:{ const std::vector fieldsFormal = helper.getRecordFields(exprT); containers::RecordIR irRecords(ctx); llvm::StructType *recordTRaw = llvm::cast(l.toLLVMType(exprT)); llvm::Value *resultRaw = irRecords.init(recordTRaw); return irRecords.update(resultRaw, exprT, expr); } case ARRAY: { std::unique_ptr containerIR( containers::IContainersIR::create(expr, expectedT, ctx)); llvm::Value* aggrRaw = containerIR->init(hintAlias); return containerIR->update(aggrRaw, expr, hintAlias); } } break; }; case Operator::LIST_RANGE: { containers::RangeIR compiler(ctx); const ExpandedType& aggrT = pass->man->root->getType(expr); return compiler.init(expr, aggrT, hintAlias); }; case Operator::MAP: { assert(expr.blocks.size()); containers::ImplementationType implType = containers::IContainersIR::getImplementation(expr, pass->man->root); switch(implType){ case containers::ImplementationType::SOLID: { ExpandedType exprT = pass->man->root->getType(expr, expectedT); ArrayHint hint = find(expr, ArrayHint{}); containers::ArrayIR compiler(exprT, hint, ctx); - return compiler.operatorMap(expr, DEFAULT("map")); + return compiler.operatorMap(expr, hintAlias); } case containers::ImplementationType::ON_THE_FLY:{ FlyHint hint = find(expr, {}); containers::FlyIR compiler(hint, ctx); - return compiler.operatorMap(expr, DEFAULT("map")); + return compiler.operatorMap(expr, hintAlias); } default: break; } assert(false && "Operator MAP does not support this container impl"); return nullptr; }; case Operator::FOLD: { - return controlIR.compileFold(expr, DEFAULT("fold")); + return controlIR.compileFold(expr, hintAlias); }; case Operator::FOLD_INF: { - return controlIR.compileFoldInf(expr, DEFAULT("fold")); + return controlIR.compileFoldInf(expr, hintAlias); }; case Operator::INDEX: { assert(expr.operands.size() > 1); const Expression& aggrE = expr.operands[0]; const ExpandedType& aggrT = pass->man->root->getType(aggrE); llvm::Value* aggrRaw = process(aggrE); switch (aggrT->__operator) { case TypeOperator::RECORD: { list fieldsList; for(auto opIt = ++expr.operands.begin(); opIt!=expr.operands.end(); ++opIt){ fieldsList.push_back(getIndexStr(*opIt)); } return controlIR.compileStructIndex(aggrRaw, aggrT, fieldsList); }; case TypeOperator::ARRAY: { std::vector indexes; std::transform(++expr.operands.begin(), expr.operands.end(), std::inserter(indexes, indexes.end()), [this] (const Expression & op) { return process(op); } ); std::unique_ptr containersIR( containers::IContainersIR::create(aggrE, expectedT, ctx) ); containers::ArrayIR* arraysIR = static_cast(containersIR.get()); return arraysIR->get(aggrRaw, indexes, hintAlias); }; default: assert(false); } }; case Operator::CALL_INTRINSIC: { // const std::string op = expr.getValueString(); // // if (op == "copy") { // llvm::Value* result = process(expr.getOperands().at(0)); // // auto decoratorVersions = Decorators::getInterface(this); // llvm::Value* storage = decoratorVersions->processIntrinsicInit(result->getType()); // decoratorVersions->processIntrinsicCopy(result, storage); // // return l.irBuilder.CreateLoad(storage, hintAlias); // } assert(false && "undefined intrinsic"); } case Operator::QUERY: case Operator::QUERY_LATE: { assert(false && "Should be processed by interpretation"); } case Operator::VARIANT: { const ExpandedType& typResult = pass->man->root->getType(expr); llvm::Type* typResultRaw = l.toLLVMType(typResult); llvm::Type* typIdRaw = llvm::cast(typResultRaw)->getElementType(0); uint64_t id = expr.getValueDouble(); llvm::Value* resultRaw = llvm::UndefValue::get(typResultRaw); resultRaw = l.irBuilder.CreateInsertValue(resultRaw, llvm::ConstantInt::get(typIdRaw, id), llvm::ArrayRef({0})); const ExpandedType& typVariant = ExpandedType(typResult->__operands.at(id)); llvm::Type* typVariantRaw = l.toLLVMType(typVariant); llvm::Value* variantRaw = llvm::UndefValue::get(typVariantRaw); assert(expr.operands.size() == typVariant->__operands.size() && "Wrong variant arguments count"); if (!typVariant->__operands.size()) return resultRaw; for (unsigned int fieldId = 0; fieldId < expr.operands.size(); ++fieldId) { const ExpandedType& typField = ExpandedType(typVariant->__operands.at(fieldId)); Attachments::put(expr.operands.at(fieldId), typField); llvm::Value* fieldRaw = process(expr.operands.at(fieldId)); assert(fieldRaw); variantRaw = l.irBuilder.CreateInsertValue(variantRaw, fieldRaw, llvm::ArrayRef({fieldId})); } llvm::Type* typStorageRaw = llvm::cast(typResultRaw)->getElementType(1); llvm::Value* addrAsStorage = l.irBuilder.CreateAlloca(typStorageRaw); llvm::Value* addrAsVariant = l.irBuilder.CreateBitOrPointerCast(addrAsStorage, typVariantRaw->getPointerTo()); l.irBuilder.CreateStore(variantRaw, addrAsVariant); llvm::Value* storageRaw = l.irBuilder.CreateLoad(typStorageRaw, addrAsStorage); resultRaw = l.irBuilder.CreateInsertValue(resultRaw, storageRaw, llvm::ArrayRef({1})); return resultRaw; } case Operator::SWITCH_VARIANT: { - return controlIR.compileSwitchVariant(expr, DEFAULT("tmpswitch")); + return controlIR.compileSwitchVariant(expr, hintAlias); } case Operator::SWITCH_LATE: { assert(false && "Instruction's compilation should've been redirected to interpretation"); return nullptr; } case Operator::SEQUENCE: { return controlIR.compileSequence(expr); } case Operator::UNDEF: { llvm::Type* typExprUndef = l.toLLVMType(pass->man->root->getType(expr, expectedT)); return llvm::UndefValue::get(typExprUndef); } case Operator::UPDATE: { TypesHelper helper(pass->man->llvm); containers::RecordIR irRecords(ctx); const Expression& aggrE = expr.operands.at(0); const Expression& updE = expr.operands.at(1); const ExpandedType& aggrT = pass->man->root->getType(aggrE); llvm::Value* aggrRaw = process(aggrE); if (helper.isRecordT(aggrT)){ return irRecords.update(aggrRaw, aggrT, updE); } if (helper.isArrayT(aggrT)){ if (updE.op == Operator::LIST_INDEX){ std::unique_ptr containersIR( containers::IContainersIR::create(aggrE, TypeAnnotation(), ctx )); return containersIR->update(aggrRaw, updE, hintAlias); } } assert(false); return nullptr; } case Operator::INVALID: assert(expr.__state != Expression::COMPOUND); switch (expr.__state) { case Expression::IDENT: { Symbol s = Attachments::get(expr); return processSymbol(s, expr.getValueString()); } case Expression::NUMBER: { llvm::Type* typConst = l.toLLVMType(pass->man->root->getType(expr, expectedT)); int literal = expr.getValueDouble(); if (typConst->isFloatingPointTy()) return llvm::ConstantFP::get(typConst, literal); if (typConst->isIntegerTy()) return llvm::ConstantInt::get(typConst, literal); assert(false && "Can't compile literal"); } case Expression::STRING: { - return controlIR.compileConstantStringAsPChar(expr.getValueString(), DEFAULT("tmp_str")); + return controlIR.compileConstantStringAsPChar(expr.getValueString(), hintAlias); }; default: { break; } }; break; default: break; } assert(false && "Can't compile expression"); return 0; } llvm::Value* BasicBruteScope::compile(const std::string& hintBlockDecl) { LLVMLayer* llvm = pass->man->llvm; if (!hintBlockDecl.empty()) { llvm::BasicBlock *block = llvm::BasicBlock::Create(llvm->llvmContext, hintBlockDecl, function->raw); pass->man->llvm->irBuilder.SetInsertPoint(block); } lastBlockRaw = pass->man->llvm->irBuilder.GetInsertBlock(); Symbol symbScope = Symbol{ScopedSymbol::RetSymbol, scope}; - return processSymbol(symbScope); + + //set hint for an entry scope + string retAlias = (scope->__parent)? "" : function->prepareName(); + return processSymbol(symbScope, retAlias); } IBruteScope::~IBruteScope() { } IBruteFunction::~IBruteFunction() { } llvm::Function* IBruteFunction::compile() { if (raw != nullptr) return raw; LLVMLayer* llvm = pass->man->llvm; llvm::IRBuilder<>& builder = llvm->irBuilder; string&& functionName = prepareName(); std::vector&& types = prepareSignature(); llvm::Type* expectedResultType = prepareResult(); llvm::FunctionType *ft = llvm::FunctionType::get(expectedResultType, types, false); raw = llvm::cast(llvm->module->getOrInsertFunction(functionName, ft)); prepareBindings(); applyAttributes(); const std::string& blockName = "entry"; llvm::BasicBlock* blockCurrent = builder.GetInsertBlock(); llvm::Value* result = getBruteScope(__entry)->compile(blockName); assert(result); //SECTIONTAG types/convert function ret value builder.CreateRet(typeinference::doAutomaticTypeConversion(result, expectedResultType, llvm->irBuilder)); if (blockCurrent) { builder.SetInsertPoint(blockCurrent); } llvm->moveToGarbage(ft); return raw; } IBruteScope* IBruteFunction::getBruteScope(const CodeScope * const scope) { if (__scopes.count(scope)) { auto result = __scopes.at(scope).lock(); if (result) { return result.get(); } } std::shared_ptr unit(pass->buildCodeScopeUnit(scope, this)); if (scope->__parent != nullptr) { auto parentUnit = Decorators::getInterface(getBruteScope(scope->__parent)); parentUnit->registerChildScope(unit); } else { __orphanedScopes.push_back(unit); } if (!__scopes.emplace(scope, unit).second) { __scopes[scope] = unit; } return unit.get(); } IBruteScope* IBruteFunction::getScopeUnit(ManagedScpPtr scope) { return getBruteScope(&*scope); } IBruteScope* IBruteFunction::getEntry() { return getBruteScope(__entry); } std::vector IBruteFunction::getScopeSignature(CodeScope* scope){ LLVMLayer* llvm = IBruteFunction::pass->man->llvm; AST* ast = IBruteFunction::pass->man->root; std::vector result; std::transform(scope->__bindings.begin(), scope->__bindings.end(), std::inserter(result, result.end()), - [llvm, ast, scope](const std::string & argAlias)->llvm::Type* { + [llvm, ast, scope](const std::string & argAlias)->llvm::Type* { assert(scope->__identifiers.count(argAlias)); ScopedSymbol argS{scope->__identifiers.at(argAlias), versions::VERSION_NONE}; const Expression& argE = scope->__declarations.at(argS); const ExpandedType& argT = ast->expandType(argE.type); return llvm->toLLVMType(argT, argE); }); + if(scope->trackExternalSymbs){ + std::transform(scope->boundExternalSymbs.begin(), scope->boundExternalSymbs.end(), std::inserter(result, result.end()), + [llvm, ast](const Symbol& argS){ + const Expression& argE = CodeScope::getDefinition(argS); + const ExpandedType& argT = ast->expandType(argE.type); + + return llvm->toLLVMType(argT, argE); + }); + } + return result; } template<> compilation::IBruteFunction* CompilePassCustomDecorators ::buildFunctionUnit(const ManagedFnPtr& function) { return new BruteFunctionDefault(function, this); } template<> compilation::IBruteScope* CompilePassCustomDecorators ::buildCodeScopeUnit(const CodeScope * const scope, IBruteFunction* function) { return new DefaultCodeScopeUnit(scope, function, this); } std::string BasicBruteScope::getIndexStr(const Expression& index){ switch(index.__state){ //named struct field case Expression::STRING: return index.getValueString(); break; //anonymous struct field case Expression::NUMBER: return to_string((int) index.getValueDouble()); break; default: assert(false && "Wrong index for a struct"); } return ""; } } // end of compilation compilation::IBruteFunction* CompilePass::getBruteFn(const ManagedFnPtr& function) { unsigned int id = function.id(); if (!functions.count(id)) { compilation::IBruteFunction* unit = buildFunctionUnit(function); functions.emplace(id, unit); return unit; } return functions.at(id); } void CompilePass::prepare(){ //Initialization: #ifndef XREATE_CONFIG_MIN #endif managerTransformations = new xreate::compilation::TransformationsManager(); targetInterpretation = new interpretation::TargetInterpretation(man, this); } void CompilePass::run() { prepare(); //Determine entry function: StaticModel modelEntry = man->transcend->query(analysis::FN_ENTRY_PREDICATE); if (man->options.requireEntryFn){ assert(modelEntry.size() && "Error: No entry function found"); assert(modelEntry.size() == 1 && "Error: Ambiguous entry function"); } if(modelEntry.size()){ string fnEntryName = std::get<0>(TranscendLayer::parse(modelEntry.begin()->second)); compilation::IBruteFunction* fnEntry = getBruteFn(man->root->findFunction(fnEntryName)); __fnEntryRaw = fnEntry->compile(); } //Compile exterior functions: StaticModel modelExterior = man->transcend->query(analysis::FN_EXTERIOR_PREDICATE); for(const auto entry: modelExterior){ const string& fnName = std::get<0>(TranscendLayer::parse(entry.second)); getBruteFn(man->root->findFunction(fnName))->compile(); } } llvm::Function* CompilePass::getEntryFunction() { return __fnEntryRaw; } void CompilePass::prepareQueries(TranscendLayer* transcend) { #ifndef XREATE_CONFIG_MIN transcend->registerQuery(new latex::LatexQuery(), QueryId::LatexQuery); #endif transcend->registerQuery(new containers::Query(), QueryId::ContainersQuery); transcend->registerQuery(new demand::DemandQuery(), QueryId::DemandQuery); transcend->registerQuery(new polymorph::PolymorphQuery(), QueryId::PolymorphQuery); } } //end of namespace xreate /** * \class xreate::CompilePass * \brief The owner of the compilation process. Performs fundamental compilation activities along with the xreate::compilation's routines * * xreate::CompilePass traverses over xreate::AST tree and produces executable code. * The pass performs compilation using the following data sources: * - %Attachments: the data gathered by the previous passes. See \ref xreate::Attachments. * - Transcend solutions accessible via queries. See \ref xreate::IQuery, \ref xreate::TranscendLayer. * * The pass generates a bytecode by employing \ref xreate::LLVMLayer(wrapper over LLVM toolchain). * Many compilation activities are delegated to more specific routines. Most notable delegated compilation aspects are: * - Containers support. See \ref xreate::containers. * - Latex compilation. See \ref xreate::latex. * - Interpretation support. See \ref xreate::interpretation. * - Loop saturation support. See \ref xreate::compilation::TransformationsScopeDecorator. * - External code interaction support. See \ref xreate::ExternLayer (wrapper over Clang library). * * \section adaptability_sect Adaptability * xreate::CompilePass's behaviour can be adapted in several ways: * - %Function Decorators to alter function-level compilation. See \ref xreate::compilation::IBruteFunction * - Code Block Decorators to alter code block level compilation. See \ref xreate::compilation::ICodeScopeUnit. * Default functionality defined by \ref xreate::compilation::DefaultCodeScopeUnit * - Targets to allow more versitile extensions. * Currently only xreate::interpretation::TargetInterpretation use Targets infrastructure. See \ref xreate::compilation::Target. * - Altering %function invocation. See \ref xreate::compilation::IFnInvocation. * * Clients are free to construct a compiler instantiation with the desired decorators by using \ref xreate::compilation::CompilePassCustomDecorators. * As a handy alias, `CompilePassCustomDecorators` constructs the default compiler. * - */ + */ \ No newline at end of file diff --git a/cpp/src/pass/compilepass.h b/cpp/src/pass/compilepass.h index e7f2238..d050a82 100644 --- a/cpp/src/pass/compilepass.h +++ b/cpp/src/pass/compilepass.h @@ -1,233 +1,236 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * Author: pgess * * compilepass.h */ #ifndef COMPILEPASS_H #define COMPILEPASS_H #include "abstractpass.h" #include "llvm/IR/Function.h" namespace xreate { class TranscendLayer; class CompilePass; class LLVMLayer; namespace interpretation{ class TargetInterpretation; } } namespace xreate { namespace compilation { class IBruteScope; class IBruteFunction; class TransformationsManager; /** \brief Holds current position in %AST while traversing*/ struct Context{ IBruteScope* scope; IBruteFunction* function; CompilePass* pass; }; /** \brief Interface for custom function invocation operation compilation * \details Default implementation is xreate::compilation::BruteFnInvocation */ class IFnInvocation { public: /** \brief Returns result of custom function invocation for the given arguments*/ virtual llvm::Value* operator() (std::vector&& args, const std::string& hintDecl="") = 0; }; /** \brief Default IFnInvocation implementation */ class BruteFnInvocation: public IFnInvocation{ public: BruteFnInvocation(llvm::Function* callee, LLVMLayer* l) : __callee(callee), __calleeTy(callee->getFunctionType()), llvm(l) {} BruteFnInvocation(llvm::Value* callee, llvm::FunctionType* ty, LLVMLayer* l) : __callee(callee), __calleeTy(ty), llvm(l) {} /** \brief Makes type conversions and returns LLVM call statement with given arguments*/ llvm::Value* operator() (std::vector&& args, const std::string& hintDecl=""); protected: llvm::Value* __callee; llvm::FunctionType* __calleeTy; LLVMLayer* llvm; }; /** \brief %Function invocation operator decorator to handle latex enabled functions with hidden extra arguments */ class HiddenArgsFnInvocation : public compilation::IFnInvocation{ public: HiddenArgsFnInvocation(std::vector args, compilation::IFnInvocation *parent) : __args(args), __parent(parent){} llvm::Value *operator()(std::vector &&args, const std::string &hintDecl = ""); private: std::vector __args; compilation::IFnInvocation *__parent; }; /** \brief Interface to allow modification of CodeScope compilation * \details Default implementation defined in xreate::compilation::DefaultCodeScopeUnit */ class IBruteScope{ public: CompilePass* const pass; IBruteFunction* const function; const CodeScope* const scope; llvm::BasicBlock* lastBlockRaw; IBruteScope(const CodeScope* const codeScope, IBruteFunction* f, CompilePass* compilePass); virtual ~IBruteScope(); virtual llvm::Value* compile(const std::string& hintBlockDecl="")=0; virtual llvm::Value* processSymbol(const Symbol& s, std::string hintRetVar="")=0; virtual llvm::Value* process(const Expression& expr, const std::string& hintVarDecl="", const TypeAnnotation& expectedT = TypeAnnotation())=0; virtual Symbol bindArg(llvm::Value* value, std::string&& alias)=0; virtual void bindArg(llvm::Value* value, const ScopedSymbol& s)=0; + virtual void bindExternalSymb(llvm::Value*, const Symbol& s) = 0; virtual void reset() = 0; protected: /** \brief For subclasses to implement this method to define a function name resolution*/ virtual IFnInvocation* findFunction(const Expression& opCall)=0; }; /** \brief Minimal useful IBruteScope implementation suited for inheritance */ class BasicBruteScope: public IBruteScope{ public: BasicBruteScope(const CodeScope* const codeScope, IBruteFunction* f, CompilePass* compilePass); llvm::Value* processSymbol(const Symbol& s, std::string hintRetVar="") override; llvm::Value* process(const Expression& expr, const std::string& hintAlias="", const TypeAnnotation& expectedT = TypeAnnotation()) override; llvm::Value* compile(const std::string& hintBlockDecl="") override; protected: IFnInvocation* findFunction(const Expression& opCall) override; private: std::string getIndexStr(const Expression& index); }; /** \brief Interface to specify compilation of %Function */ class IBruteFunction{ public: - IBruteFunction(CodeScope* entry, CompilePass* p): pass(p), __entry(entry){} - virtual ~IBruteFunction(); + IBruteFunction(CodeScope* entry, CompilePass* p): + isLambda(false), pass(p), __entry(entry){} + virtual ~IBruteFunction(); - llvm::Function* compile(); + llvm::Function* compile(); + IBruteScope* getEntry(); + virtual ManagedFnPtr getASTFn() const {return ManagedFnPtr();}; + IBruteScope* getBruteScope(const CodeScope * const scope); + IBruteScope* getScopeUnit(ManagedScpPtr scope); + virtual std::string prepareName() = 0; - IBruteScope* getEntry(); - virtual ManagedFnPtr getASTFn() const {return ManagedFnPtr();}; - IBruteScope* getBruteScope(const CodeScope * const scope); - IBruteScope* getScopeUnit(ManagedScpPtr scope); + llvm::Function* raw = nullptr; + bool isLambda; - llvm::Function* raw = nullptr; - protected: - CompilePass* pass=nullptr; - CodeScope* __entry; - - virtual std::string prepareName() = 0; - virtual std::vector prepareSignature() = 0; - virtual llvm::Function::arg_iterator prepareBindings() = 0; - virtual llvm::Type* prepareResult() = 0; - virtual void applyAttributes() = 0; + CompilePass* pass=nullptr; + CodeScope* __entry; + + virtual std::vector prepareSignature() = 0; + virtual llvm::Function::arg_iterator prepareBindings() = 0; + virtual llvm::Type* prepareResult() = 0; + virtual void applyAttributes() = 0; private: - std::map> __scopes; - std::list> __orphanedScopes; + std::map> __scopes; + std::list> __orphanedScopes; protected: std::vector getScopeSignature(CodeScope* scope); }; /** \brief Minimal useful IBruteFunction implementation suited for inheritance */ class BasicBruteFunction: public IBruteFunction{ public: - BasicBruteFunction(ManagedFnPtr f, CompilePass* p) + BasicBruteFunction(ManagedFnPtr f, CompilePass* p) : IBruteFunction(f->getEntryScope(), p), __function(f) {} + std::string prepareName() override; + protected: - std::string prepareName() override; virtual std::vector prepareSignature() override; virtual llvm::Type* prepareResult() override; virtual llvm::Function::arg_iterator prepareBindings() override; virtual void applyAttributes() override; virtual ManagedFnPtr getASTFn() const {return __function;}; protected: ManagedFnPtr __function; }; } // end of namespace compilation class CompilePass : public AbstractPass { friend class compilation::BasicBruteScope; friend class compilation::IBruteFunction; public: compilation::TransformationsManager* managerTransformations; interpretation::TargetInterpretation* targetInterpretation; CompilePass(PassManager* manager): AbstractPass(manager) {} /** \brief Executes compilation process */ void run() override; /**\brief Returns compiled specified %Function * \details Executes function compilation or read cache if it's already done */ compilation::IBruteFunction* getBruteFn(const ManagedFnPtr& function); /**\brief Returns compiled main(entry) %Function in program */ llvm::Function* getEntryFunction(); /** \brief Initializes queries required by compiler. See xreate::IQuery, xreate::TranscendLayer */ static void prepareQueries(TranscendLayer* transcend); void prepare(); protected: virtual compilation::IBruteFunction* buildFunctionUnit(const ManagedFnPtr& function)=0; virtual compilation::IBruteScope* buildCodeScopeUnit(const CodeScope* const scope, compilation::IBruteFunction* function)=0; private: //TODO free `functions` in destructor std::map functions; llvm::Function* __fnEntryRaw = 0; }; namespace compilation{ /** \brief Constructs compiler with desired %Function and %Code Scope decorators. See adaptability in xreate::CompilePass*/ template class CompilePassCustomDecorators: public ::xreate::CompilePass{ public: CompilePassCustomDecorators(PassManager* manager): ::xreate::CompilePass(manager) {} virtual compilation::IBruteFunction* buildFunctionUnit(const ManagedFnPtr& function) override{ return new FUNCTION_DECORATOR(function, this); } virtual compilation::IBruteScope* buildCodeScopeUnit(const CodeScope* const scope, IBruteFunction* function) override{ return new SCOPE_DECORATOR(scope, function, this); } }; template<> compilation::IBruteFunction* CompilePassCustomDecorators::buildFunctionUnit(const ManagedFnPtr& function); template<> compilation::IBruteScope* CompilePassCustomDecorators::buildCodeScopeUnit(const CodeScope* const scope, IBruteFunction* function); }} //end of namespace xreate::compilation #endif // COMPILEPASS_H diff --git a/cpp/src/pass/interpretationpass.cpp b/cpp/src/pass/interpretationpass.cpp index 5f1d29e..5a7b9bb 100644 --- a/cpp/src/pass/interpretationpass.cpp +++ b/cpp/src/pass/interpretationpass.cpp @@ -1,563 +1,563 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * File: interpretationpass.cpp * Author: pgess * * Created on July 5, 2016, 5:21 PM */ /** * \file interpretationpass.h * \brief Interpretation analysis: determines what parts of a code could be interpreted */ #include "ast.h" #include "pass/interpretationpass.h" #include "compilation/targetinterpretation.h" #include "analysis/utils.h" #include "analysis/predefinedanns.h" #include //DEBT implement InterpretationPass purely in transcend //DEBT represent InterpretationPass as general type inference using namespace std; namespace xreate { template<> interpretation::InterpretationResolution defaultValue() { return interpretation::CMPL_ONLY; } namespace interpretation { enum InterpretationQuery { QUERY_INTR_ONLY, QUERY_CMPL_ONLY }; namespace details { template bool checkConstraints(InterpretationResolution flag) { return( (flag==INTR_ONLY&&FLAG_REQUIRED==QUERY_INTR_ONLY) ||(flag==CMPL_ONLY&&FLAG_REQUIRED==QUERY_CMPL_ONLY)); } InterpretationResolution recognizeTags(const map& tags) { std::list tagsL; auto predefined = analysis::PredefinedAnns::instance(); for(const auto& tag: tags){tagsL.push_back(tag.second);} const Expression& tagI12nE = analysis::findAnnById( (unsigned) analysis::PredefinedAnns::ExprAnnotations::I12N, ExpandedType(predefined.exprAnnsT), tagsL); if (!tagI12nE.isValid()) return ANY; analysis::PredefinedAnns::I12ModeTag modeI12n = (analysis::PredefinedAnns::I12ModeTag) tagI12nE.operands.at(0).getValueDouble(); switch(modeI12n){ case analysis::PredefinedAnns::I12ModeTag::ON: return INTR_ONLY; case analysis::PredefinedAnns::I12ModeTag::OFF: return CMPL_ONLY; } return ANY; } } InterpretationResolution unify(InterpretationResolution flag) { return flag; } template InterpretationResolution unify(FLAG_A flagA, FLAG_B flagB, FLAGS... flags) { if(flagA==ANY){ return unify(flagB, flags...); } if(flagB==ANY){ return unify(flagA, flags...); } assert(flagA==flagB); return flagA; } template bool checkConstraints(std::vector&& flags) { assert(flags.size()); InterpretationResolution flag=flags.front(); return details::checkConstraints(flag); } template bool checkConstraints(std::vector&& flags) { assert(flags.size()); InterpretationResolution flag=flags.front(); flags.pop_back(); if(details::checkConstraints(flag)){ return checkConstraints(move(flags)); } return false; } bool InterpretationData::isDefault() const { return(resolution==ANY&&op==NONE); } void recognizeTags(const Expression& e) { InterpretationData tag{details::recognizeTags(e.tags), NONE}; if(!tag.isDefault()) Attachments::put(e, tag); } InterpretationResolution recognizeTags(const ManagedFnPtr& f) { return details::recognizeTags(f->getTags()); } InterpretationPass::InterpretationPass(PassManager* manager) : AbstractPass(manager) { Attachments::init(); Attachments::init(); } void InterpretationPass::run() { ManagedFnPtr f=man->root->begin(); auto& visitedSymbols=getSymbolCache(); while(f.isValid()) { const Symbol&symbolFunction{ScopedSymbol::RetSymbol, f->getEntryScope()}; if(!visitedSymbols.isCached(symbolFunction)){ visitedSymbols.setCachedValue(symbolFunction, process(f)); } ++f; } } InterpretationResolution InterpretationPass::process(const Expression& expression, PassContext context, const std::string& decl) { recognizeTags(expression); InterpretationResolution resolution=ANY; InterpretationOperator opNo=NONE; switch(expression.__state) { case Expression::NUMBER: case Expression::STRING: { break; } case Expression::IDENT: { resolution=Parent::processSymbol(Attachments::get(expression), context); break; } case Expression::COMPOUND: break; default: { resolution=CMPL_ONLY; break; } } if(expression.__state==Expression::COMPOUND) switch(expression.op) { case Operator::EQU: case Operator::NE: { InterpretationResolution left=process(expression.operands[0], context); InterpretationResolution right=process(expression.operands[1], context); resolution=unify(left, right); break; } case Operator::LOGIC_AND: { assert(expression.operands.size()==1); resolution=process(expression.operands[0], context); break; } case Operator::CALL: { size_t sizeOperands = expression.operands.size(); std::vector operands; operands.reserve(sizeOperands); for(size_t opNo=0; opNo callees=man->root->getFnSpecializations(expression.getValueString()); if(callees.size()!=1){ resolution=CMPL_ONLY; break; } ManagedFnPtr callee=callees.front(); const Symbol& symbCalleeFunc{ScopedSymbol::RetSymbol, callee->getEntryScope()}; //recursion-aware processing: // - skip self recursion const Symbol&symbSelfFunc{ScopedSymbol::RetSymbol, context.function->getEntryScope()}; if(!(symbSelfFunc==symbCalleeFunc)){ InterpretationResolution resCallee=processFnCall(callee, context); assert(resCallee!=FUNC_POSTPONED&&"Indirect recursion detected: can't decide on interpretation resolution"); resolution=unify(resolution, resCallee); } //check arguments compatibility const I12nFunctionSpec& calleeSignature=FunctionInterpretationHelper::getSignature(callee); for(size_t opNo=0; opNo__identifiers.at(argName), versions::VERSION_NONE}, exprBody }; getSymbolCache().setCachedValue(argS, INTR_ONLY); Parent::process(expression.blocks.front(), context); resolution = CMPL_ONLY; opNo=QUERY_LATE; break; } case Operator::SWITCH_LATE: { resolution = CMPL_ONLY; opNo = SWITCH_LATE; break; } case Operator::IF: { InterpretationResolution flagCondition=process(expression.getOperands()[0], context); InterpretationResolution flagScope1=Parent::process(expression.blocks.front(), context); InterpretationResolution flagScope2=Parent::process(expression.blocks.back(), context); //special case: IF_INTERPRET_CONDITION if(checkConstraints({flagCondition})){ opNo=IF_INTERPRET_CONDITION; flagCondition=ANY; } resolution=unify(flagCondition, flagScope1, flagScope2); break; } case Operator::FOLD: { InterpretationResolution flagInput=process(expression.getOperands()[0], context); InterpretationResolution flagAccumInit=process(expression.getOperands()[1], context); CodeScope* scopeBody=expression.blocks.front(); const std::string& nameEl=expression.bindings[0]; Symbol symbEl{ScopedSymbol {scopeBody->__identifiers.at(nameEl), versions::VERSION_NONE}, scopeBody}; getSymbolCache().setCachedValue(symbEl, InterpretationResolution(flagInput)); const std::string& nameAccum=expression.bindings[1]; Symbol symbAccum{ScopedSymbol {scopeBody->__identifiers.at(nameAccum), versions::VERSION_NONE}, scopeBody}; getSymbolCache().setCachedValue(symbAccum, InterpretationResolution(flagAccumInit)); InterpretationResolution flagBody=Parent::process(expression.blocks.front(), context); //special case: FOLD_INTERPRET_INPUT if(checkConstraints({flagInput})){ opNo=FOLD_INTERPRET_INPUT; flagInput=ANY; } resolution=unify(flagInput, flagAccumInit, flagBody); break; } case Operator::INDEX: { for(const Expression &opNo : expression.getOperands()) { resolution=unify(resolution, process(opNo, context)); } break; } case Operator::SWITCH: { InterpretationResolution flagCondition=process(expression.operands[0], context); bool hasDefaultCase=expression.operands[1].op==Operator::CASE_DEFAULT; //determine conditions resolution InterpretationResolution flagHeaders=flagCondition; for(size_t size=expression.operands.size(), i=hasDefaultCase?2:1; i({flagHeaders})){ opNo=SWITCH_INTERPRET_CONDITION; flagHeaders=ANY; } //determine body resolutions resolution=flagHeaders; for(size_t size=expression.operands.size(), i=1; i({resolution})){ opNo=SWITCH_VARIANT; resolution=ANY; } const string identCondition=expression.bindings.front(); for(auto scope : expression.blocks) { //set binding resolution - ScopedSymbol symbolInternal=scope->getSymbol(identCondition); + ScopedSymbol symbolInternal= scope->findSymbolByAlias(identCondition); getSymbolCache().setCachedValue(Symbol{symbolInternal, scope}, InterpretationResolution(resolutionCondition)); resolution=unify(resolution, Parent::process(scope, context)); } for(auto scope : expression.blocks) { resolution=unify(resolution, Parent::process(scope, context)); } break; } case Operator::LIST: { for(const Expression &opNo : expression.getOperands()) { resolution=unify(resolution, process(opNo, context)); } break; } case Operator::VARIANT: { if(expression.getOperands().size()){ resolution=process(expression.getOperands().front(), context); } else { resolution=ANY; } break; } default: { resolution=CMPL_ONLY; for(const Expression &opNo : expression.getOperands()) { process(opNo, context); } for(CodeScope* scope : expression.blocks) { Parent::process(scope, context); } break; } } InterpretationData dataExpected= Attachments::get(expression,{ANY, NONE}); resolution=unify(resolution, dataExpected.resolution); if(resolution!=dataExpected.resolution || opNo != dataExpected.op ){ Attachments::put(expression,{resolution, opNo}); } return resolution; } InterpretationResolution InterpretationPass::processFnCall(ManagedFnPtr function, PassContext context) { return process(function); } InterpretationResolution InterpretationPass::process(ManagedFnPtr function) { CodeScope* entry=function->getEntryScope(); std::vector arguments=entry->__bindings; const Symbol&symbSelfFunc{ScopedSymbol::RetSymbol, function->getEntryScope()}; auto& cache=getSymbolCache(); if(cache.isCached(symbSelfFunc)) return cache.getCachedValue(symbSelfFunc); const I12nFunctionSpec& fnSignature=FunctionInterpretationHelper::getSignature(function); InterpretationResolution fnResolutionExpected=details::recognizeTags(function->getTags()); //mark preliminary function resolution as expected if(fnResolutionExpected!=ANY){ cache.setCachedValue(symbSelfFunc, move(fnResolutionExpected)); } else { // - in order to recognize indirect recursion mark this function resolution as POSTPONED cache.setCachedValue(symbSelfFunc, FUNC_POSTPONED); } //set resolution for function arguments as expected for(int argNo=0, size=arguments.size(); argNo__identifiers.at(arguments[argNo]), versions::VERSION_NONE}, entry}; cache.setCachedValue(symbArg, InterpretationResolution(fnSignature.signature[argNo])); } PassContext context; context.function=function; context.scope=entry; InterpretationResolution resActual=process(CodeScope::getDefinition(symbSelfFunc), context); resActual=unify(resActual, fnResolutionExpected); return cache.setCachedValue(symbSelfFunc, move(resActual)); } const I12nFunctionSpec FunctionInterpretationHelper::getSignature(ManagedFnPtr function) { if(Attachments::exists(function)){ return Attachments::get(function); } I12nFunctionSpec&& data=recognizeSignature(function); Attachments::put(function, data); return data; } I12nFunctionSpec FunctionInterpretationHelper::recognizeSignature(ManagedFnPtr function) { CodeScope* entry=function->__entry; I12nFunctionSpec result; result.signature.reserve(entry->__bindings.size()); bool flagPartialInterpretation=false; for(size_t no=0, size=entry->__bindings.size(); no__bindings[no]; Symbol symbArg{ScopedSymbol {entry->__identifiers.at(argName), versions::VERSION_NONE}, entry}; const Expression& arg=CodeScope::getDefinition(symbArg); InterpretationResolution argResolution=details::recognizeTags(arg.tags); flagPartialInterpretation|=(argResolution==INTR_ONLY); result.signature.push_back(argResolution); } result.flagPartialInterpretation=flagPartialInterpretation; return result; } bool FunctionInterpretationHelper::needPartialInterpretation(ManagedFnPtr function) { const I12nFunctionSpec& data=getSignature(function); return data.flagPartialInterpretation; } } } //end of namespace xreate::interpretation /** \class xreate::interpretation::InterpretationPass * * The class encapsulates *Interpretation Analysis* to support [Interpretation](/d/concepts/interpretation/). * * It recognizes program functions, expressions, instructions eligible for interpretation * and stores the output in \ref Attachments and \ref Attachments * * There are number of instructions currently eligible for interpretation: * - Basic literals: numbers and strings * - Compounds: lists, structs, variants * - Non-versioned identifiers * - Comparison and logic operators * - %Function calls * - `query` intrinsic function calls * - Branching: `if`, `loop fold`, `switch`, `switch variant` statements * * Some of these instructions are eligible also for *late interpretation* to allow coupling * of compiled instructions with interpreted ones, those are: * - Partial function calls * - Branching: `if`, `loop fold`, `switch`, `switch variant` statements * * \sa xreate::interpretation::TargetInterpretation, [Interpretation Concept](/d/concepts/interpretation/) */ diff --git a/cpp/tests/ast.cpp b/cpp/tests/ast.cpp index 2f76ecf..4e97c6a 100644 --- a/cpp/tests/ast.cpp +++ b/cpp/tests/ast.cpp @@ -1,288 +1,307 @@ /* Any copyright is dedicated to the Public Domain. * http://creativecommons.org/publicdomain/zero/1.0/ * * ast.cpp * * Created on: Jun 11, 2015 * Author: pgess */ #include "supplemental/docutils.h" #include "xreatemanager.h" #include "main/Parser.h" #include "supplemental/basics.h" #include "gtest/gtest.h" using namespace std; using namespace xreate; using namespace xreate::grammar::main; TEST(AST, Containers1) { FILE* input = fopen("scripts/containers/Containers_Implementation_LinkedList1.xreate", "r"); Scanner scanner(input); Parser parser(&scanner); parser.Parse(); assert(!parser.errors->count && "Parser errors"); fclose(input); } TEST(AST, InterfacesDataCFA) { XreateManager* man = XreateManager::prepare ("interface(cfa){\n" " operator map :: annotation1.\n" "}"); auto answer = man->root->__interfacesData.equal_range(CFA); EXPECT_EQ(1, std::distance(answer.first, answer.second)); Expression&& scheme = move(answer.first->second); EXPECT_EQ(Operator::MAP, scheme.op); EXPECT_EQ("annotation1", scheme.getOperands().at(0).getValueString()); } TEST(AST, syntax_recognizeIdentifiers) { XreateManager* man = XreateManager::prepare(R"Code( test= function(a:: num):: num; entry { a = b:: int. b = 8:: int. a } )Code"); } TEST(AST, syntax_operatorIndex) { XreateManager* man = XreateManager::prepare(R"Code( test= function(a:: num):: num; entry { b = a[1]. b } )Code"); } TEST(AST, IdentHyphen1){ XreateManager* man = XreateManager::prepare(R"Code( my-fn = function(m-n:: num):: num; entry { b = m-n-1:: int. b } )Code"); } TEST(AST, Variants_switch) { XreateManager* man = XreateManager::prepare(R"Code( Color = type variant{Blue, White, Green}. main = function:: int { x = White()::Color. switch variant(x)::int case (Green) {0} case (White) {1} case (Blue){2} } )Code"); Expression e = man->root->findFunction("main")->getEntryScope()->getBody(); ASSERT_EQ(4, e.getOperands().size()); ASSERT_EQ(3, e.blocks.size()); } TEST(AST, TypeVariantEmpty){ std::string code = R"( my-rec-t = type variant{} )"; ASSERT_DEATH(XreateManager::prepare(move(code)), "-- line 2 col 29: Variant type can't be empty."); } +TEST(AST, Lambda_BoundVars_1){ + string code = R"( + myfn = function:: int { + a = [1..5]:: [int]. + offset = 10:: int. + loop map(a->x:: int):: [int] { x + offset:: int} + } + )"; + + auto man = details::tier1::XreateManager::prepare(move(code)); + CodeScope* scopeEntry = man->root->findFunction("myfn")->getEntryScope(); + const string& offsetAlias = "offset"; + ScopedSymbol offsetS = scopeEntry->findSymbolByAlias(offsetAlias); + + CodeScope* scopeMap = scopeEntry->getBody().blocks.front(); + ASSERT_EQ(1, scopeMap->boundExternalSymbs.size()); + ASSERT_TRUE(scopeMap->boundExternalSymbs.count(Symbol{offsetS, scopeEntry})); +} + TEST(AST, DISABLED_InterfacesDataDFA) { } TEST(AST, DISABLED_InterfacesDataExtern) { } TEST(AST, Doc_LiteralsAndExpressions) { XreateManager* man = XreateManager::prepare( R"Code( Record1 = type {year:: int, month:: string}. isOdd = function(x :: int) :: bool {true} test = function:: bool; entry { x1 = 5 :: int. x2 = "Nimefurahi kukujua":: string. x3 = {year = 1934, month = "april"}:: Record1. x4 = {16, 8, 3} :: [int]. x41 = [1..18]:: [int]. x5 = 8>=3:: bool. x6 = "Blue" <> "Green" :: bool. x7 = -true:: bool. colors = {"Green", "Blue"} :: [string]. color = colors[0] :: string. date = {year = 1934, month = "april"}:: Record1. year = date["year"] :: int. a = 0::int. b = 0 :: int. x7 = a - b:: int. result = isOdd(6) :: bool. true } )Code"); ASSERT_TRUE(true); } TEST(AST, Doc_CodeBlocks1) { XreateManager* man = XreateManager::prepare( getDocumentationExampleById("documentation/Syntax/syntax.xml", "CodeBlocks1")); FnNoArgs resultFn = (FnNoArgs) man->run(); int resultExpected = resultFn(); ASSERT_EQ(12, resultExpected); } TEST(AST, Doc_Functions1) { XreateManager* man = XreateManager::prepare( getDocumentationExampleById("documentation/Syntax/syntax.xml", "Functions1")); ASSERT_TRUE(true); } TEST(AST, Doc_FunctionSpecializations1) { XreateManager* man = XreateManager::prepare( getDocumentationExampleById("documentation/Syntax/syntax.xml", "FunctionSpecialization1")); ASSERT_TRUE(true); } TEST(AST, Doc_BranchStatements) { string code_IfStatement1 = getDocumentationExampleById("documentation/Syntax/syntax.xml", "IfStatement1"); string code_SwitchStatement1 = getDocumentationExampleById("documentation/Syntax/syntax.xml", "SwitchStatement1"); string code = R"Code( test = function:: int; entry { question = "Favorite color?":: string. monthNum = 2:: int. %IfStatement1 %SwitchStatement1 monthName } )Code"; replace(code, "%IfStatement1", code_IfStatement1); replace(code, "%SwitchStatement1", code_SwitchStatement1); XreateManager* man = XreateManager::prepare(move(code)); ASSERT_TRUE(true); } TEST(AST, Doc_LoopStatements) { string code_LoopStatement1 = getDocumentationExampleById("documentation/Syntax/syntax.xml", "LoopStatement1"); string code_LoopStatement2 = getDocumentationExampleById("documentation/Syntax/syntax.xml", "LoopStatement2"); string code_FoldStatement1 = getDocumentationExampleById("documentation/Syntax/syntax.xml", "FoldStatement1"); string code_MapStatement1 = getDocumentationExampleById("documentation/Syntax/syntax.xml", "MapStatement1"); string code = R"Code( test = function:: int; entry { %LoopStatement1 %LoopStatement2 %FoldStatement1 %MapStatement1 min } )Code"; replace(code, "%LoopStatement1", code_LoopStatement1); replace(code, "%LoopStatement2", code_LoopStatement2); replace(code, "%FoldStatement1", code_FoldStatement1); replace(code, "%MapStatement1", code_MapStatement1); XreateManager::prepare(move(code)); ASSERT_TRUE(true); } TEST(AST, Doc_Types){ string code = getDocumentationExampleById("documentation/Syntax/syntax.xml", "Types1"); XreateManager::prepare(move(code)); ASSERT_TRUE(true); } TEST(AST, Doc_Variants1){ string code_Variants1 = getDocumentationExampleById("documentation/Syntax/syntax.xml", "Variants1"); XreateManager::prepare(move(code_Variants1)); ASSERT_TRUE(true); } TEST(AST, Doc_VariantsSwitch1){ string code_Variants1 = getDocumentationExampleById("documentation/Syntax/syntax.xml", "VariantsSwitch1"); XreateManager::prepare(move(code_Variants1)); ASSERT_TRUE(true); } TEST(AST, Doc_Versions1){ string code_Variants1 = getDocumentationExampleById("documentation/Syntax/syntax.xml", "Versions1_1"); string code_Variants2 = getDocumentationExampleById("documentation/Syntax/syntax.xml", "Versions1_2"); string code = R"Code( test = function:: int; entry { y })Code"; { std::cout << code_Variants1 << std::endl; XreateManager* man = XreateManager::prepare(move(code_Variants1)); man->run(); delete man; ASSERT_TRUE(true); } // { // replace(code, "", code_Variants2); // auto man = details::tier1::XreateManager::prepare(move(code)); // ASSERT_DEATH(man->analyse(), ".*versions graph.*"); // } } TEST(AST, Intrinsics1){ string code = R"Code( test = function:: [int] { intrinsic array_init(8):: [int] })Code"; XreateManager* man = XreateManager::prepare(move(code)); const Expression bodyE = man->root->findFunction("test")->getEntryScope()->getBody(); ASSERT_EQ(Operator::CALL_INTRINSIC, bodyE.op); ASSERT_EQ(IntrinsicFn ::ARR_INIT, (IntrinsicFn) bodyE.getValueDouble()); } TEST(AST, TypeRecordEmpty){ std::string code = R"( my-rec-t = type {} )"; ASSERT_DEATH(XreateManager::prepare(move(code)), "-- line 2 col 22: Record type can't be empty."); } TEST(AST, PredPredicates1){ string code = R"( my-fn = function:: int; entry() {0} )"; auto man = XreateManager::prepare(move(code)); } \ No newline at end of file diff --git a/cpp/tests/compilation.cpp b/cpp/tests/compilation.cpp index e019829..46688e9 100644 --- a/cpp/tests/compilation.cpp +++ b/cpp/tests/compilation.cpp @@ -1,346 +1,378 @@ /* Any copyright is dedicated to the Public Domain. * http://creativecommons.org/publicdomain/zero/1.0/ * * compilation.cpp * * Created on: - * Author: pgess */ #include "xreatemanager.h" #include "supplemental/basics.h" #include "llvmlayer.h" #include "pass/compilepass.h" #include "compilation/lambdas.h" #include "gtest/gtest.h" using namespace xreate; using namespace xreate::compilation; using namespace std; //DEBT implement no pkgconfig ways to link libs //TOTEST FunctionUnit::compileInline TEST(Compilation, functionEntry1){ std::unique_ptr program(XreateManager::prepare( "func1 = function(a:: int):: int {a+8} \ func2 = function::int; entry {12 + func1(4)} \ ")); void* entryPtr = program->run(); int (*entry)() = (int (*)())(intptr_t)entryPtr; int answer = entry(); ASSERT_EQ(24, answer); } TEST(Compilation, full_IFStatementWithVariantType){ XreateManager* man = XreateManager::prepare( "Color = type variant {RED, BLUE, GREEN}.\n" "\n" " main = function(x::int):: bool; entry {\n" " color = if (x == 0 )::Color {RED()} else {BLUE()}.\n" " if (color == BLUE())::bool {true} else {false}\n" " }" ); bool (*main)(int) = (bool (*)(int)) man->run(); ASSERT_FALSE(main(0)); ASSERT_TRUE(main(1)); } TEST(Compilation, full_Variant1){ XreateManager* man = XreateManager::prepare(R"Code( global = type predicate { entry } Command= type variant{ Add(x::int, y::int), Dec(x::int) }. main = function::Command; entry() { Dec(2) ::Command } )Code"); void (*main)() = (void (*)()) man->run(); } TEST(Compilation, full_SwitchVariant1){ XreateManager* man = XreateManager::prepare(R"Code( Command= type variant{ Add(x::int, y::int), Dec(x::int) }. main = function::int; entry { command = Add(3, 5):: Command. switch variant(command)::int case(Add){command["x"] + command["y"]} case(Dec){command["x"]} } )Code"); int (*mainFn)() = (int (*)()) man->run(); int result = mainFn(); ASSERT_EQ(8, result); } TEST(Compilation, full_SwitchVariantNoArguments2){ XreateManager* man = XreateManager::prepare(R"Code( Command= type variant{Add, Dec}. main = function::int; entry { command = Dec():: Command. switch variant(command)::int case(Add){0} case(Dec){1} } )Code"); int (*mainFn)() = (int (*)()) man->run(); int result = mainFn(); ASSERT_EQ(1, result); } TEST(Compilation, full_SwitchVariantMixedArguments3){ XreateManager* man = XreateManager::prepare(R"Code( Command= type variant{ Add(x::int, y::int), Dec }. main = function(arg::int):: int; entry { command = if (arg > 0)::Command {Dec()} else {Add(1, 2)}. switch variant(command)::int case(Add){0} case(Dec){1} } )Code"); int (*mainFn)(int) = (int (*)(int)) man->run(); int result = mainFn(5); ASSERT_EQ(1, result); } TEST(Compilation, full_StructUpdate){ XreateManager* man = XreateManager::prepare( R"Code( Rec = type { a :: int, b:: int }. test= function:: int; entry { a = {a = 18, b = 20}:: Rec. b = a + {a = 11}:: Rec. b["a"] } )Code"); int (*main)() = (int (*)()) man->run(); int result = main(); ASSERT_EQ(11, result); } TEST(Compilation, AnonymousStruct_init_index){ std::string code = R"Code( main = function:: int; entry { x = {10, 15} :: {int, int}. x[1] } )Code"; std::unique_ptr man(XreateManager::prepare(move(code))); int (*main)() = (int (*)()) man->run(); EXPECT_EQ(15, main()); } TEST(Compilation, AnonymousStruct_init_update){ std::string code = R"Code( main = function:: int; entry { x = {10, 15} :: {int, int}. y = x + {6}:: {int, int}. y[0] } )Code"; std::unique_ptr man(XreateManager::prepare(move(code))); int (*main)() = (int (*)()) man->run(); EXPECT_EQ(6, main()); } TEST(Compilation, BugIncorrectScopes1){ std::string code = R"Code( init = function:: int {10} main = function(cmd:: int):: int; entry { x = init():: int. if(cmd > 0):: int { x + 1 } else { x } } )Code"; std::unique_ptr man(XreateManager::prepare(move(code))); int (*mainFn)(int) = (int (*)(int)) man->run(); EXPECT_EQ(11, mainFn(1)); } TEST(Compilation, Sequence1){ std::string code = R"Code( interface(extern-c){ libbsd = library:: pkgconfig("libbsd"). include { libbsd = {"bsd/stdlib.h", "string.h"} }. } start = function:: i32; entry { seq { nameNew = "TestingSequence":: string. setprogname(nameNew) } {strlen(getprogname())}::i32 } )Code"; std::unique_ptr man(XreateManager::prepare(move(code))); int (*startFn)() = (int (*)()) man->run(); int nameNewLen = startFn(); ASSERT_EQ(15, nameNewLen); } TEST(Compilation, BoolInstructions1){ std::string code = R"Code( test = function (a:: bool, b:: bool):: bool; entry { -a } )Code"; std::unique_ptr man(XreateManager::prepare(move(code))); Fn2Args startFn = (Fn2Args) man->run(); } TEST(Compilation, StructIndex1){ std::string code = R"Code( Anns = type predicate { entry() } test = function:: int; entry() { x = {a = ({b = 3}::{b:: int})}:: {a:: {b:: int}}. 2 + x["a", "b"] + x["a"]["b"] } )Code"; std::unique_ptr man(XreateManager::prepare(move(code))); FnNoArgs startFn = (FnNoArgs) man->run(); int result = startFn(); ASSERT_EQ(2, result); } TEST(Compilation, PreferredInt1){ std::unique_ptr man(XreateManager::prepare("")); TypesHelper utils(man->llvm); int bitwidth = utils.getPreferredIntTy()->getBitWidth(); ASSERT_EQ(64, bitwidth); } TEST(Compilation, PredPredicates1){ string code = R"( my-fn = function:: int; entry() {0} )"; auto man = XreateManager::prepare(move(code)); FnNoArgs startFn = (FnNoArgs) man->run(); int result = startFn(); ASSERT_EQ(0, result); } typedef intmax_t (*FnI_I)(intmax_t); TEST(Compilation, Lambda1){ string code = R"( myfn = function:: int { a = [1..5]:: [int]. loop map(a->x:: int):: [int] { x + 10:: int} } )"; auto man = details::tier1::XreateManager::prepare(move(code)); LLVMLayer* llvm = man->llvm; man->analyse(); std::unique_ptr compiler(new compilation::CompilePassCustomDecorators<>(man)); compiler->prepare(); LambdaIR compilerLambda(compiler.get()); CodeScope* scopeLoop = man->root->findFunction("myfn")->getEntryScope()->getBody().blocks.front(); auto fnRaw = compilerLambda.compile(scopeLoop, "loop"); llvm->initJit(); FnI_I fn = (FnI_I)llvm->getFunctionPointer(fnRaw); ASSERT_EQ(20, fn(10)); } +TEST(Compilation, Lambda_BoundVars1){ + string code = R"( + myfn = function:: int { + a = [1..5]:: [int]. + offset = 10:: int. + loop map(a->x:: int):: [int] { x + offset:: int} + } + )"; + + auto man = details::tier1::XreateManager::prepare(move(code)); + LLVMLayer* llvm = man->llvm; + man->analyse(); + + std::unique_ptr compiler(new compilation::CompilePassCustomDecorators<>(man)); + compiler->prepare(); + LambdaIR compilerLambda(compiler.get()); + CodeScope* scopeLoop = man->root->findFunction("myfn")->getEntryScope()->getBody().blocks.front(); + auto fnRaw = compilerLambda.compile(scopeLoop, "loop"); + llvm->print(); + llvm->initJit(); + + Fn2Args fn = (Fn2Args)llvm->getFunctionPointer(fnRaw); + ASSERT_EQ(30, fn(10, 20)); +} + struct Tuple3 {intmax_t a; intmax_t b; intmax_t c; }; typedef Tuple3 (*FnTuple3)(); intmax_t fn_BUG_Triple(FnTuple3 callee){ Tuple3 result = callee(); return result.a+ result.b + result.c; } TEST(Compilation, BUG_Triple){ std::unique_ptr man(XreateManager::prepare(R"( Tuple2 = type {int, int}. Tuple3 = type {int, int, int}. Tuple4 = type {int, int, int, int}. main = function:: Tuple3; entry() { {1, 2, 3} } )")); FnTuple3 mainFn = (FnTuple3) man->run(); intmax_t result = fn_BUG_Triple(mainFn); ASSERT_EQ(6, result); // ASSERT_EQ(2, result.b); // ASSERT_EQ(3, result.c); } TEST(Compilation, ExteriorFns1){ std::unique_ptr man(XreateManager::prepare(R"( fn-a = function:: int; exterior() {1} fn-b = function:: int; exterior() {2} )")); man->options.requireEntryFn = false; man->run(); FnNoArgs fnA = (FnNoArgs) man->getExteriorFn("fn-a"); ASSERT_EQ(1, fnA()); FnNoArgs fnB = (FnNoArgs) man->getExteriorFn("fn-b"); ASSERT_EQ(2, fnB()); +} + +TEST(Compilation, LLVMAliases){ + FILE* code = fopen("scripts/compilation/llvmaliases.xreate", "r"); + assert(code != nullptr); + std::unique_ptr man(XreateManager::prepare(move(code))); + man->run(); } \ No newline at end of file diff --git a/cpp/tests/containers.cpp b/cpp/tests/containers.cpp index 0049586..7175642 100644 --- a/cpp/tests/containers.cpp +++ b/cpp/tests/containers.cpp @@ -1,327 +1,327 @@ /* Any copyright is dedicated to the Public Domain. * http://creativecommons.org/publicdomain/zero/1.0/ * * containers.cpp * * Created on: Jun 9, 2015 * Author: pgess */ #include "xreatemanager.h" #include "query/containers.h" #include "main/Parser.h" #include "pass/compilepass.h" #include "llvmlayer.h" #include "supplemental/docutils.h" #include "supplemental/basics.h" #include "gtest/gtest.h" using namespace std; using namespace xreate::grammar::main; using namespace xreate::containers; using namespace xreate; struct Tuple2 {intmax_t a; intmax_t b;}; typedef Tuple2 (*FnTuple2)(); struct Tuple4 {intmax_t a; intmax_t b; intmax_t c; intmax_t d;}; typedef Tuple4 (*FnTuple4)(); TEST(Containers, RecInitByList1){ string code = R"( Rec = type {x:: int, y:: int}. test = function(a:: int, b::int):: Rec; entry() { {x = a + b, y = 2} } )"; auto man = XreateManager::prepare(move(code)); man->run(); } TEST(Containers, RecInitByList2){ string code = R"( Rec = type {x:: int, y:: int}. test = function(a:: int, b::int):: Rec; entry() { {a + b, y = 2} } )"; auto man = XreateManager::prepare(move(code)); man->run(); } TEST(Containers, RecUpdateByList1){ string code = R"( Rec = type {x:: int, y:: int}. test = function(a:: int, b::int):: Rec; entry() { r = {0, y = 2}:: Rec. r : {a + b} } )"; auto man = XreateManager::prepare(move(code)); man->run(); } TEST(Containers, RecUpdateByListIndex1){ string code = R"( Rec = type {x:: int, y:: int}. test = function(a:: int, b::int):: int; entry() { r1 = undef:: Rec. r2 = r1 : {[1] = b, [0] = a}:: Rec. r2["x"] } )"; auto man = XreateManager::prepare(move(code)); Fn2Args program = (Fn2Args) man->run(); ASSERT_EQ(10, program(10, 11)); } TEST(Containers, RecUpdateInLoop1){ FILE* code = fopen("scripts/containers/RecUpdateInLoop1.xreate", "r"); assert(code != nullptr); auto man = XreateManager::prepare(code); Fn1Args program = (Fn1Args) man->run(); ASSERT_EQ(11, program(10)); } TEST(Containers, ArrayInit1){ XreateManager* man = XreateManager::prepare( R"Code( main = function(x:: int):: int; entry() { a = {1, 2, 3}:: [int]. a[x] } )Code"); void* mainPtr = man->run(); Fn1Args main = (Fn1Args) mainPtr; ASSERT_EQ(2, main(1)); delete man; } TEST(Containers, ArrayUpdate1){ XreateManager* man = XreateManager::prepare(R"( main = function(x::int):: int; entry() { a = {1, 2, 3}:: [int]; csize(5). b = a : {[1] = x}:: [int]; csize(5). b[1] } )"); void* mainPtr = man->run(); Fn1Args main = (Fn1Args) mainPtr; ASSERT_EQ(2, main(2)); delete man; } TEST(Containers, FlyMap1){ std::unique_ptr man(XreateManager::prepare(R"( main = function:: int; entry() { x = {1, 2, 3, 4}:: [int]. y = loop map(x->el::int)::[int]; fly(csize(4)) {2 * el:: int }. loop fold((y::[int]; fly(csize(4)))->el:: int, 0->sum):: int {sum + el}-20 } )")); FnNoArgs mainFn = (FnNoArgs) man->run(); intmax_t valueMain = mainFn(); ASSERT_EQ(0, valueMain); } TEST(Containers, ArrayArg1){ FILE* code = fopen("scripts/containers/containers-tests.xreate", "r"); assert(code != nullptr); std::unique_ptr man(XreateManager::prepare(code)); man->options.requireEntryFn = false; man->run(); FnNoArgs fnTested = (FnNoArgs) man->getExteriorFn("fn-ArrayArg1"); ASSERT_EQ(1, fnTested()); } TEST(Containers, FlyArg1){ FILE* code = fopen("scripts/containers/containers-tests.xreate", "r"); assert(code != nullptr); std::unique_ptr man(XreateManager::prepare(code)); man->options.requireEntryFn = false; man->run(); FnNoArgs fnTested = (FnNoArgs) man->getExteriorFn("fn-FlyArg1"); ASSERT_EQ(8, fnTested()); } TEST(Containers, Range1){ FILE* code = fopen("scripts/containers/containers-tests.xreate", "r"); assert(code != nullptr); std::unique_ptr man(XreateManager::prepare(code)); man->options.requireEntryFn = false; man->run(); { FnNoArgs fnRange1 = (FnNoArgs) man->getExteriorFn("fn-Range1"); ASSERT_EQ(10, fnRange1()); } { FnNoArgs fnRange2 = (FnNoArgs) man->getExteriorFn("fn-Range2"); ASSERT_EQ(20, fnRange2()); } } //TEST(Containers, ListAsArray2){ // XreateManager* man = XreateManager::prepare( // //R"Code( // // CONTAINERS // import raw("scripts/dfa/ast-attachments.lp"). // import raw("scripts/containers/containers.lp"). // // main = function:: int;entry { // a= {1, 2, 3}:: [int]. // b= loop map(a->el:: int):: [int]{ // 2 * el // }. // // sum = loop fold(b->el:: int, 0->acc):: int { // acc + el // }. // // sum // } //)Code"); // // void* mainPtr = man->run(); // FnNoArgs main = (FnNoArgs) mainPtr; // ASSERT_EQ(12, main()); // // delete man; //} // //TEST(Containers, Doc_RecField1){ // string code_Variants1 = getDocumentationExampleById("documentation/Syntax/syntax.xml", "RecField1"); // XreateManager::prepare(move(code_Variants1)); // // ASSERT_TRUE(true); //} // //TEST(Containers, Doc_RecUpdate1){ // string code_Variants1 = getDocumentationExampleById("documentation/Syntax/syntax.xml", "RecUpdate1"); // XreateManager::prepare(move(code_Variants1)); // // ASSERT_TRUE(true); //} // //TEST(Containers, ContanierLinkedList1){ // FILE* input = fopen("scripts/containers/Containers_Implementation_LinkedList1.xreate","r"); // assert(input != nullptr); // // Scanner scanner(input); // Parser parser(&scanner); // parser.Parse(); // // AST* ast = parser.root->finalize(); // CodeScope* body = ast->findFunction("test")->getEntryScope(); -// const Symbol symb_chilrenRaw{body->getSymbol("childrenRaw"), body}; +// const Symbol symb_chilrenRaw{body->findSymbolByAlias("childrenRaw"), body}; // // containers::ImplementationLinkedList iLL(symb_chilrenRaw); // // ASSERT_EQ(true, static_cast(iLL)); // ASSERT_EQ("next", iLL.fieldPointer); // // Implementation impl = Implementation::create(symb_chilrenRaw); // ASSERT_NO_FATAL_FAILURE(impl.extract()); // // ImplementationRec recOnthefly = impl.extract(); // ASSERT_EQ(symb_chilrenRaw, recOnthefly.source); //} // //TEST(Containers, Implementation_LinkedListFull){ // FILE* input = fopen("scripts/containers/Containers_Implementation_LinkedList1.xreate","r"); // assert(input != nullptr); // // std::unique_ptr program(XreateManager::prepare(input)); // void* mainPtr = program->run(); // int (*main)() = (int (*)())(intptr_t)mainPtr; // // intmax_t answer = main(); // ASSERT_EQ(17, answer); // // fclose(input); //} // //TEST(Containers, Doc_Intr_1){ // string example = R"Code( // import raw("scripts/containers/containers.lp"). // // test = function:: int; entry // { // // x // } // )Code"; // string body = getDocumentationExampleById("documentation/Concepts/containers.xml", "Intr_1"); // replace(example, "", body); // // XreateManager* xreate = XreateManager::prepare(move(example)); // FnNoArgs program = (FnNoArgs) xreate->run(); // // intmax_t result = program(); // ASSERT_EQ(1, result); //} // //TEST(Containers, Doc_OpAccessSeq_1){ // string example = getDocumentationExampleById("documentation/Concepts/containers.xml", "OpAccessSeq_1"); // XreateManager* xreate = XreateManager::prepare(move(example)); // FnNoArgs program = (FnNoArgs) xreate->run(); // // intmax_t result = program(); // ASSERT_EQ(15, result); //} // //TEST(Containers, Doc_OpAccessRand_1){ // string example = getDocumentationExampleById("documentation/Concepts/containers.xml", "OpAccessRand_1"); // XreateManager* xreate = XreateManager::prepare(move(example)); // FnNoArgs program = (FnNoArgs) xreate->run(); // // intmax_t result = program(); // ASSERT_EQ(2, result); //} // //TEST(Containers, Doc_ASTAttach_1){ // string example = getDocumentationExampleById("documentation/Concepts/containers.xml", "ASTAttach_1"); // string outputExpected = "containers_impl(s(1,-2,0),onthefly)"; // XreateManager* xreate = XreateManager::prepare(move(example)); // // testing::internal::CaptureStdout(); // xreate->run(); // std::string outputActual = testing::internal::GetCapturedStdout(); // // ASSERT_NE(std::string::npos, outputActual.find(outputExpected)); //} // //TEST(Containers, IntrinsicArrInit1){ // XreateManager* man = XreateManager::prepare( // //R"Code( //FnAnns = type predicate { // entry //} // //main = function(x:: int):: int; entry() { // a{0} = intrinsic array_init(16):: [int]. // a{1} = a{0} + {15: 12} //} //)Code"); //} diff --git a/cpp/tests/interpretation.cpp b/cpp/tests/interpretation.cpp index a833453..c7d3d75 100644 --- a/cpp/tests/interpretation.cpp +++ b/cpp/tests/interpretation.cpp @@ -1,476 +1,476 @@ /* Any copyright is dedicated to the Public Domain. * http://creativecommons.org/publicdomain/zero/1.0/ * * interpretation.cpp * * Created on: - * Author: pgess */ #include "attachments.h" using namespace xreate; #include "xreatemanager.h" #include "compilation/targetinterpretation.h" #include "supplemental/docutils.h" #include "gtest/gtest.h" #include "boost/scoped_ptr.hpp" //#define FRIENDS_INTERPRETATION_TESTS \ // friend class ::Modules_AST2_Test; \ // friend class ::Modules_Discovery1_Test; \ // friend class ::Modules_Solve1_Test; #include "pass/interpretationpass.h" using namespace xreate::grammar::main; using namespace xreate::interpretation; using namespace std; TEST(Interpretation, Analysis_StatementIF_1) { XreateManager* man = XreateManager::prepare( R"Code( main = function::bool { x = "a":: string. y = if (x=="b"):: bool; i12n(on()) { true } else { false }. y } )Code"); InterpretationPass* pass = new InterpretationPass(man); pass->run(); CodeScope* scopeEntry = man->root->findFunction("main")->getEntryScope(); - Symbol symbolY{scopeEntry->getSymbol("y"), scopeEntry}; + Symbol symbolY{scopeEntry->findSymbolByAlias("y"), scopeEntry}; InterpretationData &dataSymbolY = Attachments::get(symbolY); ASSERT_EQ(INTR_ONLY, dataSymbolY.resolution); } TEST(Interpretation, Analysis_StatementIF_InterpretCondition_1) { XreateManager* man = XreateManager::prepare( R"Code( main = function(x:: int):: int { comm= "inc":: string; i12n(on()). y = if (comm == "inc")::int {x+1} else {x}. y } )Code"); InterpretationPass* pass = new InterpretationPass(man); pass->run(); CodeScope* scopeEntry = man->root->findFunction("main")->getEntryScope(); - Symbol symbolY{scopeEntry->getSymbol("y"), scopeEntry}; + Symbol symbolY{scopeEntry->findSymbolByAlias("y"), scopeEntry}; InterpretationData &dataSymbolY = Attachments::get(symbolY); ASSERT_EQ(CMPL_ONLY, dataSymbolY.resolution); ASSERT_EQ(IF_INTERPRET_CONDITION, dataSymbolY.op); } TEST(Interpretation, StatementCall_RecursionIndirect_1) { XreateManager* man = XreateManager::prepare( R"Code( searchNemo = function(data:: Data):: bool { if (data == "nemo"):: bool {false} else {searchDory(data)} } searchDory = function(data:: Data):: bool { if (data == "dory"):: bool {true} else {searchNemo(data)} } entry = function:: bool; entry() { searchNemo(""):: bool; i12n(on()) } )Code"); InterpretationPass* pass = new InterpretationPass(man); ASSERT_DEATH(pass->run(), "Indirect recursion detected"); } TEST(Interpretation, PartialIntr_1) { XreateManager* man = XreateManager::prepare( R"Code( evaluate= function(argument:: int, code:: string; i12n(on())):: int { switch(code):: int case ("inc") {argument + 1} case ("dec") {argument - 1} case ("double") {argument * 2} case default {argument} } main = function:: int; entry() { commands= {"inc", "double", "dec"}:: [string]; i12n(on()). loop fold(commands->comm::string, 10->operand):: int { evaluate(operand, comm) } } )Code"); InterpretationPass* pass = new InterpretationPass(man); pass->run(); ManagedFnPtr fnEvaluate = man->root->findFunction("evaluate"); InterpretationResolution resFnEvaluate = pass->process(fnEvaluate); ASSERT_EQ(CMPL_ONLY, resFnEvaluate); ASSERT_TRUE(FunctionInterpretationHelper::needPartialInterpretation(fnEvaluate)); const Expression &exprLoop = man->root->findFunction("main")->__entry->getBody(); Symbol symbCallEv{{0, versions::VERSION_NONE}, exprLoop.blocks.front()}; InterpretationData dataCallEv = Attachments::get(symbCallEv); ASSERT_EQ(CMPL_ONLY, dataCallEv.resolution); ASSERT_EQ(CALL_INTERPRET_PARTIAL, dataCallEv.op); } TEST(Interpretation, PartialIntr_3) { xreate::details::tier1::XreateManager* man = xreate::details::tier1::XreateManager::prepare( R"Code( Command= type variant {INC, DEC, DOUBLE}. evaluate= function(argument:: int, code:: Command; i12n(on())):: int { switch variant(code)::int case (INC) {argument + 1} case (DEC) {argument - 1} case (DOUBLE) {argument * 2} } main = function::int; entry() { commands= {INC(), DOUBLE(), DEC()}:: [Command]; i12n(on()). loop fold(commands->comm::Command, 10->operand):: int{ evaluate(operand, comm) } } )Code"); man->analyse(); if(!man->isPassRegistered(PassId::InterpretationPass)) { InterpretationPass* pass = new InterpretationPass(man); pass->run(); } int (* main)() = (int (*)()) man->run(); int result = main(); ASSERT_EQ(21, result); } TEST(Interpretation, PartialIntr_4) { xreate::details::tier1::XreateManager* man = xreate::details::tier1::XreateManager::prepare( R"Code( Command= type variant {INC, DEC, DOUBLE}. evaluate= function(argument:: int, code:: Command; i12n(on())):: int { switch variant(code)::int case (INC) {argument + 1} case (DEC) {argument - 1} case (DOUBLE) {argument * 2} } main = function::int; entry() { evaluate(4, DEC()) } )Code"); man->analyse(); if(!man->isPassRegistered(PassId::InterpretationPass)) { InterpretationPass* pass = new InterpretationPass(man); pass->run(); } int (* main)() = (int (*)()) man->run(); int result = main(); ASSERT_EQ(3, result); } TEST(Interpretation, SwitchVariant) { xreate::XreateManager* man = xreate::XreateManager::prepare( R"Code( Command= type variant { ADD(x::int, y::int), DEC(x::int), DOUBLE(x::int) }. main = function::int; entry(){ program = ADD(2, 3)::Command; i12n(on()). switch variant(program)::int case (ADD) {program["x"]+program["y"]} case (DEC) {1} case (DOUBLE) {2} } )Code"); int (* main)() = (int (*)()) man->run(); int result = main(); ASSERT_EQ(5, result); } TEST(Interpretation, SwitchVariantAlias) { xreate::XreateManager* man = xreate::XreateManager::prepare( R"Code( Command= type variant { ADD(x::int, y::int), DEC(x::int), DOUBLE(x::int) }. main = function::int; entry(){ program = {ADD(2, 3), DEC(8)}::[Command]; i12n(on()). switch variant(program[0]->program::Command)::int case (ADD) {program["x"]+program["y"]} case (DEC) {1} case (DOUBLE) {2} } )Code"); int (* main)() = (int (*)()) man->run(); int result = main(); ASSERT_EQ(5, result); } TEST(Interpretation, Multiindex1) { std::string script2 = R"Code( extract = function(program::unknType)::int; i12n(on()){ program["arguments"][1] } main = function::int; entry() { x = {arguments = {10, 9, 8, 7}}:: unknType; i12n(on()). extract(x) } )Code"; std::unique_ptr man(XreateManager::prepare(std::move(script2))); int (* main)() = (int (*)()) man->run(); int result = main(); ASSERT_EQ(9, result); } TEST(InterpretationExamples, Regexp1) { FILE* input = fopen("scripts/dsl/regexp.xreate", "r"); assert(input != nullptr); std::unique_ptr man(XreateManager::prepare(input)); int (* main)() = (int (*)()) man->run(); int result = main(); ASSERT_EQ(4, result); } TEST(Interpretation, Variant1) { std::string script = R"Code( DataPacked = type variant { Var1(Num:: [int], String::string), Var2(Num:: [int], String::string) }. extractInt = function(data::DataPacked):: int { resultWrong = 0 :: int. switch variant(data)::int case (Var1) {data["Num", 0]} case (Var2) {resultWrong} } main = function :: int; entry() { dataActual = {10}:: [int]. dataPacked = Var1(dataActual, "whatever"):: DataPacked. extractInt(dataPacked):: int; i12n(on()) } )Code"; std::unique_ptr man(XreateManager::prepare(std::move(script))); int (* main)() = (int (*)()) man->run(); int result = main(); ASSERT_EQ(10, result); } TEST(Interpretation, Doc_Intr_1) { string example = getDocumentationExampleById("documentation/Concepts/interpretation.xml", "Intr_1"); xreate::details::tier1::XreateManager* man = xreate::details::tier1::XreateManager::prepare(move(example)); man->analyse(); InterpretationPass* pass; if(man->isPassRegistered(PassId::InterpretationPass)) { pass = (InterpretationPass*) man->getPassById(PassId::InterpretationPass); } else { pass = new InterpretationPass(man); pass->run(); } int (* main)() = (int (*)()) man->run(); int result = main(); ASSERT_EQ(0, result); } TEST(Interpretation, Doc_FnIntr_1) { string example1 = getDocumentationExampleById("documentation/Concepts/interpretation.xml", "FnIntr_1"); string example2 = getDocumentationExampleById("documentation/Concepts/interpretation.xml", "Alt_FnIntr_1"); xreate::details::tier1::XreateManager* man = xreate::details::tier1::XreateManager::prepare(move(example1)); man->analyse(); InterpretationPass* pass; if(man->isPassRegistered(PassId::InterpretationPass)) { pass = (InterpretationPass*) man->getPassById(PassId::InterpretationPass); } else { pass = new InterpretationPass(man); pass->run(); } unsigned char (* main)() = (unsigned char (*)()) man->run(); unsigned char result = main(); ASSERT_EQ(1, result); XreateManager* man2 = XreateManager::prepare(move(example2)); ASSERT_TRUE(true); } TEST(Interpretation, Doc_FnIntr_2) { string example = getDocumentationExampleById("documentation/Concepts/interpretation.xml", "FnIntr_2"); xreate::details::tier1::XreateManager* man = xreate::details::tier1::XreateManager::prepare(move(example)); man->analyse(); InterpretationPass* pass; if(man->isPassRegistered(PassId::InterpretationPass)) { pass = (InterpretationPass*) man->getPassById(PassId::InterpretationPass); } else { pass = new InterpretationPass(man); pass->run(); } unsigned char (* main)() = (unsigned char (*)()) man->run(); unsigned char result = main(); ASSERT_EQ(1, result); } TEST(Interpretation, Doc_FnIntr_3) { string example = getDocumentationExampleById("documentation/Concepts/interpretation.xml", "FnIntr_3"); xreate::details::tier1::XreateManager* man = xreate::details::tier1::XreateManager::prepare(move(example)); man->analyse(); InterpretationPass* pass; if(man->isPassRegistered(PassId::InterpretationPass)) { pass = (InterpretationPass*) man->getPassById(PassId::InterpretationPass); } else { pass = new InterpretationPass(man); pass->run(); } InterpretationResolution resolutionActual = pass->process(man->root->findFunction("unwrap")); ASSERT_EQ(ANY, resolutionActual); unsigned char (* main)() = (unsigned char (*)()) man->run(); unsigned char result = main(); ASSERT_NE(0, result); } TEST(Interpretation, Doc_LateIntr_1) { string example = getDocumentationExampleById("documentation/Concepts/interpretation.xml", "LateIntr_1"); xreate::details::tier1::XreateManager* man = xreate::details::tier1::XreateManager::prepare(move(example)); man->analyse(); InterpretationPass* pass; if(man->isPassRegistered(PassId::InterpretationPass)) { pass = (InterpretationPass*) man->getPassById(PassId::InterpretationPass); } else { pass = new InterpretationPass(man); pass->run(); } int (* main)(int) = (int (*)(int)) man->run(); int result = main(1); ASSERT_EQ(2, result); } TEST(Interpretation, Doc_LateIntr_2) { string example = getDocumentationExampleById("documentation/Concepts/interpretation.xml", "LateIntr_2"); string example2 = getDocumentationExampleById("documentation/Concepts/interpretation.xml", "Alt_LateIntr_2"); xreate::details::tier1::XreateManager* man = xreate::details::tier1::XreateManager::prepare(move(example)); man->analyse(); InterpretationPass* pass; if(man->isPassRegistered(PassId::InterpretationPass)) { pass = (InterpretationPass*) man->getPassById(PassId::InterpretationPass); } else { pass = new InterpretationPass(man); pass->run(); } const ManagedFnPtr &funcMain = man->root->findFunction("main"); InterpretationData &dataBody = Attachments::get(funcMain); ASSERT_EQ(FOLD_INTERPRET_INPUT, dataBody.op); int (* main)(int) = (int (*)(int)) man->run(); int result = main(10); ASSERT_EQ(21, result); XreateManager* man2 = XreateManager::prepare(move(example2)); ASSERT_TRUE(true); } TEST(Interpretation, Doc_LateFnIntr_1) { string example = getDocumentationExampleById("documentation/Concepts/interpretation.xml", "LateFnIntr_1"); string example2 = getDocumentationExampleById("documentation/Concepts/interpretation.xml", "Alt_LateFnIntr_1"); xreate::details::tier1::XreateManager* man = xreate::details::tier1::XreateManager::prepare(move(example)); man->analyse(); if(!man->isPassRegistered(PassId::InterpretationPass)) { InterpretationPass* pass = new InterpretationPass(man); pass->run(); } int (* main)(int) = (int (*)(int)) man->run(); int result = main(10); ASSERT_EQ(21, result); XreateManager* man2 = XreateManager::prepare(move(example2)); ASSERT_TRUE(true); } //TOTEST call indirect recursion(w/o tags) //TASk implement and test Loop Inf (fix acc types in coco grammar) diff --git a/cpp/tests/polymorph.cpp b/cpp/tests/polymorph.cpp index bc35f39..4b847bc 100644 --- a/cpp/tests/polymorph.cpp +++ b/cpp/tests/polymorph.cpp @@ -1,266 +1,266 @@ /* Any copyright is dedicated to the Public Domain. * http://creativecommons.org/publicdomain/zero/1.0/ * * polymorph.cpp * * Author: pgess * Created on October 11, 2017, 8:37 PM */ #include "xreatemanager.h" #include "ast.h" #include "transcendlayer.h" #include "aux/latereasoning.h" #include #include "gtest/gtest.h" #include "query/polymorph.h" #include "supplemental/docutils.h" #include "supplemental/basics.h" using namespace xreate; using namespace xreate::latereasoning; using namespace xreate::polymorph; using namespace std; TEST(Polymorphs, ast1) { xreate::XreateManager* man = xreate::XreateManager::prepare(R"CODE( global-ann = type predicate { entry } context-ann = type predicate { a, b } guard(::a) { test = function:: int {0} } guard(::b) { test = function:: int {1} } main = function:: int; entry() { test() } )CODE"); const std::list& specs = man->root->getFnSpecializations("test"); ASSERT_EQ(2, specs.size()); auto itSpecs = specs.begin(); ASSERT_EQ("a", (*itSpecs)->guard.getValueString()); itSpecs++; ASSERT_EQ("b", (*itSpecs)->guard.getValueString()); } TEST(Polymorphs, Compile1){ xreate::XreateManager* man = xreate::XreateManager::prepare(R"CODE( global-ann = type predicate { entry, guarded(value::int) } context-ann = type predicate { first(value::int), second } guard(data::first) { test = function:: int {data["value"]} } guard(::second) { test = function:: int {1} } main = function:: int; entry() { x = 8:: int. test()::int; guarded(x) } )CODE"); man->transcend->addRawScript(R"(func_supply_guard(Site, first(Data), "context-ann"):- bind(Site, guarded(Data)).)"); man->run(); } TEST(Polymorphs, Compile2){ xreate::XreateManager* man = xreate::XreateManager::prepare(R"CODE( guard-pred = type predicate { first(value::int), second } global-ann = type predicate { entry, guarded(guard-pred) } guard(data ::first) { test = function:: int {data["value"]} } guard(::second) { test = function:: int {1} } main = function:: int; entry() { x = first(8):: guard-pred. test()::int; guarded(x) } )CODE"); man->transcend->addRawScript(R"(func_supply_guard(Site, Guard, "guard-pred"):- bind(Site, guarded(Guard)).)"); man->run(); } TEST(Polymorphs, CompileException1){ xreate::XreateManager* man = xreate::XreateManager::prepare(R"CODE( Global-ann = type predicate { entry } HandlerDivByZero = type { ret:: int } Guards = type predicate { fast, safe(handlerZeroDiv:: HandlerDivByZero) } guard(:: fast) { div = function(a::int, b::int) { a / b} } guard(handlers:: safe) { div = function(a::int, b::int)::int { if (b != 0):: int {a / b} else { handlers["handlerZeroDiv", "ret"] } } } main = function:: int; entry() { handler = { ret = 11 } ::HandlerDivByZero. div(8, 0):: int; safe(handler) } )CODE"); man->transcend->addRawScript(R"(func_supply_guard(Site, Guard, "Guards"):- bind(Site, Guard).)"); FnNoArgs fn = (FnNoArgs) man->run(); int result = fn(); ASSERT_EQ(11, result); } //TEST(Polymorphs, PolymorphQuery_Static_1) { // xreate::details::tier1::XreateManager* man = xreate::details::tier1::XreateManager::prepare( // R"CODE( // import raw("scripts/dfa/polymorphism.lp"). // // guard:: a { // test = function:: int {0} // } // // guard:: b { // test = function:: int {1} // } // // main = function:: int; entry { test()::int; callguard(b); dfa_polym(ret)} // //)CODE"); // // man->analyse(); // PolymorphQuery* query = dynamic_cast (man->transcend->getQuery(QueryId::PolymorphQuery)); // // const Expression& bodyE = man->root->findFunction("main")->getEntryScope()->getBody(); // LateAnnotation decisionLA = query->get(bodyE); // ASSERT_EQ(1, decisionLA.guardedContent.size()); // // auto decisionOptSymb = decisionLA.select({}, man->root, man->transcend); // ASSERT_TRUE(decisionOptSymb); // // decisionOptSymb->print(cout); // cout << endl; // string guard = query->getValue(*decisionOptSymb).getValueString(); // ASSERT_STREQ("b", guard.c_str()); //} // //TEST(Polymorphs, PolymorphQuery_Late_1){ // xreate::details::tier1::XreateManager* man = xreate::details::tier1::XreateManager::prepare( //R"CODE( // Late = type variant{a, b}. // main = function:: int; entry{key= a():: Late; test. key::int} //)CODE"); // // man->transcend->addRawScript( //R"RULE( // late(S, S, a, dfa_callguard(S, a)):- // bind(S, test). // // late(S, S, b, dfa_callguard(S, b)):- // bind(S, test). //)RULE"); // man->analyse(); // PolymorphQuery* query = dynamic_cast (man->transcend->getQuery(QueryId::PolymorphQuery)); // // CodeScope* scopeMain = man->root->findFunction("main")->getEntryScope(); -// Symbol keyS = Symbol{scopeMain->getSymbol("key"), scopeMain}; +// Symbol keyS = Symbol{scopeMain->findSymbolByAlias("key"), scopeMain}; // // Expression keyE = scopeMain->getDefinition(keyS); // latereasoning::LateAnnotation answerLA = query->get(keyE); // Expression valueB(Operator::VARIANT, {}); valueB.setValueDouble(1); // auto answerRaw = answerLA.select({valueB}, man->root, man->transcend); // ASSERT_TRUE(answerRaw); // Expression answerE = query->getValue(*answerRaw); // ASSERT_STREQ("b", answerE.getValueString().c_str()); //} // //TEST(Polymorphs, PSCU_1){ // auto man = details::tier1::XreateManager::prepare(R"Code( // Dom = type variant {guard1, guard2}. // // guard:: guard1 { // compute = function :: int // {0} // } // // guard:: guard2 { // compute = function :: int // {1} // } // // test = function:: int; entry // { // xLate = guard2():: Dom. // y1= switch late (xLate:: Dom; alias(xLate)):: int // { // compute():: int; guardkey(xLate) // }. // y1 // } // )Code"); // // man->transcend->addRawScript(R"RAW( // dom(guard1; guard2). // late(Target, Key, Variant, dfa_callguard(Target, Variant)):- // bind(Target, guardkey(Alias)); // bind(Key, alias(Alias)); // dom(Variant). // )RAW"); // man->analyse(); // int (*program)() = (int (*)())man->run(); // int result = program(); // // ASSERT_EQ(1, result); //} // //TEST(Polymorphs, Doc_FnLvlPoly_1){ // string example = getDocumentationExampleById("documentation/Concepts/polymorphism.xml", "FnLvlPoly_1"); // auto man = XreateManager::prepare(move(example)); // ASSERT_TRUE(true); //} // //TEST(Polymorphs, Doc_LatePoly_1){ // string example = getDocumentationExampleById("documentation/Concepts/polymorphism.xml", "LatePoly_1"); // auto man = XreateManager::prepare(move(example)); // ASSERT_TRUE(true); //} \ No newline at end of file diff --git a/cpp/tests/types.cpp b/cpp/tests/types.cpp index 5592981..05f671f 100644 --- a/cpp/tests/types.cpp +++ b/cpp/tests/types.cpp @@ -1,311 +1,311 @@ /* Any copyright is dedicated to the Public Domain. * http://creativecommons.org/publicdomain/zero/1.0/ * * types.cpp * * Created on: Jun 4, 2015 * Author: pgess */ #include "gtest/gtest.h" #include "xreatemanager.h" #include "llvmlayer.h" #include "main/Parser.h" #include "transcendlayer.h" #include "analysis/typeinference.h" #include "analysis/utils.h" using namespace std; using namespace xreate; using namespace xreate::grammar::main; TEST(Types, DependantTypes1) { string&& code = "XmlNode = type {\n" " tag:: string,\n" " attrs:: [string], \n" " content:: string\n" "}.\n"; std::unique_ptr program(XreateManager::prepare(move(code))); ExpandedType typeXmlNode = program->root->findType("XmlNode"); ASSERT_EQ(TypeOperator::RECORD, typeXmlNode->__operator); ASSERT_EQ(3, typeXmlNode->__operands.size()); ASSERT_EQ(TypePrimitive::String, typeXmlNode->__operands.at(0).__value); ASSERT_EQ(TypeOperator::ARRAY, typeXmlNode->__operands.at(1).__operator); ASSERT_EQ(TypePrimitive::String, typeXmlNode->__operands.at(2).__value); } TEST(Types, ast_ParameterizedTypes_FeatureTypeIndex_1) { string&& code = "XmlNode = type {\n" " tag:: string,\n" " attrs:: [string],\n" " content:: string\n" "}.\n" "" "Template = type(Leaf) {Leaf, [Leaf[\"content\"]]}." "Concrete = type Template(XmlNode)."; std::unique_ptr program(XreateManager::prepare(move(code))); ExpandedType typeConcrete = program->root->findType("Concrete"); ASSERT_EQ(TypeOperator::RECORD, typeConcrete->__operator); ASSERT_EQ(2, typeConcrete->__operands.size()); ASSERT_EQ(TypeOperator::RECORD, typeConcrete->__operands.at(0).__operator); ASSERT_EQ(TypeOperator::ARRAY, typeConcrete->__operands.at(1).__operator); ASSERT_EQ(TypePrimitive::String, typeConcrete->__operands.at(1).__operands.at(0).__value); } TEST(Types, TreeType1) { string&& code = "XmlNode = type {\n" " tag:: string,\n" " attrs:: [string],\n" " content:: string\n" "}.\n" "" "Tree = type(Leaf) {Leaf, [Tree(Leaf)]}." "Concrete = type Tree(XmlNode)."; std::unique_ptr program(XreateManager::prepare(move(code))); ExpandedType typeConcrete = program->root->findType("Concrete"); ASSERT_EQ(TypeOperator::RECORD, typeConcrete->__operator); ASSERT_EQ(2, typeConcrete->__operands.size()); ASSERT_EQ(TypeOperator::RECORD, typeConcrete->__operands.at(0).__operator); ASSERT_EQ(TypeOperator::ARRAY, typeConcrete->__operands.at(1).__operator); auto typeLink = typeConcrete->__operands.at(1).__operands.at(0); // ASSERT_EQ(TypeOperator::LINK, typeLink.__operator); // ASSERT_EQ(typeConcrete->linkId, typeLink.linkId); } TEST(Types, TreeType1LLvm) { string&& code = "XmlNode = type {\n" " tag:: string,\n" " /* attrs:: [string],*/\n" " content:: string\n" "}.\n" "" "Tree = type(Leaf) {Leaf, [Tree(Leaf)]}." "Concrete = type Tree(XmlNode)."; std::unique_ptr program(XreateManager::prepare(move(code))); ExpandedType typeConcrete = program->root->findType("Concrete"); llvm::Type* raw = program->llvm->toLLVMType(typeConcrete); } TEST(Types, ArrayOfExternal1) { FILE* input = fopen("scripts/containers/Containers_Implementation_LinkedList1.xreate", "r"); assert(input != nullptr); Scanner scanner(input); Parser parser(&scanner); parser.Parse(); AST* ast = parser.root->finalize(); CodeScope* body = ast->findFunction("test")->getEntryScope(); - const ExpandedType& t2 = ast->getType(body->getDefinition(body->getSymbol("childrenRaw"))); + const ExpandedType& t2 = ast->getType(body->getDefinition(body->findSymbolByAlias("childrenRaw"))); EXPECT_EQ(t2->__operator, TypeOperator::ARRAY); } TEST(Types, ExternType1) { FILE* input = fopen("scripts/containers/Containers_Implementation_LinkedList1.xreate", "r"); assert(input != nullptr); Scanner scanner(input); Parser parser(&scanner); parser.Parse(); AST* ast = parser.root->finalize(); CodeScope* body = ast->findFunction("test")->getEntryScope(); - const ExpandedType& t2 = ast->getType(body->getDefinition(body->getSymbol("tree"))); + const ExpandedType& t2 = ast->getType(body->getDefinition(body->findSymbolByAlias("tree"))); EXPECT_EQ(t2->__operator, TypeOperator::ALIAS); } TEST(Types, ast_VariantType1) { string&& code = " colors = type variant {RED, BLUE, GREEN}.\n" " test = function:: colors; entry {GREEN()}"; std::unique_ptr program(XreateManager::prepare(move(code))); ExpandedType typ = program->root->findType("colors"); EXPECT_EQ(TypeOperator::VARIANT, typ->__operator); Expression eRed = program->root->findFunction("test")->getEntryScope()->getBody(); EXPECT_EQ(Operator::VARIANT, eRed.op); const ExpandedType& typ2 = program->root->getType(eRed); EXPECT_EQ(TypeOperator::VARIANT, typ2->__operator); } TEST(Types, full_VariantType_Switch1) { string&& code = "colors = type variant{RED, BLUE, GREEN}. \n" " test = function:: colors {GREEN()} \n" "main = function:: int; entry { \n" " switch(test()):: int \n" " case (GREEN()) {0} \n" " case default {1} \n" "}"; XreateManager* man = XreateManager::prepare(move(code)); int (*main)() = (int (*)()) man->run(); EXPECT_EQ(0, main()); } TEST(Types, ast_VariantType2) { std::string script = R"Code( Annotation = type variant { Num(int), String(string), Func(name::string, arguments::[Expression]) }. )Code"; std::unique_ptr program(XreateManager::prepare(move(script))); ExpandedType typ = program->root->findType("Annotation"); ASSERT_EQ(3, typ.get().fields.size()); } TEST(Types, SlaveTypes_UnwrapSlaveType1) { auto man = details::tier1::XreateManager::prepare(R"Code( AtomNumT = type slave atomNumT. AtomStrT = type slave atomStrT. CmpndIntStrT = type slave cmpndIntStrT. VariantT = type slave variantT. VariantComplicatedT = type slave variantComplicatedT. )Code"); man->transcend->addRawScript(R"RAW( atomNumT(5). atomNumT(8). atomStrT("a"). atomStrT("b"). cmpndIntStrT(1, "a"). cmpndIntStrT(2, "b"). variantT(first). variantT(second). variantT(third). variantComplicatedT(first(1, "a")). variantComplicatedT(second("b")). )RAW"); man->analyse(); ExpandedType AtomNumT = man->root->findType("AtomNumT"); ASSERT_EQ(AtomNumT->__operator, TypeOperator::SLAVE); ExpandedType ContentAtomNumT = analysis::dereferenceSlaveType(AtomNumT, man->transcend); ASSERT_EQ(TypePrimitive::Int, ContentAtomNumT->__value); ExpandedType AtomStrT = man->root->findType("AtomStrT"); ExpandedType ContentAtomStrT = analysis::dereferenceSlaveType(AtomStrT, man->transcend); ASSERT_EQ(TypePrimitive::String, ContentAtomStrT->__value); ExpandedType CmpndIntStrT = man->root->findType("CmpndIntStrT"); ExpandedType ContentCmpndIntStrT = analysis::dereferenceSlaveType(CmpndIntStrT, man->transcend); ASSERT_EQ(TypeOperator::RECORD, ContentCmpndIntStrT->__operator); ASSERT_EQ(2, ContentCmpndIntStrT->__operands.size()); ExpandedType VariantT = man->root->findType("VariantT"); ExpandedType ContentVariantT = analysis::dereferenceSlaveType(VariantT, man->transcend); ASSERT_EQ(TypeOperator::VARIANT, ContentVariantT->__operator); ASSERT_EQ(3, ContentVariantT->fields.size()); ExpandedType VariantComplicatedT = man->root->findType("VariantComplicatedT"); ExpandedType ContentVariantComplicatedT = analysis::dereferenceSlaveType(VariantComplicatedT, man->transcend); ASSERT_EQ(TypeOperator::VARIANT, ContentVariantComplicatedT->__operator); ASSERT_EQ(2, ContentVariantComplicatedT->fields.size()); ASSERT_EQ(2, ContentVariantComplicatedT->__operands.at(0).__operands.size()); } TEST(Types, IndexNumber_1) { string&& code = R"CODE( Tuple = type {string, int}. Int = type Tuple[1]. )CODE"; std::unique_ptr program(XreateManager::prepare(move(code))); ExpandedType typeInt = program->root->findType("Int"); } TEST(Types, RecursiveTypes_1){ string&& code = R"CODE( Node = type { data:: int, next:: ref(Node) } )CODE"; std::string outputExpected = "{ i32, %Node* }"; std::unique_ptr program(XreateManager::prepare(move(code))); ExpandedType typNode = program->root->findType("Node"); llvm::Type* typNodeRaw = program->llvm->toLLVMType(typNode); std::string outputActual; llvm::raw_string_ostream os(outputActual); typNodeRaw->print(os); os.flush(); ASSERT_NE(std::string::npos, outputActual.find(outputExpected)); } TEST(Types, RecursiveTypes_2){ string&& code = R"CODE( Tree = type(NodeData) variant { LEAF(data:: NodeData), GROUP(nodes:: [ref(Tree(NodeData))]) } Guard = type variant { a, b }. DecisionTree = type Tree(Guard). )CODE"; std::string outputExpected = "{ i8, { { i8 } } "; std::unique_ptr program(XreateManager::prepare(move(code))); ExpandedType typNode = program->root->findType("DecisionTree"); llvm::Type* typNodeRaw = program->llvm->toLLVMType(typNode); std::string outputActual; llvm::raw_string_ostream os(outputActual); typNodeRaw->print(os); os.flush(); cout << outputActual << endl; ASSERT_NE(std::string::npos, outputActual.find(outputExpected)); } TEST(Types, NestedList1){ string code = R"( test = function:: int; entry() { x = {a = {b = 3}}:: {a:: {b:: int}}. x["a", "b"] } )"; std::unique_ptr program(XreateManager::prepare(move(code))); program->run(); } \ No newline at end of file diff --git a/grammar/xreate.ATG b/grammar/xreate.ATG index 307d0a6..80c548f 100644 --- a/grammar/xreate.ATG +++ b/grammar/xreate.ATG @@ -1,836 +1,837 @@ //TODO add ListLiteral //TODO ExprTyped: assign default(none) type #include "ast.h" #include "ExternLayer.h" #include #include #include #define wprintf(format, ...) \ char __buffer[100]; \ wcstombs(__buffer, format, 100); \ fprintf(stderr, __buffer, __VA_ARGS__) using namespace std; COMPILER Xreate details::inconsistent::AST* root = nullptr; // current program unit void SemErr(std::initializer_list msgs){ std::wstringstream output; for(const auto& msg: msgs){output << msg;} SemErr(output.str().c_str()); } void ensureInitalizedAST(){ if (root == nullptr) root = new details::inconsistent::AST(); } struct { std::stack scopesOld; CodeScope* scope = nullptr; } context; void pushContextScope(CodeScope* scope){ context.scopesOld.push(context.scope); context.scope = scope; } void popContextScope(){ context.scope = context.scopesOld.top(); context.scopesOld.pop(); } int nextToken() { scanner->ResetPeek(); return scanner->Peek()->kind; } bool checkTokenAfterIdent(int key){ if (la->kind != _ident) return false; return nextToken() == key; } bool checkParametersList() { return la->kind == _ident && nextToken() == _lparen; } bool checkInfix() { return la->kind == _ident && nextToken() == _ident; } bool checkIndex() { return la->kind == _ident && nextToken() == _lbrack; } bool checkListIndex() { return la->kind == _lcurbrack && nextToken() == _lbrack; } bool checkFuncDecl() { if (la->kind != _ident) return false; int token2 = nextToken(); int token3 = scanner->Peek()->kind; return token2 == _assign && token3 == _function; } bool checkAssignment() { if (la->kind != _ident) return false; scanner->ResetPeek(); int token2 = scanner->Peek()->kind; if (token2 == _lcurbrack) { scanner->Peek(); int token3 = scanner->Peek()->kind; if (token3 != _rcurbrack) return false; int token4 = scanner->Peek()->kind; return token4 == _assign; } return token2 == _assign; } void recognizeIdentifier(Expression& id, const std::wstring& hint){ if (!context.scope) SemErr({L"Identifier found in undefined scope: ", hint}); if (!context.scope->recognizeIdentifier(id)){ root->postponeIdentifier(context.scope, id); } } enum SwitchKind{SWITCH_NORMAL, SWITCH_META}; CHARACTERS letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz". any = ANY - '"'. digit = "0123456789". cr = '\r'. lf = '\n'. tab = '\t'. TOKENS ident = (letter ['-' letter] | '_') {letter ['-' letter] | digit | '_' }. number = digit{digit}. string = '"' { any } '"'. function = "function". comma = ','. period = '.'. lparen = '('. rparen = ')'. lbrack = '['. rbrack = ']'. lcurbrack = '{'. rcurbrack = '}'. equal = "==". assign = '='. implic = '-' '>'. colon = ':'. tagcolon = "::". lse = "<=". lss = "<". gte = ">=". gtr = ">". ne1 = "!=". ne2= "<>". COMMENTS FROM "/*" TO "*/" NESTED COMMENTS FROM "//" TO lf IGNORE cr + lf + tab PRODUCTIONS Xreate = (. Function* function; ensureInitalizedAST(); .) {( //RuleDecl InterfaceData | Imprt | GuardSection | IF(checkFuncDecl()) FDecl (. root->add(function); .) | TDecl | SkipModulesSection )} (. .) . Ident= ident (. name = t->val; .). // recognition IdentR = (. std::wstring name; .) Ident (. e = Expression(Atom(name)); .) (. recognizeIdentifier(e, name); .). //versioning IdentV= (. std::wstring name; .) Ident (. e = Expression(Atom(name)); .) [ Version ]. //recognition + versioning IdentVR= (. std::wstring name; .) Ident (. e = Expression(Atom(name)); .) [ Version ] (. recognizeIdentifier(e, name); .) . Version= lcurbrack ( ident (. SemErr({L"var version as ident is not implemented yet"}); .) | number (. Attachments::put(e, Atom(t->val).get()); .) ) rcurbrack . FDecl = (. std::wstring fname; std::wstring argName; TypeAnnotation typIn; TypeAnnotation typOut; Expression binding; .) Ident assign function (. f = new Function(fname); CodeScope* entry = f->getEntryScope(); .) [lparen Ident tagcolon ExprAnnotations (. f->addBinding(Atom(argName), move(binding)); .) {comma Ident tagcolon ExprAnnotations (. f->addBinding(Atom (argName), move(binding));.) } rparen] tagcolon Type {';' FnTag } BDecl (. const_cast(entry->getBody()).bindType(move(typOut));.) . GuardSection<>= (. std::wstring arg, guardI; Expression guardE, guardBinding; Function* f; TypeAnnotation guardT; .) "guard" lparen [Ident] tagcolon Ident (. guardE = Expression(Operator::CALL, {Atom(guardI)}); bool res = root->recognizeVariantConstructor(guardE); .) (. if(!res) SemErr(coco_string_create("Can't recognize a guard"));.) (. if (!arg.empty()) guardE.addBindings({Atom(arg)}); .) (. guardBinding.type = TypeAnnotation(TypeOperator::GUARD, {guardE.type}); guardBinding.type.__valueCustom = Atom(guardI).get(); .) rparen lcurbrack { FDecl (. f->guard = guardE; if (!arg.empty()){f->addBinding(Atom(arg), Expression(guardBinding));} .) (. root->add(f); .) } rcurbrack . /** * TYPES * */ TypeTerm = (. std::wstring tid; .) ( "string" (. typ = TypePrimitive::String;.) | "int" (. typ = TypePrimitive::Int;.) | "float" (. typ = TypePrimitive::Float;.) | "bool" (. typ = TypePrimitive::Bool; .) | "i8" (. typ = TypePrimitive::I8; .) | "i32" (. typ = TypePrimitive::I32; .) | "i64" (. typ = TypePrimitive::I64; .) ). Type = (. TypeAnnotation typ2; TypePrimitive typ3; std::wstring tid; std::string field; .) ( TList | TRecord | TVariant | TPred | TSlave | TRef | TypeTerm (. typ = typ3; .) | IF (checkIndex()) Ident lbrack TypeIndex (. typ = TypeAnnotation(TypeOperator::ACCESS, {}); typ.__valueCustom = Atom(tid).get(); typ.fields.push_back(field); .) {comma TypeIndex (. typ.fields.push_back(field); .) } rbrack | Ident (. typ = TypeAnnotation(TypeOperator::ALIAS, {}); typ.__valueCustom = Atom(tid).get(); .) [lparen Type (. typ.__operands.push_back(typ2); .) {comma Type (. typ.__operands.push_back(typ2); .) } rparen] | '*' (.typ = TypeAnnotation(); .) ) . TypeIndex = ( number (. name = Atom(t->val).get(); .) | string (. name = Atom(t->val).get(); .) ) . TList = (. TypeAnnotation ty; .) lbrack Type rbrack (. typ = TypeAnnotation(TypeOperator::ARRAY, {ty}); .) . TRecordBody = (. TypeAnnotation t; std::wstring key; size_t keyCounter=0; typ = TypeAnnotation(TypeOperator::RECORD, {}); .) { ( IF(checkTokenAfterIdent(_tagcolon)) Ident tagcolon | (. key = to_wstring(keyCounter++); .) ) Type [comma] (. typ.__operands.push_back(t); .) (. typ.fields.push_back(Atom(key).get()); .) }. TRecord = lcurbrack TRecordBody rcurbrack (. if(!typ.__operands.size()) SemErr(coco_string_create("Record type can't be empty.")); .) . TVariantRec = (. TypeAnnotation typVoid; .) lparen TRecordBody rparen (. if(typ.__operands.size()==0) typ = typVoid; .) . TVariantBody = (. TypeAnnotation t, typVoid; std::vector operands; std::vector> keys; std::wstring v; .) lcurbrack { (. t = typVoid; .) Ident [TVariantRec] (. keys.push_back(Atom(v)); operands.push_back(t); .) [comma] } rcurbrack (. typ = TypeAnnotation(TypeOperator::VARIANT, {}); typ.__operands = operands; typ.addFields(std::move(keys)); .) . TVariant= "variant" TVariantBody (. if(!typ.__operands.size()) SemErr(coco_string_create("Variant type can't be empty.")); .) . TPred= "predicate" TVariantBody (. if(!typ.__operands.size()) SemErr(coco_string_create("Predicate type can't be empty.")); .) . TSlave= "slave" (. typ = TypeAnnotation(TypeOperator::SLAVE, {}); .) lparen string (. typ.__valueCustom = Atom(t->val).get(); .) rparen . TRef= (. TypeAnnotation typChild; .) "ref" lparen Type rparen (. typ = TypeAnnotation(TypeOperator::REF, {typChild}); .) . TDecl = (. TypeAnnotation t; std::wstring tname, arg; std::vector> args; .) Ident assign "type" [lparen Ident (. args.push_back(Atom(arg)); .) {comma Ident (. args.push_back(Atom(arg)); .) } rparen] Type[period] (. t.addBindings(move(args)); root->add(move(t), Atom(tname)); .) . ContextDecl = (. Expression tag; .) "context" tagcolon MetaSimpExpr (. scope->tags.push_back(tag); .) {';' MetaSimpExpr (. scope->tags.push_back(tag); .) }. VDecl = (. Expression var, value;.) IdentV assign ExprTyped (. Symbol identSymbol = f->addDefinition(move(var), move(value)); Attachments::put(value, identSymbol); .) . BDecl = lcurbrack (. Expression body; pushContextScope(scope); bool flagBodyFound = false; .) {(IF(checkAssignment()) VDecl period // | RuleContextDecl | ContextDeclperiod | ExprTyped (. scope->setBody(body); flagBodyFound = true; Attachments::put(body, Symbol{ScopedSymbol::RetSymbol, scope});.) )} rcurbrack (. if(!flagBodyFound) SemErr(coco_string_create("Code block with an empty body!")); popContextScope(); .) . IfDecl = (. Expression cond(Operator::AND, {}), condPart; ManagedScpPtr blockTrue = root->add(new CodeScope(context.scope)); ManagedScpPtr blockFalse = root->add(new CodeScope(context.scope)); e = Expression(Operator::IF, {}); .) "if" lparen Expr (. cond.operands.push_back(condPart); .) { comma Expr (. cond.operands.push_back(condPart); .) } rparen (. e.operands.push_back(cond); .) tagcolon ExprAnnotations BDecl<&*blockTrue> "else" BDecl<&*blockFalse> (. e.addBlock(blockTrue); e.addBlock(blockFalse); .) . LoopDecl = (. Expression eIn, eAcc, eFilters; std::wstring varEl, varAcc, contextClass; Expression tagsEl; ManagedScpPtr block = root->add(new CodeScope(context.scope)); + block->trackExternalSymbs = true; .) "loop" ( "map" lparen Expr implic Ident (. e = Expression(Operator::MAP, {eIn}); .) tagcolon ExprAnnotations rparen tagcolon ExprAnnotations (. e.addBindings({Atom(varEl)}); block->addBinding(Atom(varEl), move(tagsEl)); .) BDecl<&*block> (. e.addBlock(block); .) | "fold" lparen Expr implic Ident tagcolon ExprAnnotations ['|' Expr ] comma Expr implic Identrparen (. e = Expression(Operator::FOLD, {eIn, eAcc}); e.addBindings({Atom(varEl), Atom(varAcc)}); .) tagcolon ExprAnnotations (. Expression varAccBindingE; varAccBindingE.type = e.type; block->addBinding(Atom(varEl), move(tagsEl)); block->addBinding(Atom(varAcc), move(varAccBindingE)); .) BDecl<&*block> (. e.addBlock(block); .) | lparen Expr implic Ident rparen (. e = Expression(Operator::FOLD_INF, {eAcc}); e.addBindings({Atom(varAcc)}); .) tagcolon ExprAnnotations (. Expression varAccBindingE; varAccBindingE.type = e.type; block->addBinding(Atom(varAcc), move(varAccBindingE)); .) BDecl<&*block> (. e.addBlock(block); .) ). // Switches SwitchDecl = (. TypeAnnotation typ; eSwitch = Expression(Operator::SWITCH, {}); Expression eCondition; Expression tag;.) "switch" ( SwitchVariantDecl | SwitchLateDecl | lparen ExprTyped rparen tagcolon ExprAnnotations (. eSwitch.operands.push_back(eCondition);.) CaseDecl {CaseDecl} ) . CaseDecl = (. ManagedScpPtr scope = root->add(new CodeScope(context.scope)); Expression condition; .) "case" ( IF(flagSwitchKind == SWITCH_META) lparen MetaSimpExpr rparen BDecl<&*scope> (. Expression exprCase(Operator::CASE, {}); exprCase.addTags({condition}); exprCase.addBlock(scope); outer.addArg(move(exprCase));.) | "default" BDecl<&*scope> (. Expression exprCase(Operator::CASE_DEFAULT, {}); exprCase.addBlock(scope); outer.operands.insert(++outer.operands.begin(), exprCase); .) | lparen CaseParams<&*scope> rparen (. ManagedScpPtr scopeBody = root->add(new CodeScope(&*scope)); Expression exprCase(Operator::CASE, {}); .) BDecl<&*scopeBody> (. exprCase.addBlock(scope); exprCase.addBlock(scopeBody); outer.addArg(move(exprCase)); .) ). CaseParams = (. Expression condition; Expression guard(Operator::LOGIC_AND, {}); pushContextScope(scope); .) ExprTyped (. guard.addArg(Expression(condition)); .) {comma ExprTyped (. guard.addArg(Expression(condition)); .) } (. scope->setBody(guard); popContextScope(); .) . SwitchLateDecl = (. std::wstring aliasCondition; Expression exprCondition, aliasAnns; expr = Expression(Operator::SWITCH_LATE, {}); ManagedScpPtr scope = root->add(new CodeScope(context.scope)); .) "late" lparen Expr [implic Ident] [tagcolon ExprAnnotations] rparen tagcolon ExprAnnotations BDecl<&*scope> (. expr.addArg(Expression(exprCondition)); expr.addBlock(scope); std::string alias; if(aliasCondition.empty()){ if(exprCondition.__state != Expression::IDENT){ SemErr(coco_string_create("An identifier expected in the short form")); return; } //Use exprCondition as identifier alias = exprCondition.getValueString(); } else { //Use aliasCondition alias = Atom(move(aliasCondition)).get(); } expr.addBindings({Atom(string(alias))}); scope->addBinding(Atom(move(alias)), move(aliasAnns)); .) . SwitchVariantDecl = (. Expression varTested; std::wstring varAlias; bool flagAliasFound = false; expr = Expression(Operator::SWITCH_VARIANT, {}); .) "variant" lparen Expr [implic Ident (. flagAliasFound = true; .) ] [tagcolon ExprAnnotations] rparen tagcolon ExprAnnotations (. expr.addArg(std::move(varTested)); if (flagAliasFound) { expr.addBindings({Atom(varAlias)}); } else { if(varTested.__state == Expression::IDENT){ expr.addBindings({Atom(string(varTested.getValueString()))}); } } .) CaseVariantDecl {CaseVariantDecl} . CaseVariantDecl = (. ManagedScpPtr scope = root->add(new CodeScope(context.scope)); std::wstring key; scope->addBinding(Atom(string(expr.bindings.front())), Expression()); .) "case" lparen Ident rparen (. expr.addArg(root->recognizeVariantConstructor(Atom(std::move(key)))); .) BDecl<&*scope> (. expr.addBlock(scope); .) . IntrinsicDecl= (. std::wstring name; .) "intrinsic" ( Ident< name> (. outer = Expression(Operator::CALL_INTRINSIC, {}); outer.setValue(Atom(name)); root->recognizeIntrinsic(outer); .) lparen [CalleeParams] rparen | "query" (. outer = Expression(Operator::QUERY, {}); .) ( "late" IntrinsicQueryLateDecl | lparen [CalleeParams] rparen ) ). IntrinsicQueryLateDecl = (. std::wstring predicateAlias; Expression predicateE, predicateAnns; expr = Expression(Operator::QUERY_LATE, {}); ManagedScpPtr scope = root->add(new CodeScope(context.scope)); .) lparen Expr implic Ident tagcolon ExprAnnotations rparen tagcolon ExprAnnotations BDecl<&*scope> (. expr.addArg(move(predicateE)); expr.addBindings({Atom(wstring(predicateAlias))}); scope->addBinding(Atom(move(predicateAlias)), move(predicateAnns)); expr.addBlock(scope); .) . SequenceDecl = (. sequence = Expression(); sequence.setOp(Operator::SEQUENCE); ManagedScpPtr scope = root->add(new CodeScope(context.scope)); .) "seq" BDecl<&*scope> (. sequence.blocks.push_back(&*scope); scope = root->add(new CodeScope(&*scope)); .) { (. scope = root->add(new CodeScope(&*scope)); .) BDecl<&*scope> (. sequence.blocks.push_back(&*scope); .) }. /*============================ INTERFACES ===============================*/ Imprt<> = "import" "raw" lparen string (. root->__rawImports.push_back(Atom(t->val).get()); .) rparen period. InterfaceData<> = "interface" lparen ( "dfa" rparen InterfaceDFA // | "extern-c" rparen InterfaceExternC | "cfa" rparen InterfaceCFA ). // InterfaceExternC<> = (. ExternData data; .) // lcurbrack {ExternHeadersDecl | ExternAliasDecl } rcurbrack // (. root->addExternData(move(data)); .) // . // // ExternPkgDecl = // "pkgconfig" lparen // string (. package = t->val.) // rparen // . // // ExternAliasDecl = (. std::wstring alias, package; .) // Ident assign "library" lparen ExternPkgDecl rparen period // (. data.addLibAlias(Atom(alias), Atom(package)); .) // . // // ExternHeadersDecl = (. std::list listInc; std::wstring& package; .) // "include" // [lparen // ( // Ident (. data.requireLibAlias(Atom(alias)); .) // | ExternPkgDecl (. data.requireLibPackage(Atom(package)); .) // ) // rparen] // lcurbrack { string (. listInc.push_back(Atom(t->val).get()); .) // [comma] } rcurbrack [period] (. data.requireHeaders(listInc); .) // . InterfaceDFA<> = lcurbrack { InstructDecl } rcurbrack . InstructDecl = (.Operator op; Expression tag; Expression scheme; std::vector& tags = scheme.operands; tags.push_back(Expression()); /* return value */ .) "operator" InstructAlias tagcolon lparen (.scheme.setOp(op); .) [ MetaSimpExpr (. tags.push_back(tag); .) { comma MetaSimpExpr (. tags.push_back(tag); .) } ] rparen [ implic MetaSimpExpr (. tags[0] = tag; .) ] (. root->addDFAData(move(scheme)); .) period. InstructAlias = ( "map" (. op = Operator::MAP; .) | "list_range" (. op = Operator::LIST_RANGE; .) | "list" (. op = Operator::LIST; .) | "fold" (. op = Operator::FOLD; .) | "index" (. op = Operator::INDEX; .) ). InterfaceCFA<> = lcurbrack { InstructCFADecl } rcurbrack . InstructCFADecl<> = (.Operator op; Expression tag; Expression scheme; std::vector& tags = scheme.operands; .) "operator" InstructAlias tagcolon (. scheme.setOp(op); .) [ MetaSimpExpr (. tags.push_back(tag); .) { comma MetaSimpExpr (. tags.push_back(tag); .) } ] period (. root->addInterfaceData(CFA, move(scheme)); .). /*============================ METAPROGRAMMING ===============================*/ // TagsDecl = (. Expression tag; TagModifier mod = TagModifier::NONE; .) // ':' { MetaSimpExpr (. /*f.addTag(std::move(tag), mod); */ .) // }. FnTag = (. Expression tag; TagModifier mod = TagModifier::NONE; .) MetaSimpExpr ['-' TagMod] (. f->addTag(std::move(tag), mod); .). TagMod = ( "assert" (. mod = TagModifier::ASSERT; .) | "require" (. mod = TagModifier::REQUIRE; .) ). // RuleDecl<> = // "rule" tagcolon (. RuleArguments args; RuleGuards guards; DomainAnnotation typ; std::wstring arg; .) // lparen Ident tagcolon Domain (. args.add(arg, typ); .) // {comma Ident tagcolon Domain (. args.add(arg, typ); .) // } rparen // ["case" RGuard {comma RGuard}] // lcurbrack RBody rcurbrack . /* - TODO use RGuard for guards-*/ // RuleContextDecl = (.Expression eHead, eGuards, eBody; .) // "rule" "context" tagcolon MetaSimpExpr // "case" lparen MetaSimpExpr rparen // lcurbrack MetaSimpExpr rcurbrack (.scope->contextRules.push_back(Expression(Operator::CONTEXT_RULE, {eHead, eGuards, eBody})); .). // Domain = // ( // "function" (. dom = DomainAnnotation::FUNCTION; .) // | "variable" (. dom = DomainAnnotation::VARIABLE; .) // ). // RGuard= (. Expression e; .) // MetaExpr (. guards.add(std::move(e)); .). // MetaExpr= (.Operator op; Expression e2; .) // MetaExpr2 // [MetaOp MetaExpr2 (. e = Expression(op, {e, e2}); .) // ]. // MetaExpr2= // ( // lparen MetaExpr rparen // | MetaSimpExpr // ). MetaSimpExpr= (. std::wstring i1, infix; Expression e2; .) ( '-' MetaSimpExpr (. e = Expression(Operator::NEG, {e2}); .) | IF(checkParametersList()) Ident (. e = Expression(Operator::CALL, {Expression(Atom(i1))}); if (!root->recognizeVariantConstructor(e)) SemErr({L"Undefined predicate: ", i1}); .) lparen [ MetaCalleeParams ] rparen | IF(checkInfix()) Ident Ident MetaSimpExpr (. e = Expression(Operator::CALL, {Expression(Atom(infix))}); e.addArg(Expression(Atom(i1))); e.addArg(std::move(e2)); .) | IdentR | number (. e = Expression(Atom(t->val)); .) ). MetaCalleeParams = (. Expression e2; .) MetaSimpExpr (. e.addArg(Expression(e2)); .) {comma MetaSimpExpr (. e.addArg(Expression(e2)); .) }. // RBody = // (. Expression e; std::wstring msg; .) // "warning" MetaExpr ["message" string (. msg = t->val; .) // ] (. root->add(new RuleWarning(RuleArguments(args), RuleGuards(guards), std::move(e), Atom(msg))); .) // . // MetaOp< Operator& op> = // implic (. op = Operator::IMPL; .) // . /*============================ Expressions ===============================*/ ExprAnnotations = (. TypeAnnotation typ; std::list tags; Expression tag; e.tags.clear();.) Type (. e.bindType(move(typ)); .) {';' MetaSimpExpr (. tags.push_back(tag); .) } (. e.addTags(tags); .) . ExprTyped = Expr [tagcolon ExprAnnotations]. Expr< Expression& e> (. Expression e2; .) = ExprLogicAnd [ ("or" | "OR") Expr (. e = Expression(Operator::OR, {e, e2}); .) ] . ExprLogicAnd< Expression& e> (. Expression e2; .) = ExprRel [ ("and" | "AND") ExprLogicAnd (. e = Expression(Operator::AND, {e, e2}); .) ] . ExprRel< Expression& e> (. Operator op; Expression e2; .) = ExprArithmAdd [ RelOp ExprRel (. e = Expression(op, {e, e2}); .) ] . ExprArithmAdd< Expression& e>= (. Operator op; Expression e2; .) ExprArithmMul< e> [ AddOpExprArithmAdd< e2> (. e = Expression(op, {e, e2});.) ]. ExprArithmMul< Expression& e> (. Operator op; Expression e2; .) = ExprUpdate [ MulOp< op> ExprArithmMul< e2> (. e = Expression(op, {e, e2}); .) ]. ExprUpdate= (. Expression e2; .) ExprPostfix< e> [ colon ( IF(checkListIndex()) ListIndexLiteral | ListLiteral) (. e = Expression(Operator::UPDATE, {e, e2}); .) ]. ExprPostfix = Term [ (. e = Expression(Operator::INDEX, {e}); .) {lbrack CalleeParams rbrack } ]. Term< Expression& e> (. std::wstring name; e = Expression(); .) = (IF (checkParametersList()) Ident< name> (. e = Expression(Operator::CALL, {Atom(name)}); root->recognizeVariantConstructor(e); .) lparen [CalleeParams] rparen | IdentVR | ListLiteral | ListRangeLiteral | LoopDecl | IfDecl | SwitchDecl | IntrinsicDecl | SequenceDecl | number (. e = Expression(Atom(t->val)); .) | string (. e = Expression(Atom(t->val)); .) | "true" (. e = Expression(Atom(1)); e.bindType(TypePrimitive::Bool); .) | "false" (. e = Expression(Atom(0)); e.bindType(TypePrimitive::Bool); .) | "undef" (. e = Expression(Operator::UNDEF, {}); .) | '-' Term (. e = Expression(Operator::NEG, {e}); .) | lparen ExprTyped rparen ). ListLiteral = (. std::wstring key; Expression val; std::list> keys; e = Expression(Operator::LIST, {}); .) lcurbrack { ( IF(checkTokenAfterIdent(_assign)) Ident assign | (. key = L""; .) ) Expr (. keys.push_back(Atom(key)); e.operands.push_back(val); .) [comma] } rcurbrack (. e.addBindings(keys.begin(), keys.end()); .) . ListIndexLiteral = (. e = Expression(Operator::LIST_INDEX, {});Expression valE;.) lcurbrack { (. Expression idxE(Operator::LIST, {});.) lbrack CalleeParams rbrack assign Expr[comma] (. e.operands.push_back(idxE); e.operands.push_back(valE); .) } rcurbrack . ListRangeLiteral = (. Expression eFrom, eTo; .) lbrack Expr ".." Expr rbrack (. e = Expression(Operator::LIST_RANGE, {eFrom, eTo}); .) . CalleeParams = (. Expression e2; .) ExprTyped (. e.addArg(Expression(e2)); .) {comma ExprTyped (. e.addArg(Expression(e2)); .) }. AddOp< Operator& op> = (. op = Operator::ADD; .) ( '+' | '-' (. op = Operator::SUB; .) ). MulOp< Operator& op> = (. op = Operator::MUL; .) ( '*' | '/' (. op = Operator::DIV; .) | '%' (. op = Operator::MOD; .) ). RelOp< Operator& op> = (. op = Operator::EQU; .) ( equal | (ne1 | ne2) (. op = Operator::NE; .) | lse (. op = Operator::LSE; .) | lss (. op = Operator::LSS; .) | gte (. op = Operator::GTE; .) | gtr (. op = Operator::GTR; .) ). SkipModulesSection = "module" {ANY} (lcurbrack {ANY} rcurbrack | '.'). END Xreate. diff --git a/scripts/compilation/llvmaliases.xreate b/scripts/compilation/llvmaliases.xreate new file mode 100644 index 0000000..e02cbaf --- /dev/null +++ b/scripts/compilation/llvmaliases.xreate @@ -0,0 +1,5 @@ +Rec = type {x:: int, y:: int}. + +test = function(a:: int, b::int):: Rec; entry() { + {x = a + b, y = 2} +}