diff --git a/config/default.json b/config/default.json index 807e420..157f4a6 100644 --- a/config/default.json +++ b/config/default.json @@ -1,69 +1,69 @@ { "containers": { "id": { "implementations": "impl_fulfill_cluster", "clusters": "var_cluster", "prototypes": "proto_cluster", "linkedlist": "linkedlist" }, "impl": { "solid": "solid", "onthefly": "on_the_fly" } }, "logging": { "id": "logging" }, "function-entry": "entry", "clasp": { "bindings" : { "variable": "bind", "function": "bind_func", "scope": "bind_scope", "function_demand" : "bind_function_demand", "scope_decision": "bind_scope_decision" }, "context" : { "decisions":{ "dependent": "resolution_dependency" }, }, "nonevalue": "nonevalue", "ret": { "symbol": "retv", "tag": "ret" } }, "tests": { "template": "default", "templates": { "default": "*-", "adhocs": "Adhoc.*", "effects": "Effects.*", "basic": "Attachments.*", "ast": "AST.*", "cfa": "CFA.*", "dfa": "DFA.*", - "compilation": "Compilation.functionEntry1*", + "compilation": "Compilation.*", "diagnostic": "Diagnostic.*", "ExpressionSerializer": "ExpressionSerializer.*", "externc": "InterfaceExternC.*", "types": "Types.*-", "vendorsAPI/clang": "ClangAPI.*", "vendorsAPI/xml2": "libxml2*", "dsl": "Interpretation.*:InterpretationExamples.*", "context": "Context.*", "containers": "Containers.*", "loops": "Loop.*" } } } diff --git a/cpp/src/CMakeLists.txt b/cpp/src/CMakeLists.txt index 78a19cc..e59b682 100644 --- a/cpp/src/CMakeLists.txt +++ b/cpp/src/CMakeLists.txt @@ -1,219 +1,219 @@ cmake_minimum_required(VERSION 2.8.11) project(xreate) cmake_policy(SET CMP0022 NEW) message("MODULES" ${CMAKE_MODULE_PATH}) # LLVM #====================== FIND_PACKAGE (LLVM REQUIRED) set(LLVM_VERSION ${LLVM_VERSION_MAJOR}.${LLVM_VERSION_MINOR}) message(STATUS "Found LLVM ${LLVM_PACKAGE_VERSION}") message("LLVM LIB PATH:" ${LLVM_LIBRARY_DIRS}) message(STATUS "Using LLVMConfig.cmake in: ${LLVM_DIR}") INCLUDE_DIRECTORIES(${LLVM_INCLUDE_DIRS}) message(STATUS "INCLUDE DIR: ${LLVM_INCLUDE_DIRS}") add_definitions(${LLVM_DEFINITIONS}) message("LLVM DEFS: " ${LLVM_DEFINITIONS}) llvm_map_components_to_libnames(LLVM_LIBS core nativecodegen native executionengine mcjit support option) message("LLVM LIBS: " ${LLVM_LIBS}) # CLANG #====================== set(CLANG_LIBS clangCodeGen clangASTMatchers clangQuery clangTooling clangFrontend clangSerialization clangDriver clangParse clangSema clangAnalysis clangAST clangEdit clangLex clangBasic ) # POTASSCO #====================== set(POTASSCO_PATH "/opt/potassco/clingo" CACHE PATH "Path to potassco sources") set(POTASSCO_INCLUDE_PATH ${POTASSCO_PATH}/libgringo ${POTASSCO_PATH}/libclasp ${POTASSCO_PATH}/libclingo ${POTASSCO_PATH}/libprogram_opts ${POTASSCO_PATH}/liblp ) INCLUDE_DIRECTORIES(${POTASSCO_INCLUDE_PATH}) set(LIBCLASP_LIBS clingo clasp gringo program_opts reify lp ) message("CLASP LIBS: " ${LIBCLASP_LIBS}) # OTHER DEPENDENCIES #=========================== set(JEAYESON_INCLUDE_PATH ${CMAKE_HOME_DIRECTORY}/../vendors/jeayeson/include/ ) INCLUDE_DIRECTORIES(${JEAYESON_INCLUDE_PATH}) # COCO #=========================== set(COCO_EXECUTABLE "" CACHE PATH "Path to coco executable") set(COCO_FRAMES_PATH "" CACHE PATH "Path to coco frames") set(COCO_GRAMMAR_PATH ${CMAKE_HOME_DIRECTORY}/../coco/) set(COCO_SOURCE_FILES ${COCO_GRAMMAR_PATH}/Parser.cpp ${COCO_GRAMMAR_PATH}/Scanner.cpp) INCLUDE_DIRECTORIES(${COCO_GRAMMAR_PATH}) add_custom_command(OUTPUT ${COCO_SOURCE_FILES} COMMAND ${COCO_GRAMMAR_PATH}/gen-grammar ${COCO_EXECUTABLE} ${COCO_FRAMES_PATH} WORKING_DIRECTORY ${COCO_GRAMMAR_PATH} MAIN_DEPENDENCY ${COCO_GRAMMAR_PATH}/xreate.ATG ) message(STATUS "COCO GRAMMAR BUILD STATUS:" ${COCO_OUTPUT}) # XREATE #====================== set(SOURCE_FILES - compilation/pointerarithmetic.cpp + compilation/operators.cpp compilation/transformations.cpp compilation/transformersaturation.cpp pass/compilepass.cpp pass/dfapass.cpp analysis/dfagraph.cpp pass/versionspass.cpp compilation/targetinterpretation.cpp attachments.cpp ast.cpp ExternLayer.cpp analysis/cfagraph.cpp analysis/aux.cpp compilation/containers.cpp compilation/advanced.cpp clasplayer.cpp compilation/latecontextcompiler2.cpp query/context.cpp llvmlayer.cpp utils.cpp passmanager-bare.cpp passmanager-full.cpp pass/abstractpass.cpp pass/cfapass.cpp pass/adhocpass.cpp contextrule.cpp query/containers.cpp pass/interpretationpass.cpp analysis/DominatorsTreeAnalysisProvider.cpp serialization/expressionserializer.cpp ) set(XREATE_INCLUDE_DIRS ${CMAKE_CURRENT_SOURCE_DIR}/ ) INCLUDE_DIRECTORIES(${XREATE_INCLUDE_DIRS}) set(XREATE_PRIVATE_INCLUDE_DIRS ${XREATE_INCLUDE_DIRS} ${COCO_GRAMMAR_PATH} ${JEAYESON_INCLUDE_PATH} ${LLVM_INCLUDE_DIRS} ${POTASSCO_INCLUDE_PATH} ) add_library(${PROJECT_NAME} SHARED ${SOURCE_FILES} ${COCO_SOURCE_FILES}) target_link_libraries(${PROJECT_NAME}) target_include_directories(${PROJECT_NAME} INTERFACE ${XREATE_INCLUDE_DIRS} ${COCO_GRAMMAR_PATH} ${JEAYESON_INCLUDE_PATH} ${LLVM_INCLUDE_DIRS} ${POTASSCO_INCLUDE_PATH} ) get_directory_property(DEFINITIONS_ALL DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} COMPILE_DEFINITIONS) message("definitions all: " ${DEFINITIONS_ALL}) target_compile_definitions(${PROJECT_NAME} INTERFACE ${DEFINITIONS_ALL}) get_directory_property(COMPILATION_OPTIONS_ALL DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} COMPILE_OPTIONS) message("compilations all: " ${COMPILATION_OPTIONS_ALL}) target_compile_options(${PROJECT_NAME} INTERFACE ${COMPILATION_OPTIONS_ALL}) SET_PROPERTY(TARGET ${PROJECT_NAME} PROPERTY INTERFACE_LINK_LIBRARIES ${LIBCLASP_LIBS} ${CLANG_LIBS} ${LLVM_LIBS} tbb ) #${CLANG_LIBS} #set (LINK_INTERFACE_LIBRARIES "") # FUNCTION(PREPEND var prefix) # SET(listVar "") # FOREACH(f ${ARGN}) # LIST(APPEND listVar "${prefix}/${f}") # ENDFOREACH(f) # SET(${var} "${listVar}" PARENT_SCOPE) # ENDFUNCTION(PREPEND) #set(COTIRE_UNITY_SOURCE_MAXIMUM_NUMBER_OF_INCLUDES "-j4") #cotire(xreate) # MACRO (ADD_PCH_RULE _header_filename _src_list) # SET(_gch_filename "${_header_filename}.gch") # LIST(APPEND ${_src_list} ${_gch_filename}) # SET (_args ${CMAKE_CXX_FLAGS}) # LIST(APPEND _args -c ${_header_filename} -o ${_gch_filename}) # GET_DIRECTORY_PROPERTY(DIRINC INCLUDE_DIRECTORIES) # foreach (_inc ${DIRINC}) # LIST(APPEND _args "-I" ${_inc}) # endforeach(_inc ${DIRINC}) # SEPARATE_ARGUMENTS(_args) # add_custom_command(OUTPUT ${_gch_filename} # COMMAND rm -f ${_gch_filename} # COMMAND ${CMAKE_CXX_COMPILER} ${CMAKE_CXX_COMPILER_ARG1} ${_args} # DEPENDS ${_header_filename}) # ENDMACRO(ADD_PCH_RULE _header_filename _src_list) # ADD_PCH_RULE (${CMAKE_HOME_DIRECTORY}/src/ast.h SOURCE_FILES) # ADD_PCH_RULE (${CMAKE_HOME_DIRECTORY}/src/llvmlayer.h SOURCE_FILES) # ADD_PCH_RULE (${CMAKE_HOME_DIRECTORY}/src/clasplayer.h SOURCE_FILES) # ADD_PCH_RULE (${CMAKE_HOME_DIRECTORY}/src/pass/abstractpass.h SOURCE_FILES) diff --git a/cpp/src/ast.cpp b/cpp/src/ast.cpp index 6a6cccf..09498dc 100644 --- a/cpp/src/ast.cpp +++ b/cpp/src/ast.cpp @@ -1,915 +1,929 @@ #include "ast.h" #include "ExternLayer.h" #include #include namespace std{ std::size_t hash::operator()(xreate::ScopedSymbol const& s) const {return s.id ^ (s.version << 2);} bool equal_to::operator()(const xreate::ScopedSymbol& __x, const xreate::ScopedSymbol& __y) const { return __x.id == __y.id && __x.version == __y.version; } } using namespace std; namespace xreate { Atom::Atom(const std::wstring& value) { __value = wstring_to_utf8(value); } Atom::Atom(std::string && name) : __value(name) {} const std::string& Atom::get() const { return __value; } Atom::Atom(wchar_t* value) { //DEBT reconsider number literal recognition __value = wcstol(value, 0, 10); } Atom::Atom(int value) : __value(value) { } double Atom::get()const { return __value; } Atom::Atom(const std::wstring& value) { assert(value.size() >=2); __value = wstring_to_utf8(value.substr(1, value.size() -2)); } const std::string& Atom::get() const { return __value; } class ExpressionHints { public: static bool isStringValueValid(const Expression& e) { switch (e.__state) { case Expression::INVALID: assert(false); case Expression::IDENT: case Expression::STRING: return true; case Expression::NUMBER: case Expression::BINDING: case Expression::VARIANT: return false; case Expression::COMPOUND: { switch (e.op) { case Operator::CALL: return true; default: return false; } } } return false; } static bool isDoubleValueValid(const Expression& e) { switch (e.__state) { case Expression::NUMBER: case Expression::VARIANT: return true; case Expression::INVALID: assert(false); case Expression::IDENT: case Expression::STRING: case Expression::COMPOUND: case Expression::BINDING: return false; } return false; } }; class TypesResolver { private: const AST* ast; std::map scope; std::map signatures; ExpandedType expandType(const TypeAnnotation &t, const std::vector &args = std::vector()) { return TypesResolver(ast, scope, signatures)(t, args); } std::vector expandOperands(const std::vector& operands) { std::vector pack; pack.reserve(operands.size()); std::transform(operands.begin(), operands.end(), std::inserter(pack, pack.end()), [this](const TypeAnnotation & t) { return expandType(t); }); return pack; } public: TypesResolver(const AST* root, const std::map& scopeOuter = std::map(), std::map signaturesOuter = std::map()) : ast(root), scope(scopeOuter), signatures(signaturesOuter) { } ExpandedType operator()(const TypeAnnotation &t, const std::vector &args = std::vector()) { //assert(args.size() == t.bindings.size()); // invalid number of arguments for (size_t i = 0; i < args.size(); ++i) { scope[t.bindings.at(i)] = args.at(i); } switch (t.__operator) { case TypeOperator::ARRAY: { assert(t.__operands.size() == 1); Expanded elTy = expandType(t.__operands.at(0)); return ExpandedType(TypeAnnotation(tag_array, elTy, 0)); } case TypeOperator::STRUCT: { assert(t.__operands.size()); std::vector&& pack = expandOperands(t.__operands); auto tnew = TypeAnnotation(TypeOperator::STRUCT, move(pack)); tnew.fields = t.fields; return ExpandedType(move(tnew)); }; case TypeOperator::CALL: { std::string alias = t.__valueCustom; //find in local scope: TypeAnnotation ty; if (scope.count(alias)) { ty = scope.at(alias); } else if (ast->__indexTypeAliases.count(alias)) { ty = ast->__indexTypeAliases.at(alias); } else { assert(false && "Undefined or external type"); } std::vector&& operands = expandOperands(t.__operands); TypeAnnotation signature(TypeOperator::CALL, move(operands)); signature.__valueCustom = alias; if (signatures.count(signature)) { auto link = TypeAnnotation(TypeOperator::LINK,{}); link.conjuctionId = signatures.at(signature); return ExpandedType(move(link)); } int cid = signatures.size(); signatures[signature] = cid; TypeAnnotation tyResult = expandType(ty, operands); tyResult.conjuctionId = cid; return ExpandedType(move(tyResult)); }; case TypeOperator::CUSTOM: { std::string alias = t.__valueCustom; /* if (signatures.count(alias)) { return ExpandedType(TypeAnnotation(TypeOperator::LINK, {t})); } signatures[alias].emplace(t); */ //find in local scope: if (scope.count(alias)) { return expandType(scope.at(alias)); } // find in general scope: if (ast->__indexTypeAliases.count(alias)) { return expandType(ast->__indexTypeAliases.at(t.__valueCustom)); } //if type is unknown keep it as is. return ExpandedType(TypeAnnotation(t)); }; case TypeOperator::ACCESS: { std::string alias = t.__valueCustom; ExpandedType tyAlias = ExpandedType(TypeAnnotation()); //find in local scope: if (scope.count(alias)) { tyAlias = expandType(scope.at(alias)); //find in global scope: } else if ((ast->__indexTypeAliases.count(alias))) { tyAlias = expandType(ast->__indexTypeAliases.at(alias)); } else { assert(false && "Undefined or external type"); } assert(tyAlias->__operator == TypeOperator::STRUCT); for (const string& field : t.fields) { auto fieldIt = std::find(tyAlias->fields.begin(), tyAlias->fields.end(), field); assert(fieldIt != tyAlias->fields.end() && "unknown field"); int fieldId = fieldIt - tyAlias->fields.begin(); tyAlias = expandType(tyAlias->__operands.at(fieldId)); } return tyAlias; } case TypeOperator::TUPLE: { assert(t.__operands.size()); std::vector pack; pack.reserve(t.__operands.size()); std::transform(t.__operands.begin(), t.__operands.end(), std::inserter(pack, pack.end()), [this](const TypeAnnotation & t) { return expandType(t); }); return ExpandedType(TypeAnnotation(TypeOperator::TUPLE, move(pack))); } case TypeOperator::VARIANT: { return ExpandedType(TypeAnnotation(t)); } case TypeOperator::NONE: { return ExpandedType(TypeAnnotation(t)); } default: assert(false); } assert(false); return ExpandedType(TypeAnnotation()); } }; TypeAnnotation::TypeAnnotation() : __operator(TypeOperator::NONE), __value(TypePrimitive::Invalid) {} TypeAnnotation::TypeAnnotation(TypePrimitive typ) : __value(typ) { } TypeAnnotation::TypeAnnotation(TypeOperator op, std::initializer_list operands) : __operator(op), __operands(operands) { } TypeAnnotation::TypeAnnotation(TypeOperator op, std::vector&& operands) : __operator(op), __operands(operands) { } TypeAnnotation::TypeAnnotation(llvm_array_tag, TypeAnnotation typ, int size) : TypeAnnotation(TypeOperator::ARRAY,{typ}) { __size = size; } bool TypeAnnotation::isValid() const{ return !(__value == TypePrimitive::Invalid && __operator == TypeOperator::NONE); } bool TypeAnnotation::operator<(const TypeAnnotation& t) const { if (__operator != t.__operator) return __operator < t.__operator; if (__operator == TypeOperator::NONE) return __value < t.__value; if (__operator == TypeOperator::CALL || __operator == TypeOperator::CUSTOM || __operator == TypeOperator::ACCESS) { if (__valueCustom != t.__valueCustom) return __valueCustom < t.__valueCustom; } return __operands < t.__operands; } /* TypeAnnotation (struct_tag, std::initializer_list) {} */ void TypeAnnotation::addBindings(std::vector>&& params) { bindings.reserve(bindings.size() + params.size()); std::transform(params.begin(), params.end(), std::inserter(bindings, bindings.end()), [](const Atom& ident) { return ident.get(); }); } void TypeAnnotation::addFields(std::vector>&& listFields) { fields.reserve(fields.size() + listFields.size()); std::transform(listFields.begin(), listFields.end(), std::inserter(fields, fields.end()), [](const Atom& ident) { return ident.get(); }); } unsigned int Expression::nextVacantId = 0; Expression::Expression(const Atom& number) : Expression() { __state=NUMBER; op=Operator::NONE; __valueD=number.get(); } Expression::Expression(const Atom& a) : Expression(){ __state=STRING; op=Operator::NONE; __valueS=a.get(); } Expression::Expression(const Atom &ident) : Expression() { __state=IDENT; op=Operator::NONE; __valueS=ident.get(); } Expression::Expression(const Operator &oprt, std::initializer_list params) : Expression() { __state=COMPOUND; op=oprt; if (op == Operator::CALL) { assert(params.size() > 0); Expression arg = *params.begin(); assert(arg.__state == Expression::IDENT); __valueS = std::move(arg.__valueS); operands.insert(operands.end(), params.begin() + 1, params.end()); return; } operands.insert(operands.end(), params.begin(), params.end()); } void Expression::setOp(Operator oprt) { op = oprt; switch (op) { case Operator::NONE: __state = INVALID; break; default: __state = COMPOUND; break; } } void Expression::addArg(Expression &&arg) { operands.push_back(arg); } void Expression::addTags(const std::list tags) const{ std::transform(tags.begin(), tags.end(), std::inserter(this->tags, this->tags.end()), [](const Expression& tag){ return make_pair(tag.getValueString(), tag); }); } void Expression::addBindings(std::initializer_list> params) { addBindings(params.begin(), params.end()); } void Expression::bindType(TypeAnnotation t) { type = move(t); } void Expression::addBlock(ManagedScpPtr scope) { blocks.push_back(scope.operator->()); } const std::vector& Expression::getOperands() const { return operands; } double Expression::getValueDouble() const { return __valueD; } const std::string& Expression::getValueString() const { return __valueS; } void Expression::setValue(const Atom&& v) { __valueS = v.get(); } void Expression::setValueDouble(double value) { __valueD = value; } bool Expression::isValid() const { return (__state != INVALID); } bool Expression::isDefined() const { return (__state != BINDING); } Expression::Expression() : __state(INVALID), op(Operator::NONE), id(nextVacantId++) { } AST::AST() { Attachments::init(); Attachments::init(); } void AST::addInterfaceData(const ASTInterface& interface, Expression&& data) { __interfacesData.emplace(interface, move(data)); } void AST::addDFAData(Expression &&data) { __dfadata.push_back(data); } void AST::addExternData(ExternData &&data) { __externdata.insert(__externdata.end(), data.entries.begin(), data.entries.end()); } void AST::add(Function* f) { __functions.push_back(f); __indexFunctions.emplace(f->getName(), __functions.size() - 1); } void AST::add(MetaRuleAbstract *r) { __rules.push_back(r); } void AST::add(TypeAnnotation t, Atom alias) { if (t.__operator == TypeOperator::VARIANT) { for (int i = 0, size = t.fields.size(); i < size; ++i) { __dictVariants.emplace(t.fields[i], make_pair(t, i)); } } __indexTypeAliases.emplace(alias.get(), move(t)); } ManagedScpPtr AST::add(CodeScope* scope) { this->__scopes.push_back(scope); return ManagedScpPtr(this->__scopes.size() - 1, &this->__scopes); } std::string AST::getModuleName() { const std::string name = "moduleTest"; return name; } ManagedPtr AST::findFunction(const std::string& name) { int count = __indexFunctions.count(name); if (!count) { return ManagedFnPtr::Invalid(); } assert(count == 1); auto range = __indexFunctions.equal_range(name); return ManagedPtr(range.first->second, &this->__functions); } std::list AST::getAllFunctions() const { const size_t size = __functions.size(); std::list result; for (size_t i = 0; i < size; ++i) { result.push_back(ManagedFnPtr(i, &this->__functions)); } return result; } //TASK select default specializations std::list AST::getFunctionVariants(const std::string& name) const { auto functions = __indexFunctions.equal_range(name); std::list result; std::transform(functions.first, functions.second, inserter(result, result.end()), [this](auto f) { return ManagedFnPtr(f.second, &this->__functions); }); return result; } template<> ManagedPtr AST::begin() { return ManagedPtr(0, &this->__functions); } template<> ManagedPtr AST::begin() { return ManagedPtr(0, &this->__scopes); } template<> ManagedPtr AST::begin() { return ManagedPtr(0, &this->__rules); } Expanded AST::expandType(const TypeAnnotation &t) const { return TypesResolver(this)(t); } Expanded AST::findType(const std::string& name) { // find in general scope: if (__indexTypeAliases.count(name)) return expandType(__indexTypeAliases.at(name)); //if type is unknown keep it as is. TypeAnnotation t(TypeOperator::CUSTOM,{}); t.__valueCustom = name; return ExpandedType(move(t)); } + ExpandedType + AST::getType(const Expression& expression){ + if (expression.type.isValid()){ + return expandType(expression.type); + } + + if (expression.__state == Expression::IDENT){ + Symbol s = Attachments::get(expression); + return getType(CodeScope::getDeclaration(s)); + } + + assert(false && "Type can't be determined for an expression"); + } + bool AST::recognizeVariantIdentifier(Expression& identifier) { assert(identifier.__state == Expression::IDENT); std::string variant = identifier.getValueString(); if (!__dictVariants.count(variant)) { return false; } auto record = __dictVariants.at(variant); const TypeAnnotation& typ = record.first; identifier.__state = Expression::VARIANT; identifier.setValueDouble(record.second); identifier.type = typ; return true; } Function::Function(const Atom& name) : __entry(new CodeScope(0)) { __name = name.get(); } void Function::addTag(Expression&& tag, const TagModifier mod) { string name = tag.getValueString(); __tags.emplace(move(name), move(tag)); } const std::map& Function::getTags() const { return __tags; } CodeScope* Function::getEntryScope() const { return __entry; } void Function::addBinding(Atom && name, Expression&& argument) { __entry->addBinding(move(name), move(argument)); } const std::string& Function::getName() const { return __name; } ScopedSymbol CodeScope::registerIdentifier(const Expression& identifier) { VariableVersion version = Attachments::get(identifier, VERSION_NONE); auto result = __identifiers.emplace(identifier.getValueString(), __vCounter); if (result.second){ ++__vCounter; return {__vCounter-1, version}; } return {result.first->second, version}; } bool CodeScope::recognizeIdentifier(const Expression& identifier) const{ VariableVersion version = Attachments::get(identifier, VERSION_NONE); const std::string& name = identifier.getValueString(); //search identifier in the current block if (__identifiers.count(name)){ VNameId id = __identifiers.at(name); Symbol s; s.identifier = ScopedSymbol{id, version}; s.scope = const_cast(this); Attachments::put(identifier, s); return true; } //search in the parent scope if (__parent) { return __parent->recognizeIdentifier(identifier); } return false; } ScopedSymbol CodeScope::getSymbol(const std::string& alias){ assert(__identifiers.count(alias)); VNameId id = __identifiers.at(alias); return {id, VERSION_NONE}; } void AST::postponeIdentifier(CodeScope* scope, const Expression& id) { binUnrecognizedIdentifiers.emplace(scope, id); } void AST::recognizePostponedIdentifiers() { for(const auto& identifier: binUnrecognizedIdentifiers){ if (!identifier.first->recognizeIdentifier(identifier.second)){ //exception: Ident not found std::cout << "Unknown symbol: "<< identifier.second.getValueString() << std::endl; assert(false && "Symbol not found"); } } } void CodeScope::addBinding(Expression&& var, Expression&& argument) { argument.__state = Expression::BINDING; __bindings.push_back(var.getValueString()); ScopedSymbol binding = registerIdentifier(var); __declarations[binding] = move(argument); } void CodeScope::addDeclaration(Expression&& var, Expression&& body) { ScopedSymbol s = registerIdentifier(var); __declarations[s] = move(body); } CodeScope::CodeScope(CodeScope* parent) : __parent(parent) { } CodeScope::~CodeScope() { } void CodeScope::setBody(const Expression &body) { __declarations[ScopedSymbol::RetSymbol] = body; } Expression& CodeScope::getBody() { return __declarations[ScopedSymbol::RetSymbol]; } const Expression& CodeScope::getDeclaration(const Symbol& symbol) { CodeScope* self = symbol.scope; return self->getDeclaration(symbol.identifier); } const Expression& CodeScope::getDeclaration(const ScopedSymbol& symbol){ assert(__declarations.count(symbol) && "Symbol's declaration not found"); return __declarations.at(symbol); } void RuleArguments::add(const Atom &arg, DomainAnnotation typ) { emplace_back(arg.get(), typ); } void RuleGuards::add(Expression&& e) { push_back(e); } MetaRuleAbstract:: MetaRuleAbstract(RuleArguments&& args, RuleGuards&& guards) : __args(std::move(args)), __guards(std::move(guards)) { } MetaRuleAbstract::~MetaRuleAbstract() { } RuleWarning:: RuleWarning(RuleArguments&& args, RuleGuards&& guards, Expression&& condition, Atom&& message) : MetaRuleAbstract(std::move(args), std::move(guards)), __message(message.get()), __condition(condition) { } RuleWarning::~RuleWarning() { } void RuleWarning::compile(ClaspLayer& layer) { //TODO restore addRuleWarning //layer.addRuleWarning(*this); } bool operator<(const ScopedSymbol& s1, const ScopedSymbol& s2) { return (s1.id < s2.id) || (s1.id==s2.id && s1.version < s2.version); } bool operator==(const ScopedSymbol& s1, const ScopedSymbol& s2) { return (s1.id == s2.id) && (s1.version == s2.version); } bool operator<(const Symbol& s1, const Symbol& s2) { return (s1.scope < s2.scope) || (s1.scope == s2.scope && s1.identifier < s2.identifier); } bool operator==(const Symbol& s1, const Symbol& s2) { return (s1.scope == s2.scope) && (s1.identifier == s2.identifier); } bool operator<(const Expression&a, const Expression&b) { if (a.__state != b.__state) return a.__state < b.__state; assert(a.__state != Expression::INVALID); switch (a.__state) { case Expression::IDENT: case Expression::STRING: case Expression::VARIANT: return a.getValueString() < b.getValueString(); case Expression::NUMBER: return a.getValueDouble() < b.getValueDouble(); case Expression::COMPOUND: { assert(a.blocks.size() == 0); assert(b.blocks.size() == 0); if (a.op != b.op){ return a.op < b.op; } bool flagAValid = ExpressionHints::isStringValueValid(a); bool flagBValid = ExpressionHints::isStringValueValid(b); if (flagAValid != flagBValid) { return flagAValid < flagBValid; } if (flagAValid){ if (a.getValueString() != b.getValueString()) { return a.getValueString() < b.getValueString(); } } flagAValid = ExpressionHints::isDoubleValueValid(a); flagBValid = ExpressionHints::isDoubleValueValid(b); if (flagAValid != flagBValid) { return flagAValid < flagBValid; } if (flagAValid){ if (a.getValueDouble() != b.getValueDouble()) { return a.getValueDouble() < b.getValueDouble(); } } if (a.operands.size() != b.operands.size()) { return (a.operands.size() < b.operands.size()); } for (size_t i = 0; i < a.operands.size(); ++i) { bool result = a.operands[i] < b.operands[i]; if (result) return true; } return false; } case Expression::BINDING: case Expression::INVALID: assert(false); } return false; } bool Expression::operator==(const Expression& other) const { if (this->__state != other.__state) return false; if (ExpressionHints::isStringValueValid(*this)) { if (this->__valueS != other.__valueS) return false; } if (ExpressionHints::isDoubleValueValid(*this)) { if (this->__valueD != other.__valueD) return false; } if (this->__state != Expression::COMPOUND) { return true; } if (this->op != other.op) { return false; } if (this->operands.size() != other.operands.size()) { return false; } for (size_t i = 0; ioperands.size(); ++i) { if (!(this->operands[i] == other.operands[i])) return false; } assert(!this->blocks.size()); assert(!other.blocks.size()); return true; } const ScopedSymbol ScopedSymbol::RetSymbol = ScopedSymbol{0, VERSION_NONE}; } diff --git a/cpp/src/ast.h b/cpp/src/ast.h index 8c24e48..5c8623d 100644 --- a/cpp/src/ast.h +++ b/cpp/src/ast.h @@ -1,556 +1,557 @@ #ifndef AST_H #define AST_H #include "attachments.h" #include #include #include #include #include #include #include #include "utils.h" #include namespace llvm { class Value; } namespace xreate { struct String_t { }; struct Identifier_t { }; struct Number_t { }; struct Type_t { }; template class Atom { }; //DEBT hold for all atoms/identifiers Parser::Token data, like line:col position template<> class Atom { public: Atom(const std::wstring& value); Atom(std::string && name); const std::string& get() const; private: std::string __value; }; template<> class Atom { public: Atom(wchar_t* value); Atom(int value); double get()const; private: double __value; }; template<> class Atom { public: Atom(const std::wstring& value); const std::string& get() const; private: std::string __value; }; enum class TypePrimitive { Invalid, Bool, I8, I32, I64, Num, Int, Float, String }; enum class TypeOperator { NONE, CALL, CUSTOM, VARIANT, ARRAY, TUPLE, STRUCT, ACCESS, LINK }; struct llvm_array_tag { }; struct struct_tag { }; const llvm_array_tag tag_array = llvm_array_tag(); const struct_tag tag_struct = struct_tag(); class TypeAnnotation { public: TypeAnnotation(); TypeAnnotation(const Atom& typ); TypeAnnotation(TypePrimitive typ); TypeAnnotation(llvm_array_tag, TypeAnnotation typ, int size); TypeAnnotation(TypeOperator op, std::initializer_list operands); TypeAnnotation(TypeOperator op, std::vector&& operands); void addBindings(std::vector>&& params); void addFields(std::vector>&& listFields); bool operator<(const TypeAnnotation& t) const; // TypeAnnotation (struct_tag, std::initializer_list); bool isValid() const; TypeOperator __operator = TypeOperator::NONE; std::vector __operands; TypePrimitive __value; std::string __valueCustom; int conjuctionId = -1; //conjunction point id (relevant for recursive types) uint64_t __size = 0; std::vector fields; std::vector bindings; private: }; enum class Operator { ADD, SUB, MUL, DIV, EQU, NE, NEG, LSS, LSE, GTR, GTE, LIST, LIST_RANGE, LIST_NAMED, CALL, CALL_INTRINSIC, NONE, IMPL/* implication */, MAP, FOLD, FOLD_INF, LOOP_CONTEXT, INDEX, IF, SWITCH, SWITCH_ADHOC, CASE, CASE_DEFAULT, LOGIC_AND, ADHOC, CONTEXT_RULE }; class Function; class AST; class CodeScope; class MetaRuleAbstract; template struct ManagedPtr { static ManagedPtr Invalid() { return ManagedPtr(); } ManagedPtr() : __storage(0) { } ManagedPtr(unsigned int id, const std::vector* storage) : __id(id), __storage(storage) { } Target& operator*() const { assert(isValid() && "Invalid Ptr"); return *__storage->at(__id); } void operator=(const ManagedPtr& other) { __id = other.__id; __storage = other.__storage; } bool operator==(const ManagedPtr& other) { return isValid() && (__id == other.__id); } Target* operator->() const noexcept { assert(isValid() && "Invalid Ptr"); return __storage->at(__id); } inline bool isValid() const { return (__storage) && (0 <= __id) && (__id < __storage->size()); } inline operator bool() const { return isValid(); } ManagedPtr& operator++() { ++__id; return *this; } inline unsigned int id() const { return __id; } private: unsigned int __id = 0; const std::vector * __storage = 0; }; typedef ManagedPtr ManagedFnPtr; typedef ManagedPtr ManagedScpPtr; typedef ManagedPtr ManagedRulePtr; const ManagedScpPtr NO_SCOPE = ManagedScpPtr(UINT_MAX, 0); //To update ExpressionHints in case of any changes struct Expression { friend class CodeScope; friend class ClaspLayer; friend class CFAPass; friend class ExpressionHints; Expression(const Operator &oprt, std::initializer_list params); Expression(const Atom& ident); Expression(const Atom& number); Expression(const Atom& a); Expression(); void setOp(Operator oprt); void addArg(Expression&& arg); void addBindings(std::initializer_list> params); void bindType(TypeAnnotation t); template void addBindings(InputIt paramsBegin, InputIt paramsEnd); void addTags(const std::list tags) const; void addBlock(ManagedScpPtr scope); const std::vector& getOperands() const; double getValueDouble() const; void setValueDouble(double value); const std::string& getValueString() const; void setValue(const Atom&& v); bool isValid() const; bool isDefined() const; bool operator==(const Expression& other) const; enum { INVALID, COMPOUND, IDENT, NUMBER, STRING, VARIANT, BINDING } __state = INVALID; Operator op; unsigned int id; std::vector bindings; std::map __indexBindings; std::vector operands; TypeAnnotation type; mutable std::map tags; std::list blocks; private: std::string __valueS; double __valueD; static unsigned int nextVacantId; }; bool operator< (const Expression&, const Expression&); template void Expression::addBindings(InputIt paramsBegin, InputIt paramsEnd) { size_t index = bindings.size(); std::transform(paramsBegin, paramsEnd, std::inserter(bindings, bindings.end()), [&index, this] (const Atom atom) { std::string key = atom.get(); this->__indexBindings[key] = index++; return key; }); } typedef std::list ExpressionList; enum class TagModifier { NONE, ASSERT, REQUIRE }; enum class DomainAnnotation { FUNCTION, VARIABLE }; class RuleArguments : public std::vector> { public: void add(const Atom& name, DomainAnnotation typ); }; class RuleGuards : public std::vector { public: void add(Expression&& e); }; class ClaspLayer; class LLVMLayer; class MetaRuleAbstract { public: MetaRuleAbstract(RuleArguments&& args, RuleGuards&& guards); virtual ~MetaRuleAbstract(); virtual void compile(ClaspLayer& layer) = 0; protected: RuleArguments __args; RuleGuards __guards; }; class RuleWarning : public MetaRuleAbstract { friend class ClaspLayer; public: RuleWarning(RuleArguments&& args, RuleGuards&& guards, Expression&& condition, Atom&& message); virtual void compile(ClaspLayer& layer); ~RuleWarning(); private: std::string __message; Expression __condition; }; typedef unsigned int VNameId; typedef int VariableVersion; const VariableVersion VERSION_NONE = -2; const VariableVersion VERSION_INIT = 0; template<> struct AttachmentsDict { typedef VariableVersion Data; static const unsigned int key = 6; }; struct ScopedSymbol{ VNameId id; VariableVersion version; static const ScopedSymbol RetSymbol; }; struct Symbol { ScopedSymbol identifier; CodeScope * scope; }; template<> struct AttachmentsDict { typedef Symbol Data; static const unsigned int key = 7; }; } namespace std { template<> struct hash{ std::size_t operator()(xreate::ScopedSymbol const& s) const; }; template<> struct equal_to{ bool operator()(const xreate::ScopedSymbol& __x, const xreate::ScopedSymbol& __y) const; }; } namespace xreate { typedef std::pair Tag; bool operator<(const ScopedSymbol& s1, const ScopedSymbol& s2); bool operator==(const ScopedSymbol& s1, const ScopedSymbol& s2); bool operator<(const Symbol& s1, const Symbol& s2); bool operator==(const Symbol& s1, const Symbol& s2); class CodeScope { friend class Function; friend class PassManager; public: CodeScope(CodeScope* parent = 0); void setBody(const Expression& body); Expression& getBody(); void addDeclaration(Expression&& var, Expression&& body); void addBinding(Expression&& var, Expression&& argument); static const Expression& getDeclaration(const Symbol& symbol); const Expression& getDeclaration(const ScopedSymbol& symbol); ~CodeScope(); std::vector __bindings; std::map __identifiers; CodeScope* __parent; //TODO move __definitions to SymbolsAttachments data //NOTE: definition of return type has zero(0) variable index std::unordered_map __declarations; std::vector tags; std::vector contextRules; private: VNameId __vCounter = 1; ScopedSymbol registerIdentifier(const Expression& identifier); public: bool recognizeIdentifier(const Expression& identifier) const; ScopedSymbol getSymbol(const std::string& alias); }; class Function { friend class Expression; friend class CodeScope; friend class AST; public: Function(const Atom& name); void addBinding(Atom && name, Expression&& argument); void addTag(Expression&& tag, const TagModifier mod); const std::string& getName() const; const std::map& getTags() const; CodeScope* getEntryScope() const; CodeScope* __entry; std::string __name; bool isPrefunction = false; //SECTIONTAG adhoc Function::isPrefunction flag Expression guardContext; private: std::map __tags; }; class ExternData; struct ExternEntry { std::string package; std::vector headers; }; typedef Expanded ExpandedType; enum ASTInterface { CFA, DFA, Extern, Adhoc }; struct FunctionSpecialization { std::string guard; size_t id; }; struct FunctionSpecializationQuery { std::unordered_set context; }; template<> struct AttachmentsId{ static unsigned int getId(const Expression& expression){ return expression.id; } }; template<> struct AttachmentsId{ static unsigned int getId(const Symbol& s){ return s.scope->__declarations.at(s.identifier).id; } }; template<> struct AttachmentsId{ static unsigned int getId(const ManagedFnPtr& f){ const Symbol symbolFunction{ScopedSymbol::RetSymbol, f->getEntryScope()}; return AttachmentsId::getId(symbolFunction); } }; class AST { public: AST(); //TASK extern and DFA interfaces move into addInterfaceData /** * DFA Interface */ void addDFAData(Expression&& data); /** * Extern Interface */ void addExternData(ExternData&& data); void addInterfaceData(const ASTInterface& interface, Expression&& data); void add(Function* f); void add(MetaRuleAbstract* r); ManagedScpPtr add(CodeScope* scope); std::string getModuleName(); ManagedPtr findFunction(const std::string& name); typedef std::multimap FUNCTIONS_REGISTRY; std::list getAllFunctions() const; std::list getFunctionVariants(const std::string& name) const; template ManagedPtr begin(); std::vector __externdata; std::list __dfadata; //TODO move to more appropriate place std::list __rawImports; //TODO move to more appropriate place std::multimap __interfacesData; //TODO CFA data here. private: std::vector __rules; std::vector __functions; std::vector __scopes; FUNCTIONS_REGISTRY __indexFunctions; // ***** TYPES SECTION ***** public: std::map __indexTypeAliases; ExpandedType expandType(const TypeAnnotation &t) const; ExpandedType findType(const std::string& name); + ExpandedType getType(const Expression& expression); void add(TypeAnnotation t, Atom alias); //TODO revisit enums/variants, move to codescope bool recognizeVariantIdentifier(Expression& identifier); private: std::map> __dictVariants; ExpandedType expandType(const TypeAnnotation &t, std::map scope, const std::vector &args = std::vector()) const; // ***** SYMBOL RECOGNITION ***** public: std::set> binUnrecognizedIdentifiers; public: void postponeIdentifier(CodeScope* scope, const Expression& id); void recognizePostponedIdentifiers(); }; template<> ManagedPtr AST::begin(); template<> ManagedPtr AST::begin(); template<> ManagedPtr AST::begin(); } #endif // AST_H diff --git a/cpp/src/compilation/advanced.cpp b/cpp/src/compilation/advanced.cpp index c83705f..f5c489b 100644 --- a/cpp/src/compilation/advanced.cpp +++ b/cpp/src/compilation/advanced.cpp @@ -1,404 +1,399 @@ /* * File: InstructionsAdvanced.cpp * Author: pgess * * Created on June 26, 2016, 6:00 PM */ //#include #include "compilation/advanced.h" #include "compilation/containers.h" #include "compilation/transformersaturation.h" #include "query/context.h" #include "query/containers.h" #include "llvmlayer.h" #include "ast.h" using namespace std; using namespace llvm; using namespace xreate; using namespace xreate::containers; using namespace xreate::compilation; #define NAME(x) (hintRetVar.empty()? x : hintRetVar) #define UNUSED(x) (void)(x) #define EXPAND_CONTEXT \ LLVMLayer* llvm = context.pass->man->llvm; \ compilation::AbstractCodeScopeUnit* scope = context.scope; \ compilation::FunctionUnit* function = context.function; Advanced::Advanced(compilation::Context ctx) : context(ctx), tyNum(static_cast (ctx.pass->man->llvm->toLLVMType(ExpandedType(TypeAnnotation(TypePrimitive::Num))))) { } llvm::Value* Advanced::compileMapSolidOutput(const Expression &expr, const std::string hintRetVar) { EXPAND_CONTEXT //initialization Symbol symbolIn = Attachments::get(expr.getOperands()[0]); ImplementationRec implIn = containers::Query::queryImplementation(symbolIn).extract(); // impl of input list size_t size = implIn.size; CodeScope* scopeLoop = expr.blocks.front(); std::string varEl = scopeLoop->__bindings[0]; Iterator* it = Iterator::create(context, symbolIn); llvm::Value *rangeFrom = it->begin(); llvm::Value *rangeTo = it->end(); //definitions ArrayType* tyNumArray = (ArrayType*) (llvm->toLLVMType(ExpandedType(TypeAnnotation(tag_array, TypePrimitive::Num, size)))); llvm::IRBuilder<> &builder = llvm->builder; llvm::BasicBlock *blockLoop = llvm::BasicBlock::Create(llvm::getGlobalContext(), "loop", function->raw); llvm::BasicBlock *blockBeforeLoop = builder.GetInsertBlock(); llvm::BasicBlock *blockAfterLoop = llvm::BasicBlock::Create(llvm::getGlobalContext(), "postloop", function->raw); Value* dataOut = llvm->builder.CreateAlloca(tyNumArray, ConstantInt::get(tyNum, size), NAME("map")); // * initial check Value* condBefore = builder.CreateICmpSLE(rangeFrom, rangeTo); builder.CreateCondBr(condBefore, blockLoop, blockAfterLoop); // create PHI: builder.SetInsertPoint(blockLoop); llvm::PHINode *stateLoop = builder.CreatePHI(tyNum, 2, "mapIt"); stateLoop->addIncoming(rangeFrom, blockBeforeLoop); // loop body: Value* elIn = it->get(stateLoop, varEl); compilation::AbstractCodeScopeUnit* scopeLoopUnit = function->getScopeUnit(scopeLoop); scopeLoopUnit->bindArg(elIn, move(varEl)); Value* elOut = scopeLoopUnit->compile(); Value *pElOut = builder.CreateGEP(dataOut, ArrayRef(std::vector{ConstantInt::get(tyNum, 0), stateLoop})); builder.CreateStore(elOut, pElOut); //next iteration preparing Value *stateLoopNext = builder.CreateAdd(stateLoop, llvm::ConstantInt::get(tyNum, 1)); stateLoop->addIncoming(stateLoopNext, builder.GetInsertBlock()); //next iteration checks: Value* condAfter = builder.CreateICmpSLE(stateLoopNext, rangeTo); builder.CreateCondBr(condAfter, blockLoop, blockAfterLoop); //finalization: builder.SetInsertPoint(blockAfterLoop); return dataOut; } Value* Advanced::compileArrayIndex(llvm::Value* aggregate, std::vector indexes, std::string hintRetVar) { EXPAND_CONTEXT UNUSED(function); indexes.insert(indexes.begin(), llvm::ConstantInt::get(tyNum, 0)); llvm::Value *pEl = llvm->builder.CreateGEP(aggregate, llvm::ArrayRef(indexes)); return llvm->builder.CreateLoad(pEl, NAME("el")); } Value* Advanced::compileStructIndex(llvm::Value* aggregate, const ExpandedType& t, const std::string& idx) { EXPAND_CONTEXT UNUSED(scope); - TypeUtils types(llvm); - std::vector&& fields = types.getStructFields(t); + for (unsigned i = 0, size = fields.size(); i < size; ++i) { if (fields.at(i) == idx) { - std::vector refs; - - llvm::IntegerType* tyInt = llvm::Type::getInt32Ty(llvm::getGlobalContext()); - llvm::ConstantInt* zero = llvm::ConstantInt::get(tyInt, 0, false); - - llvm::BasicBlock *blockSafe = llvm::BasicBlock::Create(llvm::getGlobalContext(), "safe", function->raw); - + //TODO DISABLEDFEATURE validptr // TODO review safety check: validPtr for `aggregate` // SECTIONTAG validptr exception - PointerType* tyAggr = dyn_cast(aggregate->getType()); - llvm::Value* null = llvm::ConstantPointerNull::get(tyAggr); - Value* condNull = llvm->builder.CreateICmpNE(aggregate, null); - - llvm::BasicBlock *blockException = llvm::BasicBlock::Create(llvm::getGlobalContext(), "exception", function->raw); - llvm->builder.CreateCondBr(condNull, blockSafe, blockException); - llvm->initExceptionBlock(blockException); - - llvm->builder.SetInsertPoint(blockSafe); - std::vector indexes; +// std::vector refs; +// llvm::BasicBlock *blockSafe = llvm::BasicBlock::Create(llvm::getGlobalContext(), "safe", function->raw); +// PointerType* tyAggr = dyn_cast(aggregate->getType()); +// llvm::Value* null = llvm::ConstantPointerNull::get(tyAggr); +// Value* condNull = llvm->builder.CreateICmpNE(aggregate, null); +// +// llvm::BasicBlock *blockException = llvm::BasicBlock::Create(llvm::getGlobalContext(), "exception", function->raw); +// llvm->builder.CreateCondBr(condNull, blockSafe, blockException); +// llvm->initExceptionBlock(blockException); +// +// llvm->builder.SetInsertPoint(blockSafe); //dereference pointer if (types.isPointer(t)) { - indexes.push_back(zero); + llvm::Value* addr = llvm->builder.CreateConstGEP2_32(nullptr, aggregate, 0, i); + return llvm->builder.CreateLoad(addr); } - indexes.push_back(ConstantInt::get(tyInt, i)); - - Value* addr = llvm->builder.CreateGEP(aggregate, indexes); - return llvm->builder.CreateLoad(addr); + aggregate->getType()->dump(); + return llvm->builder.CreateExtractValue(aggregate, llvm::ArrayRef{i}); } } assert(false && "not found required struct field"); return nullptr; } llvm::Value* Advanced::compileFold(const Expression& fold, const std::string& hintRetVar) { EXPAND_CONTEXT assert(fold.op == Operator::FOLD); //initialization: Symbol varInSymbol = Attachments::get(fold.getOperands()[0]); Implementation info = Query::queryImplementation(varInSymbol); Iterator* it = Iterator::create(context, varInSymbol); llvm::Value* rangeBegin = it->begin(); llvm::Value* rangeEnd = it->end(); llvm::Value* accumInit = scope->process(fold.getOperands()[1]); std::string varIn = fold.getOperands()[0].getValueString(); std::string varAccum = fold.bindings[1]; std::string varEl = fold.bindings[0]; llvm::BasicBlock *blockBeforeLoop = llvm->builder.GetInsertBlock(); std::unique_ptr transformerSaturation(new TransformerSaturation(blockBeforeLoop, context.pass->managerTransformations)); llvm::BasicBlock *blockLoop = llvm::BasicBlock::Create(llvm::getGlobalContext(), "fold", function->raw); llvm::BasicBlock *blockLoopBody = llvm::BasicBlock::Create(llvm::getGlobalContext(), "fold_body", function->raw); llvm::BasicBlock *blockAfterLoop = llvm::BasicBlock::Create(llvm::getGlobalContext(), "fold_after", function->raw); llvm::BasicBlock *blockNext = llvm::BasicBlock::Create(llvm::getGlobalContext(), "fold_next", function->raw); llvm->builder.CreateBr(blockLoop); // * create phi llvm->builder.SetInsertPoint(blockLoop); llvm::PHINode *accum = llvm->builder.CreatePHI(accumInit->getType(), 2, varAccum); accum->addIncoming(accumInit, blockBeforeLoop); llvm::PHINode *itLoop = llvm->builder.CreatePHI(rangeBegin->getType(), 2, "foldIt"); itLoop->addIncoming(rangeBegin, blockBeforeLoop); // * loop checks Value* condRange = llvm->builder.CreateICmpNE(itLoop, rangeEnd); llvm->builder.CreateCondBr(condRange, blockLoopBody, blockAfterLoop); // * loop body llvm->builder.SetInsertPoint(blockLoopBody); CodeScope* scopeLoop = fold.blocks.front(); compilation::AbstractCodeScopeUnit* loopUnit = function->getScopeUnit(scopeLoop); Value* elIn = it->get(itLoop); loopUnit->bindArg(accum, move(varAccum)); loopUnit->bindArg(elIn, move(varEl)); Value* accumNext = loopUnit->compile(); // * Loop saturation checks bool flagSaturationTriggered = transformerSaturation->insertSaturationChecks(blockNext, blockAfterLoop, context); llvm::BasicBlock* blockSaturation = llvm->builder.GetInsertBlock(); if (!flagSaturationTriggered){ llvm->builder.CreateBr(blockNext); } // * computing next iteration state llvm->builder.SetInsertPoint(blockNext); Value *itLoopNext = it->advance(itLoop); accum->addIncoming(accumNext, llvm->builder.GetInsertBlock()); itLoop->addIncoming(itLoopNext, llvm->builder.GetInsertBlock()); llvm->builder.CreateBr(blockLoop); // * finalization: llvm->builder.SetInsertPoint(blockAfterLoop); if (!flagSaturationTriggered){ return accum; } llvm::PHINode* result = llvm->builder.CreatePHI(accumInit->getType(), 2); result->addIncoming(accum, blockLoop); result->addIncoming(accumNext, blockSaturation); return result; } llvm::Value* Advanced::compileFoldInf(const Expression& fold, const std::string& hintRetVar) { EXPAND_CONTEXT assert(fold.op == Operator::FOLD_INF); std::string accumName = fold.bindings[0]; llvm::Value* accumInit = scope->process(fold.getOperands()[0]); llvm::BasicBlock *blockBeforeLoop = llvm->builder.GetInsertBlock(); llvm::BasicBlock *blockLoop = llvm::BasicBlock::Create(llvm::getGlobalContext(), "foldinf", function->raw); llvm::BasicBlock *blockNext = llvm::BasicBlock::Create(llvm::getGlobalContext(), "foldinf_next", function->raw); llvm::BasicBlock *blockAfterLoop = llvm::BasicBlock::Create(llvm::getGlobalContext(), "foldinf_post", function->raw); std::unique_ptr transformerSaturation(new TransformerSaturation(blockBeforeLoop, context.pass->managerTransformations)); llvm->builder.CreateBr(blockLoop); // * create phi llvm->builder.SetInsertPoint(blockLoop); llvm::PHINode *accum = llvm->builder.CreatePHI(accumInit->getType(), 2, accumName); accum->addIncoming(accumInit, blockBeforeLoop); // * loop body CodeScope* scopeLoop = fold.blocks.front(); compilation::AbstractCodeScopeUnit* unitLoop = function->getScopeUnit(scopeLoop); unitLoop->bindArg(accum, move(accumName)); Value* accumNext = unitLoop->compile(); // * Loop saturation checks bool flagSaturationTriggered = transformerSaturation->insertSaturationChecks(blockNext, blockAfterLoop, context); assert(flagSaturationTriggered); // * computing next iteration state llvm->builder.SetInsertPoint(blockNext); accum->addIncoming(accumNext, llvm->builder.GetInsertBlock()); llvm->builder.CreateBr(blockLoop); // finalization: llvm->builder.SetInsertPoint(blockAfterLoop); return accumNext; } llvm::Value* Advanced::compileIf(const Expression& exprIf, const std::string& hintRetVar) { EXPAND_CONTEXT //initialization: const Expression& condExpr = exprIf.getOperands()[0]; llvm::IRBuilder<>& builder = llvm->builder; //llvm::Type* tyResultType = llvm->toLLVMType(llvm->ast->expandType(exprIf.type)); llvm::BasicBlock *blockAfter = llvm::BasicBlock::Create(llvm::getGlobalContext(), "ifAfter", function->raw); llvm::BasicBlock *blockTrue = llvm::BasicBlock::Create(llvm::getGlobalContext(), "ifTrue", function->raw); llvm::BasicBlock *blockFalse = llvm::BasicBlock::Create(llvm::getGlobalContext(), "ifFalse", function->raw); llvm::Value* cond = scope->process(condExpr); llvm->builder.CreateCondBr(cond, blockTrue, blockFalse); builder.SetInsertPoint(blockTrue); CodeScope* scopeTrue = exprIf.blocks.front(); llvm::Value* resultTrue = function->getScopeUnit(scopeTrue)->compile(); blockTrue = builder.GetInsertBlock(); builder.CreateBr(blockAfter); builder.SetInsertPoint(blockFalse); CodeScope* scopeFalse = exprIf.blocks.back(); llvm::Value* resultFalse = function->getScopeUnit(scopeFalse)->compile(); blockFalse = builder.GetInsertBlock(); builder.CreateBr(blockAfter); builder.SetInsertPoint(blockAfter); llvm::PHINode *ret = builder.CreatePHI(resultTrue->getType(), 2, NAME("if")); ret->addIncoming(resultTrue, blockTrue); ret->addIncoming(resultFalse, blockFalse); return ret; } //TODO Switch: default variant no needed when all possible conditions are considered llvm::Value* Advanced::compileSwitch(const Expression& exprSwitch, const std::string& hintRetVar) { EXPAND_CONTEXT + AST* root = context.pass->man->root; UNUSED(function); + assert(exprSwitch.operands.size() >= 2); assert(exprSwitch.operands[1].op == Operator::CASE_DEFAULT && "No default case in Switch Statement"); int countCases = exprSwitch.operands.size() - 1; llvm::IRBuilder<>& builder = llvm->builder; llvm::BasicBlock* blockProlog = builder.GetInsertBlock(); llvm::BasicBlock *blockEpilog = llvm::BasicBlock::Create(llvm::getGlobalContext(), "switchAfter", function->raw); builder.SetInsertPoint(blockEpilog); - llvm::Type* exprSwitchType = llvm->toLLVMType(ExpandedType(exprSwitch.type)); + llvm::Type* exprSwitchType = llvm->toLLVMType(root->getType(exprSwitch)); llvm::PHINode *ret = builder.CreatePHI(exprSwitchType, countCases, NAME("switch")); builder.SetInsertPoint(blockProlog); llvm::Value * conditionSwitch = scope->process(exprSwitch.operands[0]); llvm::BasicBlock *blockDefault = llvm::BasicBlock::Create(llvm::getGlobalContext(), "caseDefault", function->raw); llvm::SwitchInst * instructionSwitch = builder.CreateSwitch(conditionSwitch, blockDefault, countCases); for (int size = exprSwitch.operands.size(), i = 2; i < size; ++i) { llvm::BasicBlock *blockCase = llvm::BasicBlock::Create(llvm::getGlobalContext(), "case" + std::to_string(i), function->raw); llvm::Value* condCase = function->getScopeUnit(exprSwitch.operands[i].blocks.front())->compile(); builder.SetInsertPoint(blockCase); llvm::Value* resultCase = function->getScopeUnit(exprSwitch.operands[i].blocks.back())->compile(); builder.CreateBr(blockEpilog); ret->addIncoming(resultCase, builder.GetInsertBlock()); builder.SetInsertPoint(blockProlog); instructionSwitch->addCase(dyn_cast(condCase), blockCase); } //compile default block: builder.SetInsertPoint(blockDefault); CodeScope* scopeDefault = exprSwitch.operands[1].blocks.front(); llvm::Value* resultDefault = function->getScopeUnit(scopeDefault)->compile(); builder.CreateBr(blockEpilog); ret->addIncoming(resultDefault, builder.GetInsertBlock()); builder.SetInsertPoint(blockEpilog); return ret; } //TODO recognize cases to make const arrays/stored in global mem/stack alloced. llvm::Value* Advanced::compileListAsSolidArray(const Expression &expr, const std::string& hintRetVar) { EXPAND_CONTEXT UNUSED(scope); UNUSED(function); AST* root = context.pass->man->root; const size_t& length = expr.getOperands().size(); const Expression& expression = expr; llvm::Value* zero = ConstantInt::get(tyNum, 0); llvm::Value* one = ConstantInt::get(tyNum, 1); - ExpandedType typAggrExpanded = root->expandType(expression.type); + ExpandedType typAggrExpanded = root->getType(expression); assert(typAggrExpanded->__operator == TypeOperator::ARRAY); llvm::Type* typEl = llvm->toLLVMType(ExpandedType(typAggrExpanded->__operands[0])); ArrayType* typAggr = (ArrayType*) llvm::ArrayType::get(typEl, length); llvm::Value* list = llvm->builder.CreateAlloca(typAggr, ConstantInt::get(Type::getInt32Ty(llvm::getGlobalContext()), length, false), hintRetVar); const std::vector& operands = expression.getOperands(); llvm::Value* addrOperand = llvm->builder.CreateGEP(typAggr, list, ArrayRef(std::vector{zero, zero})); llvm->builder.CreateStore(scope->process(operands.front()), addrOperand) ; for (auto i=++operands.begin(); i!=operands.end(); ++i){ addrOperand = llvm->builder.CreateGEP(typEl, addrOperand, ArrayRef(std::vector{one})); llvm->builder.CreateStore(scope->process(*i), addrOperand) ; } return list; // Value* listDest = l.builder.CreateAlloca(typList, ConstantInt::get(typI32, __size), *hintRetVar); // l.buil1der.CreateMemCpy(listDest, listSource, __size, 16); } llvm::Value* Advanced::compileConstantStringAsPChar(const string& data, const std::string& hintRetVar) { EXPAND_CONTEXT UNUSED(function); UNUSED(scope); Type* typPchar = PointerType::getUnqual(Type::getInt8Ty(llvm::getGlobalContext())); //ArrayType* typStr = (ArrayType*) (llvm->toLLVMType(ExpandedType(TypeAnnotation(tag_array, TypePrimitive::I8, size+1)))); /* std::vector chars; chars.reserve(size+1); for (size_t i=0; i< size; ++i){ chars[i] = ConstantInt::get(typI8, (unsigned char) data[i]); } chars[size] = ConstantInt::get(typI8, 0); */ Value* rawData = ConstantDataArray::getString(llvm::getGlobalContext(), data); Value* rawPtrData = llvm->builder.CreateAlloca(rawData->getType(), ConstantInt::get(Type::getInt32Ty(llvm::getGlobalContext()), 1, false)); llvm->builder.CreateStore(rawData, rawPtrData); return llvm->builder.CreateCast(llvm::Instruction::BitCast, rawPtrData, typPchar, hintRetVar); } diff --git a/cpp/src/compilation/containers.cpp b/cpp/src/compilation/containers.cpp index f60f5ed..c86d08d 100644 --- a/cpp/src/compilation/containers.cpp +++ b/cpp/src/compilation/containers.cpp @@ -1,195 +1,195 @@ #include "compilation/containers.h" using namespace std; using namespace llvm; using namespace xreate; using namespace xreate::containers; Iterator* Iterator::create(xreate::compilation::Context context, const xreate::Symbol& var){ const Implementation& data = Query::queryImplementation(var); switch(data.impl){ case ON_THE_FLY: return new IteratorForward(context, var, data.extract()); case SOLID: return new IteratorForward(context, var, data.extract()); default: assert(true); } assert(false && "Unknown declaration"); return nullptr; } llvm::Value* IteratorForward::begin() { switch(sourceDecl.op) { case xreate::Operator::LIST: { sourceRawType = llvm::Type::getInt32Ty(llvm::getGlobalContext()); return llvm::ConstantInt::get(Type::getInt32Ty(llvm::getGlobalContext()), 0); }; case xreate::Operator::LIST_RANGE:{ assert(sourceDecl.operands.size()==2); llvm::Value* result = sourceUnit->process(sourceDecl.operands.at(0)); sourceRawType = result->getType(); return result; }; default: break; } if (linkedlist){ llvm::Value* result = sourceUnit->process(sourceDecl); sourceRawType = result->getType(); return result; } assert(false); } llvm::Value* IteratorForward::end(){ switch(sourceDecl.op) { case xreate::Operator::LIST: { size_t idLast = sourceDecl.operands.size() - 1; return ConstantInt::get(sourceRawType, idLast); } case xreate::Operator::LIST_RANGE: { assert(sourceDecl.operands.size() == 2); llvm::Value* valueEndOfRange = sourceUnit->process(sourceDecl.operands.at(1)); llvm::Value* valueConstOne = llvm::ConstantInt::get(llvm::Type::getInt32Ty(llvm::getGlobalContext()), 1); return llvm->builder.CreateAdd(valueEndOfRange, valueConstOne); }; default: break; } //return null pointer if (linkedlist){ return ConstantPointerNull::getNullValue(sourceRawType); } assert(false && "Unknown declaration"); return nullptr; } llvm::Value* IteratorForward::get(Value* index,const std::string& hintRetVar){ const Expression& currentDecl = CodeScope::getDeclaration(current); switch (currentDecl.op) { case xreate::Operator::LIST: { //TODO re check is it right scope(source) to compile currentDecl. Provide unittests. llvm::Value* currentValue = sourceUnit->processSymbol(current); return xreate::compilation::Advanced(context).compileArrayIndex(currentValue, std::vector{index}); }; case xreate::Operator::LIST_RANGE: { return index; }; case xreate::Operator::MAP: { assert(currentDecl.getOperands().size()==1); assert(currentDecl.bindings.size()); assert(currentDecl.blocks.size()); CodeScope* scopeLoop = currentDecl.blocks.front(); std::string varEl = currentDecl.bindings[0]; const Symbol& symbIn = Attachments::get(currentDecl.getOperands()[0]); auto it = std::unique_ptr(Iterator::create(context, symbIn)); Value* elIn = it->get(index, varEl); compilation::AbstractCodeScopeUnit* unitLoop = function->getScopeUnit(scopeLoop); unitLoop->bindArg(elIn, std::move(varEl)); return unitLoop->compile(); } case xreate::Operator::NONE: { //TODO review iterator determination strategy for case of Expression::BINDING assert(currentDecl.__state==Expression::IDENT); const Symbol& symbIn = Attachments::get(currentDecl); auto it = std::unique_ptr(Iterator::create(context, symbIn)); return it->get(index); }; default: break; } if (linkedlist){ return index; } assert(false && "Unknown declaration"); return nullptr; } llvm::Value* IteratorForward::advance(Value* index, const std::string& hintRetVar){ switch(sourceDecl.op) { case xreate::Operator::LIST: case xreate::Operator::LIST_RANGE: return llvm->builder.CreateAdd(index, llvm::ConstantInt::get(llvm::Type::getInt32Ty(llvm::getGlobalContext()), 1), hintRetVar); default: break; } if (linkedlist){ - ExpandedType tySource = llvm->ast->expandType(CodeScope::getDeclaration(source).type); + ExpandedType tySource = llvm->ast->getType(CodeScope::getDeclaration(source)); assert(tySource->__operator == TypeOperator::ARRAY && "Linked list implementation has to have ARRAY type"); assert(tySource->__operands.size()); return xreate::compilation::Advanced(context).compileStructIndex(index, ExpandedType(TypeAnnotation(tySource->__operands.at(0))), linkedlist.fieldPointer); } assert(false && "Unknown declaration"); return nullptr; } //const ImplementationRec& implementation IteratorForward::IteratorForward(const compilation::Context& ctx, const xreate::Symbol& symbolContainer, const ImplementationRec& implementation) : Iterator(), __length(implementation.size), llvm(ctx.pass->man->llvm) { __container = ctx.function->getScopeUnit(symbolContainer.scope)->processSymbol(symbolContainer); } llvm::Value* IteratorForward::begin(){ //0 return llvm::ConstantInt::get(llvm::Type::getInt32Ty(llvm::getGlobalContext()), 0); } llvm::Value* IteratorForward::end(){ //length return llvm::ConstantInt::get(llvm::Type::getInt32Ty(llvm::getGlobalContext()), __length); } llvm::Value* IteratorForward::get(llvm::Value* index,const std::string& hintRetVar){ //GEP[index]] llvm::Type* tyNum = llvm::Type::getInt32Ty(llvm::getGlobalContext()); llvm::Value* pResult = llvm->builder.CreateGEP(__container, ArrayRef(std::vector{ConstantInt::get(tyNum, 0), index})); return llvm->builder.CreateLoad(pResult, hintRetVar); } llvm::Value* IteratorForward::advance(llvm::Value* index, const std::string& hintRetVar){ //index + 1 llvm::Type* tyNum = llvm::Type::getInt32Ty(llvm::getGlobalContext()); return llvm->builder.CreateAdd(index, llvm::ConstantInt::get(tyNum, 1), hintRetVar); } diff --git a/cpp/src/compilation/operators.cpp b/cpp/src/compilation/operators.cpp new file mode 100644 index 0000000..26330b2 --- /dev/null +++ b/cpp/src/compilation/operators.cpp @@ -0,0 +1,66 @@ +/* + * operators.cpp + * + * Author: pgess + * Created on April 8, 2017, 1:35 PM + */ + +#include "operators.h" +#include "llvmlayer.h" +#include "ExternLayer.h" +#include + +using namespace llvm; +using namespace std; + +namespace xreate { namespace compilation { + +llvm::Value* +PointerArithmetic::add(llvm::Value *left, llvm::Value *right, Context context, const std::string& hintVarDecl){ + LLVMLayer* llvm = context.pass->man->llvm; + + if (left->getType()->isPointerTy() && right->getType()->isIntegerTy()){ + + std::vector indexes{right}; + //{llvm::ConstantInt::get(llvm::Type::getInt32Ty(llvm::getGlobalContext()), 0)}; + //indexes.push_back(right); + + return llvm->builder.CreateGEP(left, llvm::ArrayRef(indexes), hintVarDecl); + } + + return nullptr; +} + + +llvm::Value* +StructUpdate::add(const Expression& left, llvm::Value *leftRaw, const Expression& right, Context context, const std::string& hintVarDecl){\ + if (!(right.__state == Expression::COMPOUND && right.op == Operator::LIST_NAMED)){ + return nullptr; + } + + PassManager* man = context.pass->man; + + ExpandedType tyOperandLeft = man->root->getType(left); + + const std::vector fieldsFormal = (tyOperandLeft.get().__operator == TypeOperator::CUSTOM)? + man->llvm->layerExtern->getStructFields(man->llvm->layerExtern->lookupType(tyOperandLeft.get().__valueCustom)) + : tyOperandLeft.get().fields; + + std::map indexFields; + for(size_t i=0, size = fieldsFormal.size(); iprocess(value, right.bindings.at(i)); + unsigned int fieldId = indexFields.at(right.bindings.at(i)); + + result = man->llvm->builder.CreateInsertValue(result, valueRaw, llvm::ArrayRef({fieldId})); + } + + return result; +} + +} } \ No newline at end of file diff --git a/cpp/src/compilation/pointerarithmetic.h b/cpp/src/compilation/operators.h similarity index 50% rename from cpp/src/compilation/pointerarithmetic.h rename to cpp/src/compilation/operators.h index 5302d7b..7e6a296 100644 --- a/cpp/src/compilation/pointerarithmetic.h +++ b/cpp/src/compilation/operators.h @@ -1,29 +1,33 @@ /* - * File: pointerarithmetic.h + * File: operators.h * Author: pgess * - * Created on March 29, 2017, 11:52 AM + * Created on April 8, 2017, 1:33 PM */ -#ifndef POINTERARITHMETIC_H -#define POINTERARITHMETIC_H +#ifndef OPERATORS_H +#define OPERATORS_H #include "pass/compilepass.h" namespace llvm { class Value; } namespace xreate { namespace compilation { class PointerArithmetic { public: static llvm::Value* add(llvm::Value *left, llvm::Value *right, Context context, const std::string& hintVarDecl); }; + +class StructUpdate { +public: + static llvm::Value* add(const Expression& left, llvm::Value *leftRaw, const Expression& right, Context context, const std::string& hintVarDecl); +}; -} } - +} } //namespace xreate -#endif /* POINTERARITHMETIC_H */ +#endif /* OPERATORS_H */ diff --git a/cpp/src/compilation/pointerarithmetic.cpp b/cpp/src/compilation/pointerarithmetic.cpp deleted file mode 100644 index 307c174..0000000 --- a/cpp/src/compilation/pointerarithmetic.cpp +++ /dev/null @@ -1,31 +0,0 @@ -/* - * pointerarithmetic.cpp - * - * Author: pgess - * Created on March 29, 2017, 11:52 AM - */ -#include "pointerarithmetic.h" -#include "llvmlayer.h" -#include - -using namespace llvm; - -namespace xreate { namespace compilation { - -llvm::Value* -PointerArithmetic::add(llvm::Value *left, llvm::Value *right, Context context, const std::string& hintVarDecl){ - LLVMLayer* llvm = context.pass->man->llvm; - - if (left->getType()->isPointerTy() && right->getType()->isIntegerTy()){ - - std::vector indexes{right}; - //{llvm::ConstantInt::get(llvm::Type::getInt32Ty(llvm::getGlobalContext()), 0)}; - //indexes.push_back(right); - - return llvm->builder.CreateGEP(left, llvm::ArrayRef(indexes), hintVarDecl); - } - - return nullptr; -} - -} } \ No newline at end of file diff --git a/cpp/src/compilation/targets.h b/cpp/src/compilation/targets.h index 2ec48eb..6b891c7 100644 --- a/cpp/src/compilation/targets.h +++ b/cpp/src/compilation/targets.h @@ -1,191 +1,191 @@ /* * File: targetabstract.h * Author: pgess * * Created on July 2, 2016, 1:25 PM */ #ifndef TARGETABSTRACT_H #define TARGETABSTRACT_H #include "ast.h" #include #include namespace xreate{ namespace compilation { template struct TargetInfo{ //typedef Result //typedef Function //typedef Scope }; template class Function; template class Target; template class Scope{ typedef typename TargetInfo::Scope Self; public: CodeScope* scope; typename TargetInfo::Result processSymbol(const Symbol& s){ CodeScope* scope = s.scope; Self* self = function->getScope(scope); if (self->__bindings.count(s.identifier)) { return self->__bindings[s.identifier]; } const Expression& declaration = CodeScope::getDeclaration(s); if (!declaration.isDefined()){ assert(false); //for bindings there should be result already } return self->__bindings[s.identifier] = self->process(declaration); } typename TargetInfo::Result processScope() { if (raw) return *raw; raw = process(scope->getBody()); return *raw; } // typename TargetInfo::Result // processFunction(typename TargetInfo::Function* fnRemote, const std::vector::Result>& args){ // Scope scopeRemote = fnRemote->getScope(fnRemote->__function->__entry); // // if (scopeRemote->raw){ // return scopeRemote->raw; // } // // return fnRemote->process(args); // } virtual typename TargetInfo::Result process(const Expression& expression)=0; Scope(CodeScope* codeScope, Function* f) : scope(codeScope), function(f) {} virtual ~Scope(){} void overrideBinding(typename TargetInfo::Result arg, const std::string& name){ assert(scope->__identifiers.count(name)); ScopedSymbol id{scope->__identifiers.at(name), VERSION_NONE}; __bindings[id] = arg; //reset the result if any: raw.reset(); } void registerChildScope(std::shared_ptr scope){ __childScopes.push_back(scope); } void reset(){ __bindings.clear(); __childScopes.clear(); - raw == nullptr; + raw.reset(); } protected: Function* function=0; std::map::Result> __bindings; std::list> __childScopes; typename boost::optional::Result> raw; }; template class Function{ typedef typename TargetInfo::Result Result; typedef typename TargetInfo::Scope ConcreteScope; public: Function(const ManagedFnPtr& function, Target* target) : man(target), __function(function) {} virtual ~Function(){}; ConcreteScope* getScope(CodeScope* scope){ if (__scopes.count(scope)) { auto result = __scopes.at(scope).lock(); if (result){ return result.get(); } } std::shared_ptr unit(new ConcreteScope(scope, this)); if (scope->__parent != nullptr){ getScope(scope->__parent)->registerChildScope(unit); } else { assert(!__entryScope); __entryScope = unit; } if (!__scopes.emplace(scope, unit).second){ __scopes[scope] = unit; } return unit.get(); } virtual Result process(const std::vector& args)=0; Target* man=0; ManagedFnPtr __function; protected: std::map> __scopes; std::shared_ptr __entryScope; }; template class Target { typedef typename TargetInfo::Function ConcreteFunction; public: Target(AST* root): ast(root){} ConcreteFunction* getFunction(const ManagedFnPtr& function){ unsigned int id = function.id(); if (!__functions.count(id)){ ConcreteFunction* unit = new ConcreteFunction(function, this); __functions.emplace(id, unit); return unit; } return __functions.at(id); } AST* ast; virtual ~Target(){ for (const auto& entry: __functions){ delete entry.second; } } protected: std::map __functions; }; }} #endif /* TARGETABSTRACT_H */ diff --git a/cpp/src/pass/compilepass.cpp b/cpp/src/pass/compilepass.cpp index e9e7d12..0859093 100644 --- a/cpp/src/pass/compilepass.cpp +++ b/cpp/src/pass/compilepass.cpp @@ -1,799 +1,807 @@ #include "compilepass.h" #include "clasplayer.h" #include #include "llvmlayer.h" #include "query/containers.h" #include "query/context.h" #include "compilation/containers.h" #include "compilation/latecontextcompiler2.h" #include "ExternLayer.h" #include "pass/adhocpass.h" #include "compilation/targetinterpretation.h" #include "pass/versionspass.h" #include "compilation/scopedecorators.h" -#include "compilation/pointerarithmetic.h" +#include "compilation/operators.h" #include #include #include using namespace std; using namespace xreate; using namespace xreate::compilation; using namespace llvm; //TODO use Scope //SECTIONTAG types/convert implementation //TODO type conversion: //a) automatically expand types int -> bigger int; int -> floating //b) detect exact type of `num` based on max used numeral / function type //c) warning if need to truncate (allow/dissalow based on annotations) namespace xreate { llvm::Value* doAutomaticTypeConversion(llvm::Value* source, llvm::Type* tyTarget, llvm::IRBuilder<>& builder){ if (tyTarget->isIntegerTy() && source->getType()->isIntegerTy()) { llvm::IntegerType* tyTargetInt = llvm::dyn_cast(tyTarget); llvm::IntegerType* tySourceInt = llvm::dyn_cast(source->getType()); if (tyTargetInt->getBitWidth() < tySourceInt->getBitWidth()){ return builder.CreateCast(llvm::Instruction::Trunc, source, tyTarget); } if (tyTargetInt->getBitWidth() > tySourceInt->getBitWidth()){ return builder.CreateCast(llvm::Instruction::SExt, source, tyTarget); } } if (source->getType()->isIntegerTy() && tyTarget->isFloatingPointTy()){ return builder.CreateCast(llvm::Instruction::SIToFP, source, tyTarget); } return source; } std::string BasicFunctionDecorator::prepareName(){ AST* ast = FunctionUnit::pass->man->root; string name = ast->getFunctionVariants(FunctionUnit::function->__name).size() > 1? FunctionUnit::function->__name + std::to_string(FunctionUnit::function.id()) : FunctionUnit::function->__name; return name; } std::vector BasicFunctionDecorator::prepareArguments(){ LLVMLayer* llvm = FunctionUnit::pass->man->llvm; AST* ast = FunctionUnit::pass->man->root; CodeScope* entry = FunctionUnit::function->__entry; std::vector signature; std::transform(entry->__bindings.begin(), entry->__bindings.end(), std::inserter(signature, signature.end()), [llvm, ast, entry](const std::string &arg)->llvm::Type* { assert(entry->__identifiers.count(arg)); ScopedSymbol argid{entry->__identifiers.at(arg), VERSION_NONE}; return llvm->toLLVMType(ast->expandType(entry->__declarations.at(argid).type)); }); return signature; } llvm::Type* BasicFunctionDecorator::prepareResult(){ LLVMLayer* llvm = FunctionUnit::pass->man->llvm; AST* ast = FunctionUnit::pass->man->root; CodeScope* entry = FunctionUnit::function->__entry; return llvm->toLLVMType(ast->expandType(entry->__declarations.at(ScopedSymbol::RetSymbol).type)); } llvm::Function::arg_iterator BasicFunctionDecorator::prepareBindings(){ CodeScope* entry = FunctionUnit::function->__entry; AbstractCodeScopeUnit* entryCompilation = FunctionUnit::getScopeUnit(entry); llvm::Function::arg_iterator fargsI = FunctionUnit::raw->arg_begin(); for (std::string &arg : entry->__bindings) { ScopedSymbol argid{entry->__identifiers[arg], VERSION_NONE}; entryCompilation->bindArg(&*fargsI, argid); fargsI->setName(arg); ++fargsI; } return fargsI; } //SECTIONTAG late-context FunctionDecorator template class LateContextFunctionDecorator: public Parent{ public: LateContextFunctionDecorator(ManagedFnPtr f, CompilePass* p) : Parent(f, p), contextCompiler(this, p) {} protected: std::vector prepareArguments(){ std::vector&& arguments = Parent::prepareArguments(); size_t sizeLateContextDemand = contextCompiler.getFunctionDemandSize(); if (sizeLateContextDemand) { llvm::Type* ty32 = llvm::Type::getInt32Ty(llvm::getGlobalContext()); llvm::Type* tyDemand = llvm::ArrayType::get(ty32, sizeLateContextDemand); arguments.push_back(tyDemand); } return arguments; } llvm::Function::arg_iterator prepareBindings(){ llvm::Function::arg_iterator fargsI = Parent::prepareBindings(); size_t sizeLateContextDemand = contextCompiler.getFunctionDemandSize(); if (sizeLateContextDemand){ fargsI->setName("latecontext"); contextCompiler.rawContextArgument = &*fargsI; ++fargsI; } return fargsI; } public: LateContextCompiler2 contextCompiler; }; //SECTIONTAG adhoc FunctionDecorator template class AdhocFunctionDecorator: public Parent{ public: AdhocFunctionDecorator(ManagedFnPtr f, CompilePass* p) : Parent(f, p) {} protected: llvm::Type* prepareResult(){ PassManager* man = Parent::pass->man; CodeScope* entry = Parent::function->__entry; LLVMLayer* llvm = Parent::pass->man->llvm; AST* ast = Parent::pass->man->root; AdhocPass* adhocpass = reinterpret_cast(man->getPassById(PassId::AdhocPass)); if (! Parent::function->isPrefunction){ return Parent::prepareResult(); } adhocImplementation = adhocpass->findAssotiatedScheme(entry); return llvm->toLLVMType(ast->expandType(adhocImplementation->getResultType())); } public: AdhocScheme* adhocImplementation=nullptr; }; //DEBT compiler rigidly depends on exact definition of DefaultFunctionUnit typedef LateContextFunctionDecorator< AdhocFunctionDecorator< BasicFunctionDecorator>> DefaultFunctionUnit; AbstractCodeScopeUnit::AbstractCodeScopeUnit(CodeScope* codeScope, FunctionUnit* f, CompilePass* compilePass) : pass(compilePass), function(f), scope(codeScope) {} llvm::Value* CallStatementRaw::operator() (std::vector&& args, const std::string& hintDecl) { llvm::Function* calleeInfo = dyn_cast(__callee); if (calleeInfo){ auto argsFormal = calleeInfo->args(); int pos=0; //SECTIONTAG types/convert function ret value for (auto argFormal = argsFormal.begin(); argFormal!=argsFormal.end(); ++argFormal, ++pos){ args[pos] = doAutomaticTypeConversion(args[pos], argFormal->getType(), llvm->builder); } } return llvm->builder.CreateCall(__calleeTy, __callee, args, hintDecl); } //DESABLEDFEATURE implement inlining class CallStatementInline: public CallStatement{ public: CallStatementInline(FunctionUnit* caller, FunctionUnit* callee, LLVMLayer* l) : __caller(caller), __callee(callee), llvm(l) {} llvm::Value* operator() (std::vector&& args, const std::string& hintDecl) { //TOTEST inlining // CodeScopeUnit* entryCompilation = outer->getScopeUnit(function->__entry); // for(int i=0, size = args.size(); ibindArg(args.at(i), string(entryCompilation->scope->__bindings.at(i))); // } // // // return entryCompilation->compile(); return nullptr; } private: FunctionUnit* __caller; FunctionUnit* __callee; LLVMLayer* llvm; bool isInline(){ // Symbol ret = Symbol{0, function->__entry}; // bool flagOnTheFly = SymbolAttachments::get(ret, false); //TODO consider inlining return false; } }; } BasicCodeScopeUnit::BasicCodeScopeUnit(CodeScope* codeScope, FunctionUnit* f, CompilePass* compilePass) : AbstractCodeScopeUnit(codeScope, f, compilePass) {} llvm::Value* BasicCodeScopeUnit::processSymbol(const Symbol& s, std::string hintRetVar){ Expression declaration = CodeScope::getDeclaration(s); CodeScope* scope = s.scope; AbstractCodeScopeUnit* self = AbstractCodeScopeUnit::function->getScopeUnit(scope); return self->process(declaration, hintRetVar); } //SECTIONTAG late-context find callee function //TOTEST static late context decisions //TOTEST dynamic late context decisions CallStatement* BasicCodeScopeUnit::findFunction(const std::string& calleeName){ LLVMLayer* llvm = pass->man->llvm; ClaspLayer* clasp = pass->man->clasp; DefaultFunctionUnit* function = dynamic_cast(this->function); ContextQuery* queryContext = pass->queryContext; const std::list& specializations = pass->man->root->getFunctionVariants(calleeName); //if no specializations registered - check external function if (specializations.size()==0){ llvm::Function* external = llvm->layerExtern->lookupFunction(calleeName); llvm::outs() << "Debug/External function: " << calleeName; external->getType()->print(llvm::outs(), true); llvm::outs() << "\n"; return new CallStatementRaw(external, llvm); } //no decisions required if (specializations.size()==1){ if (!specializations.front()->guardContext.isValid()) { return new CallStatementRaw( pass->getFunctionUnit(specializations.front())->compile(), llvm); } } //TODO move dictSpecialization over to a separate function in order to perform cache, etc. //prepare specializations dictionary std::map dictSpecializations; boost::optional variantDefault; boost::optional variant; for(const ManagedFnPtr& f: specializations){ const Expression& guard = f->guardContext; //default case: if (!guard.isValid()){ variantDefault = f; continue; } assert(dictSpecializations.emplace(guard, f).second && "Found several identical specializations"); } //check static context ScopePacked scopeCaller = clasp->pack(this->scope); const string atomSpecialization = "specialization"; const Expression topicSpecialization(Operator::CALL, {(Atom(string(atomSpecialization))), (Atom(string(calleeName))), (Atom(scopeCaller))}); const Decisions& decisions = queryContext->getFinalDecisions(scopeCaller); if (decisions.count(topicSpecialization)){ variant = dictSpecializations.at(decisions.at(topicSpecialization)); } //TODO check only demand for this particular topic. size_t sizeDemand = function->contextCompiler.getFunctionDemandSize(); //decision made if static context found or no late context exists(and there is default variant) bool flagHasStaticDecision = variant || (variantDefault && !sizeDemand); //if no late context exists if (flagHasStaticDecision) { FunctionUnit* calleeUnit = pass->getFunctionUnit(variant? *variant: *variantDefault); //inlining possible based on static decision only // if (calleeUnit->isInline()) { // return new CallStatementInline(function, calleeUnit); // } return new CallStatementRaw(calleeUnit->compile(), llvm); } //require default variant if no static decision made assert(variantDefault); llvm::Function* functionVariantDefault = this->pass->getFunctionUnit(*variantDefault)->compile(); llvm::Value* resultFn = function->contextCompiler.findFunction(calleeName, functionVariantDefault, scopeCaller); llvm::PointerType *resultPTy = cast(resultFn->getType()); llvm::FunctionType *resultFTy = cast(resultPTy->getElementType()); return new CallStatementRaw(resultFn, resultFTy, llvm); } //DISABLEDFEATURE transformations // if (pass->transformations->isAcceptable(expr)){ // return pass->transformations->transform(expr, result, ctx); // } llvm::Value* BasicCodeScopeUnit::process(const Expression& expr, const std::string& hintVarDecl){ #define DEFAULT(x) (hintVarDecl.empty()? x: hintVarDecl) llvm::Value *left; llvm::Value *right; LLVMLayer& l = *pass->man->llvm; xreate::compilation::Advanced instructions = xreate::compilation::Advanced({this, function, pass}); switch (expr.op) { - case Operator::ADD: case Operator::SUB: case Operator::MUL: + case Operator::SUB: case Operator::MUL: case Operator::DIV: case Operator::EQU: case Operator::LSS: case Operator::GTR: case Operator::NE: case Operator::LSE: case Operator::GTE: assert(expr.__state == Expression::COMPOUND); assert(expr.operands.size() == 2); left = process(expr.operands[0]); right = process(expr.operands[1]); //SECTIONTAG types/convert binary operation right = doAutomaticTypeConversion(right, left->getType(), l.builder); break; default:; } switch (expr.op) { case Operator::ADD:{ - llvm::Value* resultAdd = PointerArithmetic::add(left, right, {this, function, pass}, DEFAULT("tmp_add")); - if (resultAdd) {return resultAdd;} + left = process(expr.operands[0]); + Context context{this, function, pass}; + + llvm::Value* resultSU = StructUpdate::add(expr.operands[0], left, expr.operands[1], context, DEFAULT("tmp_add")); + if (resultSU) return resultSU; + + right = process(expr.operands[1]); + + llvm::Value* resultAddPA = PointerArithmetic::add(left, right, context,DEFAULT("tmp_add")); + if (resultAddPA) {return resultAddPA;} return l.builder.CreateAdd(left, right, DEFAULT("tmp_add")); break; } case Operator::SUB: return l.builder.CreateSub(left, right, DEFAULT("tmp_sub")); break; case Operator::MUL: return l.builder.CreateMul(left, right, DEFAULT("tmp_mul")); break; case Operator::DIV: return l.builder.CreateSDiv(left, right, DEFAULT("tmp_div")); break; case Operator::EQU: if (left->getType()->isIntegerTy()) return l.builder.CreateICmpEQ(left, right, DEFAULT("tmp_equ")); if (left->getType()->isFloatingPointTy()) return l.builder.CreateFCmpOEQ(left, right, DEFAULT("tmp_equ")); break; case Operator::NE: return l.builder.CreateICmpNE(left, right, DEFAULT("tmp_ne")); break; case Operator::LSS: return l.builder.CreateICmpSLT(left, right, DEFAULT("tmp_lss")); break; case Operator::LSE: return l.builder.CreateICmpSLE(left, right, DEFAULT("tmp_lse")); break; case Operator::GTR: return l.builder.CreateICmpSGT(left, right, DEFAULT("tmp_gtr")); break; case Operator::GTE: return l.builder.CreateICmpSGE(left, right, DEFAULT("tmp_gte")); break; case Operator::NEG: left = process(expr.operands[0]); return l.builder.CreateNeg(left, DEFAULT("tmp_neg")); break; case Operator::CALL: { assert(expr.__state == Expression::COMPOUND); std::string nameCallee = expr.getValueString(); shared_ptr callee(findFunction(nameCallee)); //prepare arguments std::vector args; args.reserve(expr.operands.size()); std::transform(expr.operands.begin(), expr.operands.end(), std::inserter(args, args.end()), [this](const Expression &operand) { return process(operand); } ); ScopePacked outerScopeId = pass->man->clasp->pack(this->scope); //TASK a) refactor CALL/ADHOC/find function //SECTIONTAG late-context propagation arg size_t calleeDemandSize = pass->queryContext->getFunctionDemand(nameCallee).size(); if (calleeDemandSize){ DefaultFunctionUnit* function = dynamic_cast(this->function); llvm::Value* argLateContext = function->contextCompiler.compileContextArgument(nameCallee, outerScopeId); args.push_back(argLateContext); } return (*callee)(move(args), DEFAULT("res_"+nameCallee)); } case Operator::IF: { return instructions.compileIf(expr, DEFAULT("tmp_if")); } case Operator::SWITCH: { return instructions.compileSwitch(expr, DEFAULT("tmp_switch")); } case Operator::LOOP_CONTEXT: { assert(false); return nullptr; //return instructions.compileLoopContext(expr, DEFAULT("tmp_loop")); } case Operator::LOGIC_AND: { assert(expr.operands.size() == 1); return process (expr.operands[0]); } case Operator::LIST: { return instructions.compileListAsSolidArray(expr, DEFAULT("tmp_list")); }; case Operator::LIST_RANGE: { assert(false); //no compilation phase for a range list // return InstructionList(this).compileConstantArray(expr, l, hintRetVar); }; case Operator::LIST_NAMED: { typedef Expanded ExpandedType; - ExpandedType tyRaw = l.ast->expandType(expr.type); + ExpandedType tyStructLiteral = l.ast->getType(expr); - const std::vector fields = (tyRaw.get().__operator == TypeOperator::CUSTOM)? - l.layerExtern->getStructFields(l.layerExtern->lookupType(tyRaw.get().__valueCustom)) - : tyRaw.get().fields; + const std::vector fieldsFormal = (tyStructLiteral.get().__operator == TypeOperator::CUSTOM)? + l.layerExtern->getStructFields(l.layerExtern->lookupType(tyStructLiteral.get().__valueCustom)) + : tyStructLiteral.get().fields; std::map indexFields; - for(size_t i=0, size = fields.size(); i(l.toLLVMType(tyRaw)); - llvm::Value* record = llvm::UndefValue::get(tyRecord); + llvm::StructType* tyLiteralRaw = llvm::cast(l.toLLVMType(tyStructLiteral)); + llvm::Value* record = llvm::UndefValue::get(tyLiteralRaw); for (size_t i=0; igetElementType(fieldId); // result = llvm::UndefValue::get(tyNullField); // // } else { result = process(operand); // } assert (result); record = l.builder.CreateInsertValue(record, result, llvm::ArrayRef({fieldId})); } return record; }; case Operator::MAP: { assert(expr.blocks.size()); return instructions.compileMapSolidOutput(expr, DEFAULT("map")); }; case Operator::FOLD: { return instructions.compileFold(expr, DEFAULT("fold")); }; case Operator::FOLD_INF: { return instructions.compileFoldInf(expr, DEFAULT("fold")); }; case Operator::INDEX: { //TODO allow multiindex assert(expr.operands.size()==2); assert(expr.operands[0].__state == Expression::IDENT); const std::string& hintIdent= expr.operands[0].getValueString(); Symbol s = Attachments::get(expr.operands[0]); - const ExpandedType& t2 = pass->man->root->expandType(CodeScope::getDeclaration(s).type); + const ExpandedType& t2 = pass->man->root->getType(expr.operands[0]); llvm::Value* aggr = processSymbol(s, hintIdent); switch (t2.get().__operator) { case TypeOperator::STRUCT: case TypeOperator::CUSTOM: { const Expression& idx = expr.operands.at(1); assert(idx.__state == Expression::STRING); std::string idxField = idx.getValueString(); return instructions.compileStructIndex(aggr, t2, idxField); }; case TypeOperator::ARRAY: { std::vector indexes; std::transform(++expr.operands.begin(), expr.operands.end(), std::inserter(indexes, indexes.end()), [this] (const Expression& op){ return process(op); } ); return instructions.compileArrayIndex(aggr, indexes, DEFAULT(string("el_") + hintIdent)); }; default: assert(false); } }; //SECTIONTAG adhoc actual compilation //TODO a) make sure that it's correct: function->adhocImplementation built for Entry scope and used in another scope case Operator::ADHOC: { DefaultFunctionUnit* function = dynamic_cast(this->function); assert(function->adhocImplementation && "Adhoc implementation not found"); const Expression& comm = AdhocExpression(expr).getCommand(); CodeScope* scope = function->adhocImplementation->getCommandImplementation(comm); AbstractCodeScopeUnit* unitScope = function->getScopeUnit(scope); //SECTIONTAG types/convert ADHOC ret convertation llvm::Type* resultTy = l.toLLVMType( pass->man->root->expandType(function->adhocImplementation->getResultType())); return doAutomaticTypeConversion(unitScope->compile(), resultTy, l.builder); }; case Operator::CALL_INTRINSIC:{ const std::string op = expr.getValueString(); if (op == "copy") { llvm::Value* result = process(expr.getOperands().at(0)); auto decoratorVersions = Decorators::getInterface(this); llvm::Value* storage = decoratorVersions->processIntrinsicInit(result->getType()); decoratorVersions->processIntrinsicCopy(result, storage); return l.builder.CreateLoad(storage, hintVarDecl); } assert(false && "undefined intrinsic"); } case Operator::NONE: assert(expr.__state != Expression::COMPOUND); switch (expr.__state) { case Expression::IDENT: { Symbol s = Attachments::get(expr); return processSymbol(s, expr.getValueString()); } case Expression::NUMBER: { llvm::Type* typConst; if (expr.type.isValid()){ - typConst = l.toLLVMType(pass->man->root->expandType(expr.type)); + typConst = l.toLLVMType(pass->man->root->getType(expr)); } else { typConst = llvm::Type::getInt32Ty(llvm::getGlobalContext()); } int literal = expr.getValueDouble(); return llvm::ConstantInt::get(typConst, literal); } case Expression::STRING: { return instructions.compileConstantStringAsPChar(expr.getValueString(), DEFAULT("tmp_str")); }; case Expression::VARIANT: { - const ExpandedType& typVariant = pass->man->root->expandType(expr.type); + const ExpandedType& typVariant = pass->man->root->getType(expr); llvm::Type* typRaw = l.toLLVMType(typVariant); int value = expr.getValueDouble(); return llvm::ConstantInt::get(typRaw, value); } default: { break; } }; break; default: break; } assert(false); return 0; } llvm::Value* BasicCodeScopeUnit::compile(const std::string& hintBlockDecl){ if (!hintBlockDecl.empty()) { llvm::BasicBlock *block = llvm::BasicBlock::Create(llvm::getGlobalContext(), hintBlockDecl, function->raw); pass->man->llvm->builder.SetInsertPoint(block); } Symbol symbScope = Symbol{ScopedSymbol::RetSymbol, scope}; return processSymbol(symbScope); } AbstractCodeScopeUnit::~AbstractCodeScopeUnit() {} FunctionUnit::~FunctionUnit() {} llvm::Function* FunctionUnit::compile(){ if (raw != nullptr) return raw; LLVMLayer* llvm = pass->man->llvm; llvm::IRBuilder<>& builder = llvm->builder; string&& functionName = prepareName(); std::vector&& types = prepareArguments(); llvm::Type* expectedResultType = prepareResult(); llvm::FunctionType *ft = llvm::FunctionType::get(expectedResultType, types, false); raw = llvm::cast(llvm->module->getOrInsertFunction(functionName, ft)); prepareBindings(); const std::string&blockName = "entry"; llvm::BasicBlock* blockCurrent = builder.GetInsertBlock(); llvm::Value* result =getScopeUnit(function->__entry)->compile(blockName); assert(result); //SECTIONTAG types/convert function ret value builder.CreateRet(doAutomaticTypeConversion(result, expectedResultType, llvm->builder)); if (blockCurrent){ builder.SetInsertPoint(blockCurrent); } llvm->moveToGarbage(ft); return raw; } AbstractCodeScopeUnit* FunctionUnit::getScopeUnit(CodeScope* scope){ if (__scopes.count(scope)) { auto result = __scopes.at(scope).lock(); if (result){ return result.get(); } } std::shared_ptr unit(new DefaultScopeUnit(scope, this, pass)); if (scope->__parent != nullptr){ auto parentUnit = Decorators::getInterface(getScopeUnit(scope->__parent)); parentUnit->registerChildScope(unit); } else { __orphanedScopes.push_back(unit); } if (!__scopes.emplace(scope, unit).second){ __scopes[scope] = unit; } return unit.get(); } AbstractCodeScopeUnit* FunctionUnit::getScopeUnit(ManagedScpPtr scope){ return getScopeUnit(&*scope); } AbstractCodeScopeUnit* FunctionUnit::getEntry(){ return getScopeUnit(function->getEntryScope()); } FunctionUnit* CompilePass::getFunctionUnit(const ManagedFnPtr& function){ unsigned int id = function.id(); if (!functions.count(id)){ FunctionUnit* unit = new DefaultFunctionUnit(function, this); functions.emplace(id, unit); return unit; } return functions.at(id); } void CompilePass::run(){ managerTransformations = new TransformationsManager(); targetInterpretation = new TargetInterpretation(this->man->root, this); queryContext = reinterpret_cast (man->clasp->getQuery(QueryId::ContextQuery)); //Find out main function; ClaspLayer::ModelFragment model = man->clasp->query(Config::get("function-entry")); assert(model && "Error: No entry function found"); assert(model->first != model->second && "Error: Ambiguous entry function"); string nameMain = std::get<0>(ClaspLayer::parse(model->first->second)); FunctionUnit* unitMain = getFunctionUnit(man->root->findFunction(nameMain)); entry = unitMain->compile(); } llvm::Function* CompilePass::getEntryFunction(){ assert(entry); return entry; } void CompilePass::prepareQueries(ClaspLayer* clasp){ clasp->registerQuery(new containers::Query(), QueryId::ContainersQuery); clasp->registerQuery(new ContextQuery(), QueryId::ContextQuery); } diff --git a/cpp/tests/compilation.cpp b/cpp/tests/compilation.cpp index 95b96b6..5188fe6 100644 --- a/cpp/tests/compilation.cpp +++ b/cpp/tests/compilation.cpp @@ -1,37 +1,60 @@ #include "passmanager.h" #include "gtest/gtest.h" using namespace xreate; //DEBT implement no pkgconfig ways to link libs //TOTEST FunctionUnit::compileInline TEST(Compilation, DISABLED_functionInline1){ } TEST(Compilation, functionEntry1){ std::unique_ptr program(PassManager::prepareForCode( "func1 = function(a:: int):: int {a+8} \ func2 = function::int; entry {12 + func1(4)} \ ")); void* entryPtr = program->run(); int (*entry)() = (int (*)())(intptr_t)entryPtr; int answer = entry(); ASSERT_EQ(24, answer); } TEST(Compilation, full_IFStatementWithVariantType){ PassManager* man = PassManager::prepareForCode( "Color = type variant (RED, BLUE, GREEN).\n" "\n" " main = function(x::int):: bool; entry {\n" " color = if (x == 0 )::Color {RED} else {BLUE}.\n" " if (color == BLUE)::bool {true} else {false}\n" " }" ); bool (*main)(int) = (bool (*)(int)) man->run(); ASSERT_FALSE(main(0)); ASSERT_TRUE(main(1)); } +TEST(Compilation, full_StructUpdate){ +PassManager* man = PassManager::prepareForCode( + R"Code( + + Rec = type alias { + a :: int, + b:: int + }. + + test= function:: int; entry { + a = {a = 18, b = 20}:: Rec. + + b = a + {a = 11}:: Rec. + b["a"] + } + )Code"); + + int (*main)() = (int (*)()) man->run(); + int result = main(); + + ASSERT_EQ(11, result); +} + diff --git a/cpp/tests/externc.cpp b/cpp/tests/externc.cpp index 4aa5d7e..68463e6 100644 --- a/cpp/tests/externc.cpp +++ b/cpp/tests/externc.cpp @@ -1,106 +1,105 @@ #include "gtest/gtest.h" #include "passmanager.h" #include "Scanner.h" #include "Parser.h" #include #include using namespace std; TEST(InterfaceExternC, testAST) { std::string code = " \ interface(extern-c){ \ xml2 = library:: pkgconfig(\"libxml-2.0\"). \ \ include { \ xml2 = [\"libxml/tree.h\"] \ }. \ } \ "; Scanner scanner(reinterpret_cast (code.c_str()), code.size()); Parser parser(&scanner); parser.Parse(); ASSERT_EQ(1, parser.root.__externdata.size()); for (const ExternEntry& lib : parser.root.__externdata) { ASSERT_EQ("libxml-2.0", lib.package); ASSERT_EQ(1, lib.headers.size()); ASSERT_EQ("libxml/tree.h", lib.headers.at(0)); } } TEST(InterfaceExternC, testfetchPackageHeaders) { ExternEntry entry{"libxml-2.0", {}}; vector args = ExternLayer::fetchPackageFlags(entry); ASSERT_EQ(1, args.size()); ASSERT_EQ("-I/usr/include/libxml2", args.at(0)); } TEST(InterfaceExternC, testfetchPackageLibs) { ExternEntry entry{"libxml-2.0", {}}; vector args = ExternLayer::fetchPackageLibs(entry); ASSERT_EQ(1, args.size()); ASSERT_EQ("xml2", args.at(0)); } TEST(InterfaceExternC, testLoadLib) { std::string msgErr; if (!llvm::sys::DynamicLibrary::LoadLibraryPermanently("-lpcre -lxml2", &msgErr)) { cout << msgErr; ASSERT_EQ("", msgErr); } ASSERT_TRUE(true); } TEST(InterfaceExternC, testBSD1) { std::string code = " \n\ interface(extern-c){ \n\ libbsd = library:: pkgconfig(\"libbsd\"). \n\ \n\ include { \n\ libbsd = [\"bsd/stdlib.h\"] \n\ }. \n\ } \n" "main= function:: int; entry{arc4random_uniform(24) }"; std::unique_ptr program(PassManager::prepareForCode(move(code))); void* entryPtr = program->run(); int (*entry)() = (int (*)())(intptr_t) entryPtr; int answer = 24; answer = entry(); cout << answer; ASSERT_LT(answer, 24); } TEST(InterfaceExternC, testStructFields1) { FILE* input = fopen("scripts/containers/Containers_Implementation_LinkedList1.xreate", "r"); assert(input != nullptr); Scanner scanner(input); Parser parser(&scanner); parser.Parse(); AST& ast = parser.root; CodeScope* body = ast.findFunction("test")->getEntryScope(); - const TypeAnnotation& tTree = body->getDeclaration(body->getSymbol("tree")).type; - const ExpandedType& t2Tree = ast.expandType(tTree); + const ExpandedType& t2Tree = ast.getType(body->getDeclaration(body->getSymbol("tree"))); LLVMLayer llvm(&ast); TypeUtils utils(&llvm); std::vectorfields = utils.getStructFields(t2Tree); auto field = std::find(fields.begin(), fields.end(), "children"); ASSERT_TRUE(field != fields.end()); } diff --git a/cpp/tests/types.cpp b/cpp/tests/types.cpp index 5ff99b6..d121a48 100644 --- a/cpp/tests/types.cpp +++ b/cpp/tests/types.cpp @@ -1,163 +1,161 @@ /* * types.cpp * * Created on: Jun 4, 2015 * Author: pgess */ #include "gtest/gtest.h" #include "passmanager.h" #include "llvmlayer.h" #include "Parser.h" using namespace std; using namespace xreate; TEST(Types, DependantTypes1) { string&& code = "XmlNode = type alias {\n" " tag:: string,\n" " /* attrs:: [string],*/\n" " content:: string\n" "}.\n"; std::unique_ptr program(PassManager::prepareForCode(move(code))); ExpandedType typeXmlNode = program->root->findType("XmlNode"); ASSERT_EQ(TypeOperator::STRUCT, typeXmlNode->__operator); ASSERT_EQ(2, typeXmlNode->__operands.size()); ASSERT_EQ(TypePrimitive::String, typeXmlNode->__operands.at(0).__value); ASSERT_EQ(TypePrimitive::String, typeXmlNode->__operands.at(1).__value); } TEST(Types, DependantTypes2) { string&& code = "XmlNode = type alias {\n" " tag:: string,\n" " /* attrs:: [string],*/\n" " content:: string\n" "}.\n" "" "Template = type Template(Leaf) [Leaf, [Leaf[content]]]." "Concrete = type alias Template(XmlNode)."; std::unique_ptr program(PassManager::prepareForCode(move(code))); ExpandedType typeConcrete = program->root->findType("Concrete"); ASSERT_EQ(TypeOperator::TUPLE, typeConcrete->__operator); ASSERT_EQ(2, typeConcrete->__operands.size()); ASSERT_EQ(TypeOperator::STRUCT, typeConcrete->__operands.at(0).__operator); ASSERT_EQ(TypeOperator::ARRAY, typeConcrete->__operands.at(1).__operator); ASSERT_EQ(TypePrimitive::String, typeConcrete->__operands.at(1).__operands.at(0).__value); } TEST(Types, TreeType1) { string&& code = "XmlNode = type alias {\n" " tag:: string,\n" " /* attrs:: [string],*/\n" " content:: string\n" "}.\n" "" "Tree = type Tree(Leaf) [Leaf, [Tree(Leaf)]]." "Concrete = type alias Tree(XmlNode)."; std::unique_ptr program(PassManager::prepareForCode(move(code))); ExpandedType typeConcrete = program->root->findType("Concrete"); ASSERT_EQ(TypeOperator::TUPLE, typeConcrete->__operator); ASSERT_EQ(2, typeConcrete->__operands.size()); ASSERT_EQ(TypeOperator::STRUCT, typeConcrete->__operands.at(0).__operator); ASSERT_EQ(TypeOperator::ARRAY, typeConcrete->__operands.at(1).__operator); auto typeLink = typeConcrete->__operands.at(1).__operands.at(0); ASSERT_EQ(TypeOperator::LINK, typeLink.__operator); ASSERT_EQ(typeConcrete->conjuctionId,typeLink.conjuctionId); } TEST(Types, TreeType1LLvm){ string&& code = "XmlNode = type alias {\n" " tag:: string,\n" " /* attrs:: [string],*/\n" " content:: string\n" "}.\n" "" "Tree = type Tree(Leaf) [Leaf, [Tree(Leaf)]]." "Concrete = type alias Tree(XmlNode)."; std::unique_ptr program(PassManager::prepareForCode(move(code))); ExpandedType typeConcrete = program->root->findType("Concrete"); llvm::Type* raw = program->llvm->toLLVMType(typeConcrete); } TEST(Types, ArrayOfExternal1){ FILE* input = fopen("scripts/containers/Containers_Implementation_LinkedList1.xreate","r"); assert(input != nullptr); Scanner scanner(input); Parser parser(&scanner); parser.Parse(); AST& ast = parser.root; CodeScope* body = ast.findFunction("test")->getEntryScope(); - const TypeAnnotation& t = body->getDeclaration(body->getSymbol("childrenRaw")).type; - const ExpandedType& t2 = ast.expandType(t); + const ExpandedType& t2 = ast.getType(body->getDeclaration(body->getSymbol("childrenRaw"))); EXPECT_EQ(t2->__operator, TypeOperator::ARRAY); } TEST(Types, ExternType1){ FILE* input = fopen("scripts/containers/Containers_Implementation_LinkedList1.xreate","r"); assert(input != nullptr); Scanner scanner(input); Parser parser(&scanner); parser.Parse(); AST& ast = parser.root; CodeScope* body = ast.findFunction("test")->getEntryScope(); - const TypeAnnotation& t = body->getDeclaration(body->getSymbol("tree")).type; - const ExpandedType& t2 = ast.expandType(t); + const ExpandedType& t2 = ast.getType(body->getDeclaration(body->getSymbol("tree"))); EXPECT_EQ(t2->__operator, TypeOperator::CUSTOM); } TEST(Types, ast_VariantType1){ string&& code = " colors = type variant (RED, BLUE, GREEN).\n" " test = function:: colors; entry {GREEN}"; std::unique_ptr program(PassManager::prepareForCode(move(code))); ExpandedType typ = program->root->findType("colors"); EXPECT_EQ(TypeOperator::VARIANT, typ->__operator); Expression eRed = program->root->findFunction("test")->getEntryScope()->getBody(); EXPECT_EQ(Expression::VARIANT, eRed.__state); - const ExpandedType& typ2 = program->root->expandType(eRed.type); + const ExpandedType& typ2 = program->root->getType(eRed); EXPECT_EQ(TypeOperator::VARIANT, typ2->__operator); program->run(); } TEST(Types, full_VariantType_Switch1){ string&& code = " colors = type variant (RED, BLUE, GREEN). \n" " test = function:: colors {GREEN} \n" "main = function:: int; entry { \n" " switch(test()):: int \n" " case (GREEN) {0} \n" " case default {1} \n" "}"; PassManager* man = PassManager::prepareForCode(move(code)); int (*main)() = (int (*)()) man->run(); EXPECT_EQ(0, main()); } //TOTEST string type