diff --git a/.gitignore b/.gitignore index 8f97d68..189db3d 100644 --- a/.gitignore +++ b/.gitignore @@ -1,105 +1,106 @@ # Compiled Object files *.slo *.lo *.o *.obj # Compiled Dynamic libraries *.so *.so.* *.dylib *.dll # Compiled Static libraries *.lai *.la *.a *.lib # Executables *.exe *.out *.app *.class # Mobile Tools for Java (J2ME) .mtj.tmp/ # Package Files # *.jar *.war *.ear # virtual machine crash logs, see http://www.java.com/en/download/help/error_hotspot.xml hs_err_pid* # Qt-es /.qmake.cache /.qmake.stash *.pro.user *.pro.user.* *.moc moc_*.cpp qrc_*.cpp ui_*.h Makefile* *-build-* # QtCreator *.autosave coco/*.old coco/*~ *~ # XREATE cpp/build-*/ cpp/xreate-debug/* cpp/xreate-release/* cpp/.idea CMakeLists.txt.user cmake_install.cmake project/* nb*.xml .* target/* /tools/phabricator/xreate-frontend/nbproject/private/ documentation/trash4/ trash/ CMakeFiles/ gen-cpp/ generated-cpp/ gen-php/ generated-js/ books/ build/ coco/Parser.* coco/Scanner.* tools/phabricator/administration/ tmp-* cpp/tests/vendorsAPI/ secrets/ /tools/site/init-data/ code-coverage.sh codestyle-netbeans/ deferred/ design/ documentation-tools/xmlmind-custom-css grammar/main/ grammar/modules/ +grammar/universal/ model-to-graph tools/netdata* tools/nginx-tests/ tools/phabricator/diagrams/ tools/phabricator/docker/ tools/phabricator/nbproject/ tools/phabricator/xreate-frontend/install-xreate-frontend.sh tools/scaleway-perf tools/scaleway-perf.ods tools/site/init-data/ tools/site/secrets/ valgrind.sh diff --git a/cpp/src/ast.cpp b/cpp/src/ast.cpp index 4f92561..f313cff 100644 --- a/cpp/src/ast.cpp +++ b/cpp/src/ast.cpp @@ -1,972 +1,973 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * Author: pgess * File: ast.cpp */ #include "ast.h" #include "analysis/typeinference.h" #include "analysis/predefinedanns.h" #ifdef XREATE_ENABLE_EXTERN #include "ExternLayer.h" #endif #include #include //TODO BDecl. forbid multiple body declaration (ExprTyped) namespace std { std::size_t hash::operator()(xreate::ScopedSymbol const& s) const { return s.id ^ (s.version << 2); } bool equal_to::operator()(const xreate::ScopedSymbol& __x, const xreate::ScopedSymbol& __y) const { return __x.id == __y.id && __x.version == __y.version; } size_t hash::operator()(xreate::Symbol const& s) const { return hash()(s.identifier) ^ ((long int) s.scope << 1); } bool equal_to::operator()(const xreate::Symbol& __x, const xreate::Symbol& __y) const { return __x == __y; }; } using namespace std; namespace xreate { Atom::Atom(const std::wstring& value) { __value = wstring_to_utf8(value); } Atom::Atom(std::string && name) : __value(name) { } const std::string& Atom::get() const { return __value; } Atom::Atom(wchar_t* value) { //DEBT reconsider number literal recognition __value = wcstol(value, 0, 10); } Atom::Atom(int value) : __value(value) { } double Atom::get()const { return __value; } Atom::Atom(const std::wstring& value) { assert(value.size() >= 2); __value = wstring_to_utf8(value.substr(1, value.size() - 2)); } Atom::Atom(std::string && name) : __value(name) {} const std::string& Atom::get() const { return __value; } /** \brief xreate::Expression static information*/ class ExpressionHints { public: static bool isStringValueValid(const Expression& e) { switch (e.__state) { case Expression::INVALID: assert(false); case Expression::IDENT: case Expression::STRING: return true; case Expression::NUMBER: case Expression::BINDING: return false; case Expression::COMPOUND: { switch (e.op) { case Operator::CALL: return true; default: return false; } } } return false; } static bool isDoubleValueValid(const Expression& e) { switch (e.__state) { case Expression::NUMBER: return true; case Expression::INVALID: assert(false); case Expression::IDENT: case Expression::STRING: case Expression::BINDING: return false; case Expression::COMPOUND: { switch (e.op) { case Operator::VARIANT: return true; default: return false; } } } return false; } }; class TypeResolver { public: TypeResolver(const AST* ast, TypeResolver * parent, std::set trace, const std::map& scope = std::map()) : __ast(ast), __scope(scope), __trace(trace), __parent(parent) {} ExpandedType operator()(const TypeAnnotation &t, const std::vector &args = std::vector()) { assert(args.size() == t.bindings.size()); // invalid number of arguments for (size_t i = 0; i < args.size(); ++i) { __scope[t.bindings.at(i)] = args.at(i); } switch (t.__operator) { case TypeOperator::ARRAY:{ assert(t.__operands.size() == 1); Expanded elTy = this->operator()(t.__operands.at(0)); return ExpandedType(TypeAnnotation(TypeOperator::ARRAY, {elTy.get()})); } case TypeOperator::RECORD: { std::vector&& packOperands = expandOperands(t.__operands); auto typNew = TypeAnnotation(TypeOperator::RECORD, move(packOperands)); typNew.fields = t.fields; return ExpandedType(move(typNew)); }; case TypeOperator::VARIANT: { std::vector&& packOperands = expandOperands(t.__operands); auto typNew = TypeAnnotation(TypeOperator::VARIANT, move(packOperands)); typNew.fields = t.fields; return ExpandedType(move(typNew)); }; case TypeOperator::ALIAS: { std::string alias = t.__valueCustom; if (__trace.count(alias)){ assert(false && "Recursive Type"); return ExpandedType(TypeAnnotation()); } const TypeAnnotation& tyAlias = findType(alias); std::vector&& operands = expandOperands(t.__operands); auto traceNew =__trace; traceNew.insert(alias); return TypeResolver(__ast, this, traceNew, __scope)(tyAlias, operands); }; case TypeOperator::ACCESS: { std::string alias = t.__valueCustom; const TypeAnnotation& ty = findType(alias); TypeAnnotation tyAggr = this->operator()(ty).get(); for (const string& field : t.fields) { auto fieldIt = std::find(tyAggr.fields.begin(), tyAggr.fields.end(), field); assert(fieldIt != tyAggr.fields.end() && "unknown field"); int fieldId = fieldIt - tyAggr.fields.begin(); tyAggr = tyAggr.__operands.at(fieldId); } return ExpandedType(tyAggr); } case TypeOperator::NONE: case TypeOperator::VOID: case TypeOperator::SLAVE: case TypeOperator::REF: { return ExpandedType(t); } default: assert(false); } assert(false); return ExpandedType(TypeAnnotation()); } private: const AST* __ast; std::map __scope; std::set __trace; TypeResolver* __parent; std::vector expandOperands(const std::vector& operands) { std::vector pack; pack.reserve(operands.size()); std::transform(operands.begin(), operands.end(), std::inserter(pack, pack.end()), [this](const TypeAnnotation & t) { return this->operator()(t).get(); }); return pack; } TypeAnnotation findType(const std::string& alias){ if (__scope.count(alias)) { return __scope.at(alias); } else if (__parent){ return __parent->findType(alias); } else if (__ast->__registryTypes.count(alias)){ return __ast->__registryTypes.at(alias); } assert(false && "Undefined or external type"); return TypeAnnotation(); } }; TypeAnnotation::TypeAnnotation() : __operator(TypeOperator::NONE), __value(TypePrimitive::Invalid) { } TypeAnnotation::TypeAnnotation(TypePrimitive typ) : __value(typ) {} TypeAnnotation::TypeAnnotation(TypeOperator op, std::initializer_list operands) : __operator(op), __operands(operands) { } TypeAnnotation::TypeAnnotation(TypeOperator op, std::vector&& operands) : __operator(op), __operands(operands) { } bool TypeAnnotation::isValid() const { return !(__value == TypePrimitive::Invalid && __operator == TypeOperator::NONE); } bool TypeAnnotation::operator<(const TypeAnnotation& t) const { if (__operator != t.__operator) return __operator < t.__operator; if (__operator == TypeOperator::NONE) return __value < t.__value; if (__operator == TypeOperator::ALIAS || __operator == TypeOperator::ACCESS) { if (__valueCustom != t.__valueCustom) return __valueCustom < t.__valueCustom; } return __operands < t.__operands; } TypeAnnotation TypeAnnotation::alias(const std::string& alias) { TypeAnnotation aliasT(TypeOperator::ALIAS, {}); aliasT.__valueCustom = alias; return aliasT; } void TypeAnnotation::addBindings(std::vector>&& params) { bindings.reserve(bindings.size() + params.size()); std::transform(params.begin(), params.end(), std::inserter(bindings, bindings.end()), [](const Atom& ident) { return ident.get(); }); } void TypeAnnotation::addFields(std::vector>&& listFields) { fields.reserve(fields.size() + listFields.size()); std::transform(listFields.begin(), listFields.end(), std::inserter(fields, fields.end()), [](const Atom& ident) { return ident.get(); }); } unsigned int Expression::nextVacantId = 0; Expression::Expression(const Atom& number) : Expression() { __state = NUMBER; op = Operator::INVALID; __valueD = number.get(); } Expression::Expression(const Atom& a) : Expression() { __state = STRING; op = Operator::INVALID; __valueS = a.get(); } Expression::Expression(const Atom &ident) : Expression() { __state = IDENT; op = Operator::INVALID; __valueS = ident.get(); } Expression::Expression(const Operator &oprt, std::initializer_list params) : Expression() { __state = COMPOUND; op = oprt; if (op == Operator::CALL) { assert(params.size() > 0); Expression arg = *params.begin(); assert(arg.__state == Expression::IDENT); __valueS = std::move(arg.__valueS); operands.insert(operands.end(), params.begin() + 1, params.end()); return; } operands.insert(operands.end(), params.begin(), params.end()); } void Expression::setOp(Operator oprt) { op = oprt; switch (op) { case Operator::INVALID: __state = INVALID; break; default: __state = COMPOUND; break; } } void Expression::addArg(Expression &&arg) { operands.push_back(arg); } void Expression::addTags(const std::list tags) const { std::transform(tags.begin(), tags.end(), std::inserter(this->tags, this->tags.end()), [](const Expression & tag) { return make_pair(tag.getValueString(), tag); }); } void Expression::addBindings(std::initializer_list> params) { addBindings(params.begin(), params.end()); } void Expression::bindType(TypeAnnotation t) { type = move(t); } void Expression::addBlock(ManagedScpPtr scope) { blocks.push_back(scope.operator->()); } const std::vector& Expression::getOperands() const { return operands; } double Expression::getValueDouble() const { return __valueD; } const std::string& Expression::getValueString() const { return __valueS; } void Expression::setValue(const Atom&& v) { __valueS = v.get(); } void Expression::setValueDouble(double value) { __valueD = value; } bool Expression::isValid() const { return (__state != INVALID); } bool Expression::isDefined() const { return (__state != BINDING && __state != INVALID); } Expression::Expression() : __state(INVALID), op(Operator::INVALID), id(nextVacantId++) { } namespace details { namespace inconsistent { std::map AST::__registryIntrinsics = {}; AST::AST() { Attachments::init(); Attachments::init(); Attachments::init(); Attachments::init(); Attachments::init(); initIntrinsics(); analysis::PredefinedAnns man = analysis::PredefinedAnns::instance(); man.registerVariants(__registryVariants); man.registerAliases(__registryTypes); } void AST::addInterfaceData(const ASTInterface& interface, Expression&& data) { __interfacesData.emplace(interface, move(data)); } void AST::addDFAData(Expression &&data) { __dfadata.push_back(data); } void AST::addExternData(ExternData &&entry) { //__externdata.push_back(entry); } void AST::add(Function* f) { __functions.push_back(f); __dictFunctions.emplace(f->getName(), __functions.size() - 1); } void AST::add(MetaRuleAbstract *r) { __rules.push_back(r); } void AST::add(TypeAnnotation t, Atom alias) { if (t.__operator == TypeOperator::VARIANT) { for (int i = 0, size = t.fields.size(); i < size; ++i) { __registryVariants.emplace(t.fields[i], make_pair(t, i)); } } __registryTypes.emplace(alias.get(), move(t)); } ManagedScpPtr AST::add(CodeScope* scope) { this->__scopes.push_back(scope); return ManagedScpPtr(this->__scopes.size() - 1, &this->__scopes); } std::string AST::getModuleName() { const std::string name = "main"; return name; } ManagedPtr AST::findFunction(const std::string& name) { int count = __dictFunctions.count(name); if (!count) { return ManagedFnPtr::Invalid(); } assert(count == 1); auto range = __dictFunctions.equal_range(name); return ManagedPtr(range.first->second, &this->__functions); } std::list AST::getAllFunctions() const { const size_t size = __functions.size(); std::list result; for (size_t i = 0; i < size; ++i) { result.push_back(ManagedFnPtr(i, &this->__functions)); } return result; } //TASK select default specializations std::list AST::getFnSpecializations(const std::string& fnName) const { auto functions = __dictFunctions.equal_range(fnName); std::list result; std::transform(functions.first, functions.second, inserter(result, result.end()), [this](auto f) { return ManagedFnPtr(f.second, &this->__functions); }); return result; } template<> ManagedPtr AST::begin() { return ManagedPtr(0, &this->__functions); } template<> ManagedPtr AST::begin() { return ManagedPtr(0, &this->__scopes); } template<> ManagedPtr AST::begin() { return ManagedPtr(0, &this->__rules); } void AST::recognizeIntrinsic(Expression& fn) const { assert(fn.op == Operator::CALL_INTRINSIC); if (!__registryIntrinsics.count(fn.getValueString())){ assert(false); } IntrinsicFn fnCode = __registryIntrinsics.at(fn.getValueString()); fn.op = Operator::CALL_INTRINSIC; fn.setValueDouble((int) fnCode); } bool AST::recognizeVariantConstructor(Expression& function) { assert(function.op == Operator::CALL); std::string variant = function.getValueString(); if (!__registryVariants.count(variant)) { return false; } auto record = __registryVariants.at(variant); const TypeAnnotation& typ = record.first; function.op = Operator::VARIANT; function.setValueDouble(record.second); function.type = typ; return true; } Atom AST::recognizeVariantConstructor(Atom ident) { std::string variant = ident.get(); assert(__registryVariants.count(variant) && "Can't recognize variant constructor"); auto record = __registryVariants.at(variant); return Atom(record.second); } void AST::postponeIdentifier(CodeScope* scope, const Expression& id) { __bucketUnrecognizedIdentifiers.emplace(scope, id); } void AST::recognizePostponedIdentifiers() { for (const auto& identifier : __bucketUnrecognizedIdentifiers) { if (!identifier.first->recognizeIdentifier(identifier.second)) { //exception: Ident not found std::cout << "Unknown identifier: " << identifier.second.getValueString() << std::endl; assert(false && "Unknown identifier"); } } } xreate::AST* AST::finalize() { //all finalization steps: recognizePostponedIdentifiers(); return reinterpret_cast (this); } void AST::initIntrinsics(){ if (__registryIntrinsics.size()) return; __registryIntrinsics = { {"array_init", IntrinsicFn::ARR_INIT}, - {"rec_fields", IntrinsicFn::REC_FIELDS} + {"fields", IntrinsicFn::REC_FIELDS}, + {"keys", IntrinsicFn::CON_KEYS} }; } } } //namespace details::incomplete Expanded AST::findType(const std::string& name) { // find in general scope: if (__registryTypes.count(name)) return expandType(__registryTypes.at(name)); //if type is unknown keep it as is. TypeAnnotation t(TypeOperator::ALIAS, {}); t.__valueCustom = name; return ExpandedType(move(t)); } Expanded AST::expandType(const TypeAnnotation &t) const { return TypeResolver(this, nullptr, {}, {})(t); } ExpandedType AST::getType(const Expression& e, const TypeAnnotation& expectedT) { return typeinference::getType(e, expectedT, *this); } Function::Function(const Atom& name) : __entry(new CodeScope(0)) { __name = name.get(); } void Function::addTag(Expression&& tag, const TagModifier mod) { string name = tag.getValueString(); __tags.emplace(move(name), move(tag)); } const std::map& Function::getTags() const { return __tags; } CodeScope* Function::getEntryScope() const { return __entry; } void Function::addBinding(Atom && name, Expression&& argument, const VNameId hintBindingId) { __entry->addBinding(move(name), move(argument), hintBindingId); } const std::string& Function::getName() const { return __name; } ScopedSymbol CodeScope::registerIdentifier(const Expression& identifier, const VNameId hintBindingId) { versions::VariableVersion version = Attachments::get(identifier, versions::VERSION_NONE); auto result = __identifiers.emplace(identifier.getValueString(), hintBindingId? hintBindingId: __identifiers.size() + 1); return { result.first->second, version }; } bool CodeScope::recognizeIdentifier(const Expression& identE) { versions::VariableVersion version = Attachments::get(identE, versions::VERSION_NONE); const std::string& identStr = identE.getValueString(); //search identifier in the current block if (__identifiers.count(identStr)) { VNameId id = __identifiers.at(identStr); Symbol identS; identS.identifier = ScopedSymbol{id, version}; identS.scope = const_cast (this); Attachments::put(identE, identS); return true; } //search in the parent scope bool result = false; if (__parent) { result = __parent->recognizeIdentifier(identE); } if (trackExternalSymbs && result){ Symbol identS = Attachments::get(identE); boundExternalSymbs.insert(identS); } return result; } ScopedSymbol CodeScope::findSymbolByAlias(const std::string& alias) { assert(__identifiers.count(alias)); VNameId id = __identifiers.at(alias); return {id, versions::VERSION_NONE }; } void CodeScope::addBinding(Expression&& var, Expression&& argument, const VNameId hintBindingId) { argument.__state = Expression::BINDING; __bindings.push_back(var.getValueString()); ScopedSymbol binding = registerIdentifier(var, hintBindingId); __declarations[binding] = move(argument); } Symbol CodeScope::addDefinition(Expression&& var, Expression&& body) { ScopedSymbol s = registerIdentifier(var); __declarations[s] = move(body); return Symbol{s, this}; } CodeScope::CodeScope(CodeScope* parent) : __parent(parent) { } CodeScope::~CodeScope() { } void CodeScope::setBody(const Expression &body) { assert(__declarations.count(ScopedSymbol::RetSymbol)==0 && "Attempt to reassign scope body"); __declarations[ScopedSymbol::RetSymbol] = body; } const Expression& CodeScope::getBody() const{ return __declarations.at(ScopedSymbol::RetSymbol); } const Expression& CodeScope::getDefinition(const Symbol& symbol, bool flagAllowUndefined){ const CodeScope* self = symbol.scope; return self->getDefinition(symbol.identifier, flagAllowUndefined); } const Expression& CodeScope::getDefinition(const ScopedSymbol& symbol, bool flagAllowUndefined) const{ static Expression expressionInvalid; if (!__declarations.count(symbol)){ if (flagAllowUndefined) return expressionInvalid; assert(false && "Symbol's declaration not found"); } return __declarations.at(symbol); } void RuleArguments::add(const Atom &arg, DomainAnnotation typ) { emplace_back(arg.get(), typ); } void RuleGuards::add(Expression&& e) { push_back(e); } MetaRuleAbstract:: MetaRuleAbstract(RuleArguments&& args, RuleGuards&& guards) : __args(std::move(args)), __guards(std::move(guards)) { } MetaRuleAbstract::~MetaRuleAbstract() { } RuleWarning:: RuleWarning(RuleArguments&& args, RuleGuards&& guards, Expression&& condition, Atom&& message) : MetaRuleAbstract(std::move(args), std::move(guards)), __message(message.get()), __condition(condition) { } RuleWarning::~RuleWarning() { } void RuleWarning::compile(TranscendLayer& layer) { //TODO restore addRuleWarning //layer.addRuleWarning(*this); } bool operator<(const ScopedSymbol& s1, const ScopedSymbol& s2) { return (s1.id < s2.id) || (s1.id == s2.id && s1.version < s2.version); } bool operator==(const ScopedSymbol& s1, const ScopedSymbol& s2) { return (s1.id == s2.id) && (s1.version == s2.version); } bool operator<(const Symbol& s1, const Symbol& s2) { return (s1.scope < s2.scope) || (s1.scope == s2.scope && s1.identifier < s2.identifier); } bool operator==(const Symbol& s1, const Symbol& s2) { return (s1.scope == s2.scope) && (s1.identifier == s2.identifier); } bool operator< (const ASTSite& s1, const ASTSite& s2){ return s1.id < s2.id; } bool operator<(const Expression&a, const Expression&b) { if (a.__state != b.__state) return a.__state < b.__state; assert(a.__state != Expression::INVALID); switch (a.__state) { case Expression::IDENT: case Expression::STRING: return a.getValueString() < b.getValueString(); case Expression::NUMBER: return a.getValueDouble() < b.getValueDouble(); case Expression::COMPOUND: { assert(a.blocks.size() == 0); assert(b.blocks.size() == 0); if (a.op != b.op) { return a.op < b.op; } bool flagAValid = ExpressionHints::isStringValueValid(a); bool flagBValid = ExpressionHints::isStringValueValid(b); if (flagAValid != flagBValid) { return flagAValid < flagBValid; } if (flagAValid) { if (a.getValueString() != b.getValueString()) { return a.getValueString() < b.getValueString(); } } flagAValid = ExpressionHints::isDoubleValueValid(a); flagBValid = ExpressionHints::isDoubleValueValid(b); if (flagAValid != flagBValid) { return flagAValid < flagBValid; } if (flagAValid) { if (a.getValueDouble() != b.getValueDouble()) { return a.getValueDouble() < b.getValueDouble(); } } if (a.operands.size() != b.operands.size()) { return (a.operands.size() < b.operands.size()); } for (size_t i = 0; i < a.operands.size(); ++i) { bool result = a.operands[i] < b.operands[i]; if (result) return true; } return false; } case Expression::BINDING: case Expression::INVALID: assert(false); } return false; } bool Expression::operator==(const Expression& other) const { if (this->__state != other.__state) return false; if (ExpressionHints::isStringValueValid(*this)) { if (this->__valueS != other.__valueS) return false; } if (ExpressionHints::isDoubleValueValid(*this)) { if (this->__valueD != other.__valueD) return false; } if (this->__state != Expression::COMPOUND) { return true; } if (this->op != other.op) { return false; } if (this->operands.size() != other.operands.size()) { return false; } for (size_t i = 0; ioperands.size(); ++i) { if (!(this->operands[i] == other.operands[i])) return false; } assert(!this->blocks.size()); assert(!other.blocks.size()); return true; } const ScopedSymbol ScopedSymbol::RetSymbol = ScopedSymbol{0, versions::VERSION_NONE}; Expression ASTSite::getDefinition() const{ if (Attachments::exists(id)){ - const Symbol& siteS = Attachments::get(id); + Symbol siteS = Attachments::get(id); return CodeScope::getDefinition(siteS, true); } return Attachments::get(id); } } //end of namespace xreate diff --git a/cpp/src/ast.h b/cpp/src/ast.h index db518d6..20f7ea9 100644 --- a/cpp/src/ast.h +++ b/cpp/src/ast.h @@ -1,754 +1,755 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * Author: pgess * File: ast.h */ /** * \file ast.h * \brief A syntax tree representation and related code * * \sa xreate::AST */ #ifndef AST_H #define AST_H #include "attachments.h" #include "utils.h" #include #include #include #include #include #include #include #include #include namespace xreate { struct ScopedSymbol; struct Symbol; } namespace std { template<> struct hash { std::size_t operator()(xreate::ScopedSymbol const& s) const; }; template<> struct equal_to { bool operator()(const xreate::ScopedSymbol& __x, const xreate::ScopedSymbol& __y) const; }; template<> struct hash { size_t operator()(xreate::Symbol const& s) const; }; template<> struct equal_to { bool operator()(const xreate::Symbol& __x, const xreate::Symbol& __y) const; }; } namespace xreate { struct String_t { }; struct Identifier_t { }; struct Number_t { }; struct Type_t { }; template class Atom { }; //DEBT store line:col for all atoms/identifiers template<> class Atom { public: Atom(const std::wstring& value); Atom(std::string && name); const std::string& get() const; private: std::string __value; }; template<> class Atom { public: Atom(wchar_t* value); Atom(int value); double get()const; private: double __value; }; template<> class Atom { public: Atom(const std::wstring& value); Atom(std::string && name); const std::string& get() const; private: std::string __value; }; enum class TypePrimitive { Invalid, Bool, I8, I32, I64, Int, Float, String }; enum class TypeOperator { NONE, VOID, REF, ALIAS, VARIANT, ARRAY, RECORD, ACCESS, SLAVE, GUARD }; struct struct_tag { }; const struct_tag tag_struct = struct_tag(); /** * \brief A type representation to support type system * * The class represents type in a denormalized form, i.e. with no arguments and aliases substitution * \sa AST::expandType() */ class TypeAnnotation { public: TypeAnnotation(); TypeAnnotation(TypePrimitive typ); TypeAnnotation(TypeOperator op, std::initializer_list operands); TypeAnnotation(TypeOperator op, std::vector&& operands); static TypeAnnotation alias(const std::string& alias); void addBindings(std::vector>&& params); void addFields(std::vector>&& listFields); bool operator<(const TypeAnnotation& t) const; // TypeAnnotation (struct_tag, std::initializer_list); bool isValid() const; TypeOperator __operator = TypeOperator::NONE; std::vector __operands; TypePrimitive __value; std::string __valueCustom; std::vector fields; std::vector bindings; private: }; enum class Operator { INVALID, UNDEF, AND, OR, ADD, SUB, MUL, DIV, MOD, EQU, NE, NEG, LSS, LSE, GTR, GTE, LIST, LIST_INDEX, LIST_RANGE, CALL, CALL_INTRINSIC, QUERY, QUERY_LATE, IMPL/* implication */, MAP, FOLD, FOLD_INF, INDEX, IF, SWITCH, SWITCH_VARIANT, SWITCH_LATE, CASE, CASE_DEFAULT, LOGIC_AND, CONTEXT_RULE, VARIANT, SEQUENCE, UPDATE }; class Function; class AST; class CodeScope; class MetaRuleAbstract; typedef ManagedPtr ManagedFnPtr; typedef ManagedPtr ManagedScpPtr; typedef ManagedPtr ManagedRulePtr; const ManagedScpPtr NO_SCOPE = ManagedScpPtr(UINT_MAX, 0); /** * \brief AST node to represent a single instruction or an annotation * \attention In case of any changes update \ref xreate::ExpressionHints auxiliary helper as well * * %Expression is a generic building block of syntax tree which is able to hold node data * along with child nodes as operands. * * \note For types the %expression-like data structure \ref TypeAnnotation is used rather than Expression itself. * \sa xreate::AST, xreate::TypeAnnotation */ struct Expression { friend class CodeScope; friend class TranscendLayer; friend class CFAPass; friend class ExpressionHints; Expression(const Operator &oprt, std::initializer_list params); Expression(const Atom& ident); Expression(const Atom& number); Expression(const Atom& a); Expression(); void setOp(Operator oprt); void addArg(Expression&& arg); void addBindings(std::initializer_list> params); void bindType(TypeAnnotation t); template void addBindings(InputIt paramsBegin, InputIt paramsEnd); void addTags(const std::list tags) const; void addBlock(ManagedScpPtr scope); const std::vector& getOperands() const; double getValueDouble() const; void setValueDouble(double value); const std::string& getValueString() const; void setValue(const Atom&& v); bool isValid() const; bool isDefined() const; bool operator==(const Expression& other) const; /** * \brief is it string, number, compound operation and so on */ enum { INVALID, COMPOUND, IDENT, NUMBER, STRING, BINDING } __state = INVALID; /** * \brief Valid for compound State. Holds type of compound operator */ Operator op; /** * \brief Unique id to identify expression within syntax tree */ unsigned int id; /** * \brief Exact meaning depends on particular instruction * \details As an example, named lists/structs hold field names in bindings */ std::vector bindings; /** * \brief Holds child instructions as arguments */ std::vector operands; /** * \brief Holds type of instruction's result */ TypeAnnotation type; /** * \brief Holds additional annotations */ mutable std::map tags; /** * \brief Child code blocks * \details For example, If statement holds TRUE-branch as first and FALSE-branch as second block here */ std::list blocks; private: std::string __valueS; double __valueD; static unsigned int nextVacantId; }; bool operator<(const Expression&, const Expression&); template void Expression::addBindings(InputIt paramsBegin, InputIt paramsEnd) { size_t index = bindings.size(); std::transform(paramsBegin, paramsEnd, std::inserter(bindings, bindings.end()), [&index, this] (const Atom atom) { std::string key = atom.get(); return key; }); } typedef std::list ExpressionList; enum class TagModifier { NONE, ASSERT, REQUIRE }; enum class DomainAnnotation { FUNCTION, VARIABLE }; class RuleArguments : public std::vector> { public: void add(const Atom& name, DomainAnnotation typ); }; class RuleGuards : public std::vector { public: void add(Expression&& e); }; class TranscendLayer; class LLVMLayer; class MetaRuleAbstract { public: MetaRuleAbstract(RuleArguments&& args, RuleGuards&& guards); virtual ~MetaRuleAbstract(); virtual void compile(TranscendLayer& layer) = 0; protected: RuleArguments __args; RuleGuards __guards; }; class RuleWarning : public MetaRuleAbstract { friend class TranscendLayer; public: RuleWarning(RuleArguments&& args, RuleGuards&& guards, Expression&& condition, Atom&& message); virtual void compile(TranscendLayer& layer); ~RuleWarning(); private: std::string __message; Expression __condition; }; typedef unsigned int VNameId; namespace versions { typedef int VariableVersion; const VariableVersion VERSION_NONE = -2; const VariableVersion VERSION_INIT = 0; } template<> struct AttachmentsDict { typedef versions::VariableVersion Data; static const unsigned int key = 6; }; struct ScopedSymbol { VNameId id; versions::VariableVersion version; static const ScopedSymbol RetSymbol; }; struct Symbol { ScopedSymbol identifier; const CodeScope * scope; }; struct ASTSite { unsigned int id; Expression getDefinition() const; //static Ast registerSite(const Expression& e); }; struct IdentifierSymbol{}; struct ExprAlias_A{}; struct ExprId_A{}; template<> struct AttachmentsDict { typedef Symbol Data; static const unsigned int key = 7; }; template<> struct AttachmentsDict { typedef Symbol Data; static const unsigned int key = 9; }; template<> struct AttachmentsDict{ typedef Expression Data; static const unsigned int key = 12; }; typedef std::pair Tag; bool operator<(const ScopedSymbol& s1, const ScopedSymbol& s2); bool operator==(const ScopedSymbol& s1, const ScopedSymbol& s2); bool operator<(const Symbol& s1, const Symbol& s2); bool operator==(const Symbol& s1, const Symbol& s2); bool operator< (const ASTSite& s1, const ASTSite& s2); /** * \brief AST node to represent a single code block/a scope of visibility * * Holds a single expression as a `body` along with set of variable assignments(declarations) used in body's expression. * \sa xreate::AST */ class CodeScope { friend class Function; friend class PassManager; public: CodeScope(CodeScope* parent = 0); ~CodeScope(); /** \brief Set expression as a body */ void setBody(const Expression& body); /** \brief Returns current code scope body */ const Expression& getBody() const; /** \brief Adds variable definition to be used in body as well as in other declarations */ Symbol addDefinition(Expression&& var, Expression&& body); /** \brief Returns symbols' definition */ static const Expression& getDefinition(const Symbol& symbol, bool flagAllowUndefined = false); const Expression& getDefinition(const ScopedSymbol& symbol, bool flagAllowUndefined = false) const; /** \brief Adds variable defined elsewhere */ void addBinding(Expression&& var, Expression&& argument, const VNameId hintBindingId = 0); std::vector __bindings; std::map __identifiers; CodeScope* __parent; //TODO move __definitions to SymbolsAttachments data //NOTE: definition of return type has index 0 std::unordered_map __declarations; std::vector tags; std::vector contextRules; bool trackExternalSymbs = false; std::set boundExternalSymbs; private: ScopedSymbol registerIdentifier(const Expression& identifier, const VNameId hintBindingId = 0); public: bool recognizeIdentifier(const Expression& identE); ScopedSymbol findSymbolByAlias(const std::string& alias); }; /** * \brief AST node to represent a single function * * Holds an `__entry` entry code scope along with `guard` to denote the different specializations. * \sa xreate::AST */ class Function { friend class Expression; friend class CodeScope; friend class AST; public: Function(const Atom& name); /** * \brief Adds function arguments */ void addBinding(Atom && name, Expression&& argument, const VNameId hintBindingId=0); /** * \brief Adds additional function annotations */ void addTag(Expression&& tag, const TagModifier mod); const std::string& getName() const; const std::map& getTags() const; CodeScope* getEntryScope() const; CodeScope* __entry; std::string __name; Expression guard; private: std::map __tags; }; class ExternData; typedef Expanded ExpandedType; struct TypeInferred{}; template<> struct AttachmentsDict { typedef ExpandedType Data; static const unsigned int key = 11; }; enum ASTInterface { CFA, DFA, Extern, Adhoc }; struct FunctionSpecialization { std::string guard; size_t id; }; struct FunctionSpecializationQuery { std::unordered_set context; }; template<> struct AttachmentsId{ static unsigned int getId(const Expression& expression){ return expression.id; } }; template<> struct AttachmentsId{ static unsigned int getId(const Symbol& s){ return s.scope->__declarations.at(s.identifier).id; } }; template<> struct AttachmentsId{ static unsigned int getId(const ManagedFnPtr& f){ const Symbol symbolFunction{ScopedSymbol::RetSymbol, f->getEntryScope()}; return AttachmentsId::getId(symbolFunction); } }; template<> struct AttachmentsId{ static unsigned int getId(const CodeScope* scope){ const Symbol symbolScope{ScopedSymbol::RetSymbol, scope}; return AttachmentsId::getId(symbolScope); } }; template<> struct AttachmentsId{ static unsigned int getId(const unsigned int id){ return id; } }; class TypeResolver; enum class IntrinsicFn { ARR_INIT, - REC_FIELDS + REC_FIELDS, + CON_KEYS }; namespace details { namespace inconsistent { /** * \brief AST in an inconsistent form during construction * * Represents AST under construction(**inconsistent state**). * \attention Clients should use rather xreate::AST unless client's code explicitly works with Syntax Tree during construction. * * Typically an instance is created by xreate::XreateManager only and filled out by the parser * \sa xreate::XreateManager::prepare(std::string&&) */ class AST { friend class xreate::TypeResolver; public: AST(); /** * \brief Adds new function to AST * \param f Function to register */ void add(Function* f); /** * \brief Adds new declarative rule to AST * \param r Declarative Rule */ void add(MetaRuleAbstract* r); /** \brief Registers new code block */ ManagedScpPtr add(CodeScope* scope); /** * \brief Add new type to AST * @param t Type definition * @param alias Typer name */ void add(TypeAnnotation t, Atom alias); /** \brief Current module's name */ std::string getModuleName(); /** * \brief Looks for function with given name * \param name Function name to find * \note Requires that only one function exists under given name * \return Found function */ ManagedPtr findFunction(const std::string& name); /** \brief Returns all function in AST */ std::list getAllFunctions() const; /** * \brief Returns all specializations of a function with a given name * \param fnName function to find * \return list of found function specializations */ std::list getFnSpecializations(const std::string& fnName) const; /** * \return First element in Functions/Scopes/Rules list depending on template parameter * \tparam Target either Function or CodeScope or MetaRuleAbstract */ template ManagedPtr begin(); /** * \brief Performs all necessary steps after AST is built * * Performs all finalization steps and moves AST into consistent state represented by xreate::AST * \sa xreate::AST * \return AST in consistent state */ xreate::AST* finalize(); typedef std::multimap FUNCTIONS_REGISTRY; //std::list __externdata; std::list __dfadata; //TODO move to more appropriate place std::list __rawImports; //TODO move to more appropriate place std::multimap __interfacesData; //TODO CFA data here. private: std::vector __rules; std::vector __functions; std::vector __scopes; FUNCTIONS_REGISTRY __dictFunctions; protected: std::map __registryTypes; public: /** * \brief Stores DFA scheme for later use by DFA Pass * * Treats expression as a DFA scheme and feeds to the DFA Pass later * \param data DFA Scheme * \sa xreate::DFAPass */ void addDFAData(Expression&& data); /** \brief Stores data for later use by xreate::ExternLayer */ void addExternData(ExternData&& entry); /** * \brief Generalized function to store particular data for later use by particular pass * \param interface Particular Interface * \param data Particular data */ void addInterfaceData(const ASTInterface& interface, Expression&& data); /**\name Symbols Recognition */ ///@{ public: //TODO revisit enums/variants, move to codescope /** * \brief Tries to find out whether expression is Variant constructor */ bool recognizeVariantConstructor(Expression& function); Atom recognizeVariantConstructor(Atom ident); /** * \brief Postpones unrecognized identifier for future second round of recognition * \param scope Code block identifier is encountered * \param id Identifier */ void postponeIdentifier(CodeScope* scope, const Expression& id); /** \brief Second round of identifiers recognition done right after AST is fully constructed */ void recognizePostponedIdentifiers(); void recognizeIntrinsic(Expression& fn) const; private: std::map> __registryVariants; static std::map __registryIntrinsics; std::set> __bucketUnrecognizedIdentifiers; static void initIntrinsics(); public: ///@} }; template<> ManagedPtr AST::begin(); template<> ManagedPtr AST::begin(); template<> ManagedPtr AST::begin(); } } // namespace details::incomplete /** * \brief AST in a consistent state * * AST has two mutually exclusive possible states: * - an inconsistent state while AST is under construction. Represented by xreate::details::inconsistent::AST * - a consistent state when AST is built and finalize() is invoked. * * This class represents a consistent state and should be used by clients unless client's code explicitly works with AST under construction. * Consistent AST enables access to additional functions(such as type management). * \sa xreate::details::inconsistent::AST */ class AST : public details::inconsistent::AST { public: AST() : details::inconsistent::AST() {} /** * \brief Computes fully expanded form of type by substituting all arguments and aliases * \param t Type to expand * \return Expdanded or normal form of type * \sa TypeAnnotation */ ExpandedType expandType(const TypeAnnotation &t) const; /** * Searches type by given name * \param name Typename to search * \return Expanded or normal form of desired type * \note if type name is not found returns new undefined type with this name */ ExpandedType findType(const std::string& name); /** * Invokes Type Inference Analysis to find out expanded(normal) form expressions's type * \sa typeinference.h * \param e * \param expectedT expected type * \return Type of expression */ ExpandedType getType(const Expression& e, const TypeAnnotation& expectedT = TypeAnnotation()); }; } #endif // AST_H diff --git a/cpp/src/aux/latereasoning.h b/cpp/src/aux/latereasoning.h index e6ba460..457456d 100644 --- a/cpp/src/aux/latereasoning.h +++ b/cpp/src/aux/latereasoning.h @@ -1,91 +1,91 @@ /* * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * Author: pgess * Created on June 2, 2018, 1:08 PM */ /** * \file src/aux/latereasoning.h * \brief Late reasoning support */ #ifndef LATEREASONING_H #define LATEREASONING_H #include "transcendlayer.h" namespace xreate{ namespace latereasoning{ /** \brief Represents Late Annotation, i.e. an annotation with late or runtime defined parameters*/ struct LateAnnotation{ LateAnnotation(){} LateAnnotation(const Gringo::Symbol& symbolStatic); std::list, Gringo::Symbol>> guardedContent; std::list guardKeys; boost::optional select(const std::list& keys, AST* root, TranscendLayer* transcend) const; }; /** \brief Represents a group of all late annotations attached to a specific target */ struct LateAnnotationsGroup{ std::unordered_map annotations; }; typedef std::map LateModel; /** * \brief Decorates \ref TranscendLayer to support late annotations processing * \extends TranscendLayer */ template class LateReasoningTranscendDecorator: public Parent{ public: const LateAnnotationsGroup& queryLate(const std::string& alias) const{ static LateAnnotationsGroup groupInvalid; if(!__modelLate.count(alias)) return groupInvalid; return __modelLate.at(alias); } protected: virtual bool processSolution(Gringo::Model const &model) override{ const std::string& atomLateStatement = "late"; for(const Gringo::Symbol& atom: model.atoms(clingo_show_type_atoms)){ std::string atomName(atom.name().c_str()); if(atomName == atomLateStatement){ //late atom's format: (Target, (tuple of keys), (tuple of values), late-annotation) auto atomLate = TranscendLayer::parse, std::list, Gringo::Symbol>(atom); - const std::string& atomAlias = std::get<3>(atomLate).name().c_str(); + std::string atomAlias = std::get<3>(atomLate).name().c_str(); addLateAtom(atomAlias, std::get<0>(atomLate), std::get<3>(atomLate), std::get<1>(atomLate), std::get<2>(atomLate)); } } return Parent::processSolution(model); } private: std::map __modelLate; void addLateAtom(const std::string& alias, const Gringo::Symbol& annId, const Gringo::Symbol& content, const std::list& guardKeys, const std::list& guardValues){ LateAnnotationsGroup& group = __modelLate[alias]; LateAnnotation& annotation = group.annotations[annId]; if (annotation.guardedContent.empty()){ annotation.guardKeys = guardKeys; } annotation.guardedContent.push_back(std::make_pair(guardValues, content)); } }; }} // end of xreate::latereasoning #endif /* LATEREASONING_H */ diff --git a/cpp/src/compilation/containers.cpp b/cpp/src/compilation/containers.cpp index f0882b2..f71c4fd 100644 --- a/cpp/src/compilation/containers.cpp +++ b/cpp/src/compilation/containers.cpp @@ -1,368 +1,374 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * File: containers.cpp * Author: pgess */ /** * \file compilation/containers.h * \brief Containers compilation support. See [Containers](/d/concepts/containers/) in the Xreate's documentation. */ #include "compilation/containers.h" #include "compilation/targetinterpretation.h" #include "aux/expressions.h" #include "compilation/containers/arrays.h" #include "compilation/lambdas.h" #include "analysis/predefinedanns.h" #include "analysis/utils.h" using namespace std; namespace xreate { namespace containers{ ImplementationType IContainersIR::getImplementation(const Expression& aggrE, AST* ast){ auto manPredefined = analysis::PredefinedAnns::instance(); const Expression& hintE = analysis::findAnnByType(aggrE, ExpandedType(manPredefined.hintsContT), ast); assert(hintE.isValid()); return (ImplementationType ) hintE.getValueDouble(); } IContainersIR * IContainersIR::create(const Expression &aggrE, const TypeAnnotation &expectedT, const compilation::Context &context){ ExpandedType aggrT = context.pass->man->root->getType(aggrE, expectedT); Expression aggr2E; if (aggrE.__state == Expression::IDENT && !aggrE.tags.size()){ Symbol aggrS = Attachments::get(aggrE); aggr2E = CodeScope::getDefinition(aggrS); } else { aggr2E = aggrE; } switch(aggr2E.op){ case Operator::LIST:{ typehints::ArrayHint aggrHint = typehints::find( aggr2E, typehints::ArrayHint{aggr2E.operands.size()} ); return new ArrayIR(aggrT, aggrHint, context); } default: typehints::ArrayHint aggrHint = typehints::find( aggr2E, typehints::ArrayHint{0} ); assert(aggrHint.size != 0); return new ArrayIR(aggrT, aggrHint, context); } assert(false); return nullptr; } llvm::Type* IContainersIR::getRawType(const Expression& aggrE, const ExpandedType& aggrT, LLVMLayer* llvm){ auto manPredefined = analysis::PredefinedAnns::instance(); const Expression& hintE = analysis::findAnnByType(aggrE, ExpandedType(manPredefined.hintsContT), llvm->ast); assert(hintE.isValid()); return getRawTypeByHint(hintE, aggrT, llvm); } llvm::Type* IContainersIR::getRawTypeByHint(const Expression& hintE, const ExpandedType& aggrT, LLVMLayer* llvm) { ImplementationType hintImpl = (ImplementationType ) hintE.getValueDouble(); switch (hintImpl){ case SOLID: { typehints::ArrayHint hint = typehints::parse(hintE); return ArrayIR::getRawType(aggrT, hint, llvm); } case ON_THE_FLY:{ typehints::FlyHint hint = typehints::parse(hintE); return FlyIR::getRawType(aggrT, hint, llvm); } case RANGE: { return RangeIR::getRawType(aggrT, llvm); } } assert(false); return nullptr; } llvm::Value * RecordIR::init(llvm::StructType *tyAggr){ return llvm::UndefValue::get(tyAggr); } llvm::Value* RecordIR::init(std::forward_list fields){ std::vector fieldsVec(fields.begin(), fields.end()); llvm::ArrayRef fieldsArr(fieldsVec); llvm::StructType* resultTR = llvm::StructType::get(__context.pass->man->llvm->llvmContext, fieldsArr, false); return init(resultTR); } llvm::Value * RecordIR::update(llvm::Value *aggrRaw, const ExpandedType &aggrT, const Expression &updE){ interpretation::InterpretationScope *scopeI12n = __context.pass->targetInterpretation->transformContext(__context); TypesHelper helper(__context.pass->man->llvm); const auto &fields = helper.getRecordFields(aggrT); std::map indexFields; for(size_t i = 0, size = fields.size(); i < size; ++i){ indexFields.emplace(fields[i], i); } for(const auto &entry: reprListAsDict(updE)){ unsigned keyId; std::string keyHint; const Expression keyE = scopeI12n->process(entry.first); switch(keyE.__state){ case Expression::STRING: keyId = indexFields.at(keyE.getValueString()); keyHint = keyE.getValueString(); break; case Expression::NUMBER: keyId = keyE.getValueDouble(); keyHint = aggrT->fields.at(keyId); break; default: assert(false); break; } const TypeAnnotation &valueT = aggrT->__operands.at(keyId); llvm::Value *valueRaw = __context.scope->process(entry.second, keyHint, valueT); aggrRaw = __context.pass->man->llvm->irBuilder.CreateInsertValue( aggrRaw, valueRaw, keyId); } return aggrRaw; } llvm::Value* FlyIR::init(llvm::Value* sourceRaw, CodeScope* body, const std::string& hintAlias){ RecordIR recordIR(__context); compilation::LambdaIR lambdaIR(__context.pass); llvm::Function* fnTransform = lambdaIR.compile(body, hintAlias); llvm::Value* resultRaw = recordIR.init({ sourceRaw->getType(), fnTransform->getFunctionType()->getPointerTo() }); resultRaw = __context.pass->man->llvm->irBuilder.CreateInsertValue( resultRaw, sourceRaw, 0); resultRaw = __context.pass->man->llvm->irBuilder.CreateInsertValue( resultRaw, fnTransform, 1); return resultRaw; } llvm::Type* FlyIR::getRawType(const ExpandedType& aggrT, const typehints::FlyHint& hint, LLVMLayer* llvm){ assert(aggrT->__operator == TypeOperator::ARRAY); TypesHelper types(llvm); llvm::Type* sourceTRaw = IContainersIR::getRawTypeByHint(hint.hintSrc, aggrT, llvm); llvm::Type* elTRaw = llvm->toLLVMType(ExpandedType(aggrT->__operands.at(0))); llvm::Type* resultTRaw = types.getPreferredIntTy(); llvm::Type* fnTnsfTRaw = llvm::FunctionType::get(resultTRaw, llvm::ArrayRef(elTRaw), false); std::vector fieldsVec = { sourceTRaw, fnTnsfTRaw->getPointerTo() }; llvm::ArrayRef fieldsArr(fieldsVec); llvm::StructType* resultTR = llvm::StructType::get(llvm->llvmContext, fieldsArr, false); return resultTR; } llvm::Value* FlyIR::getTransformFn(llvm::Value* aggrRaw){ LLVMLayer* llvm = __context.pass->man->llvm; llvm::Value* fnRaw = llvm->irBuilder.CreateExtractValue(aggrRaw, llvm::ArrayRef{1}); return fnRaw; } llvm::Value* FlyIR::getSourceAggr(llvm::Value* aggrRaw){ LLVMLayer* llvm = __context.pass->man->llvm; return llvm->irBuilder.CreateExtractValue(aggrRaw, llvm::ArrayRef{0}); } llvm::Value* FlyIR::operatorMap(const Expression& expr, const std::string& hintAlias){ const Expression& sourceE = expr.getOperands().at(0); llvm::Value* sourceRaw = __context.scope->process(sourceE); CodeScope* loopS = expr.blocks.front(); return init(sourceRaw, loopS, hintAlias); } FlyIR::FlyIR(typehints::FlyHint hint, compilation::Context context) : __hint(hint), __context(context){} IFwdIteratorIR* IFwdIteratorIR::createByHint(const Expression& hintE, const ExpandedType& aggrT, const compilation::Context& context){ ImplementationType hintType = (ImplementationType) hintE.getValueDouble(); switch(hintType){ case SOLID:{ ArrayIR compiler(aggrT, typehints::parse(hintE), context); return new FwdIteratorIR(compiler); } case ON_THE_FLY:{ return new FwdIteratorIR(typehints::parse(hintE), aggrT, context); } case RANGE: { return new FwdIteratorIR(context); } default: break; } assert(false); return nullptr; } IFwdIteratorIR* IFwdIteratorIR::create(const Expression& aggrE, const ExpandedType& aggrT, const compilation::Context& context){ auto manPredefined = analysis::PredefinedAnns::instance(); const Expression& hintE = analysis::findAnnByType( aggrE, ExpandedType(manPredefined.hintsContT), context.pass->man->root ); assert(hintE.isValid()); return createByHint(hintE, aggrT, context); } llvm::Value* FwdIteratorIR::begin(llvm::Value* aggrRaw) { std::unique_ptr itSrcIR(IFwdIteratorIR::createByHint(__hint.hintSrc, __aggrT, __context)); FlyIR compilerFly(__hint, __context); llvm::Value* aggrSrcRaw = compilerFly.getSourceAggr(aggrRaw); return itSrcIR->begin(aggrSrcRaw); } llvm::Value* FwdIteratorIR::end(llvm::Value* aggrRaw) { std::unique_ptr itSrcIR(IFwdIteratorIR::createByHint(__hint.hintSrc, __aggrT, __context)); FlyIR compilerFly(__hint, __context); llvm::Value* aggrSrcRaw = compilerFly.getSourceAggr(aggrRaw); return itSrcIR->end(aggrSrcRaw); } llvm::Value* FwdIteratorIR::advance(llvm::Value* idxRaw, const std::string& hintAlias){ std::unique_ptr itSrcIR(IFwdIteratorIR::createByHint(__hint.hintSrc, __aggrT, __context)); return itSrcIR->advance(idxRaw, hintAlias); } llvm::Value* FwdIteratorIR::get(llvm::Value* aggrRaw, llvm::Value *idxRaw, const std::string &hintAlias){ std::unique_ptr srcIterIR(IFwdIteratorIR::createByHint(__hint.hintSrc, __aggrT, __context)); FlyIR compilerFly(__hint, __context); llvm::Value* aggrSrcRaw = compilerFly.getSourceAggr(aggrRaw); llvm::Value* valueSrcRaw = srcIterIR->get(aggrSrcRaw, idxRaw); FlyIR flyIR(__hint, __context); llvm::Value* fnTnsfRaw = flyIR.getTransformFn(aggrRaw); llvm::Type* fnTnsfTRawRaw = llvm::cast(fnTnsfRaw->getType())->getElementType(); llvm::FunctionType* fnTnsfTRaw = llvm::cast(fnTnsfTRawRaw); compilation::BruteFnInvocation fnTnsfInvoc(fnTnsfRaw, fnTnsfTRaw, __context.pass->man->llvm); return fnTnsfInvoc({valueSrcRaw}, hintAlias); } llvm::Value* -RangeIR::init(const Expression& aggrE, const ExpandedType& aggrT, const std::string& hintAlias){ - assert(aggrE.op == Operator::LIST_RANGE); - assert(aggrE.operands.size()==2); - +RangeIR::create(const ExpandedType& aggrT, llvm::Value* valueFromRaw, llvm::Value* valueToRaw){ RecordIR recordIR(__context); LLVMLayer* llvm = __context.pass->man->llvm; llvm::Value* aggrRaw = recordIR.init(getRawType(aggrT, llvm)); - llvm::Value* valueFromRaw = __context.scope->process(aggrE.operands.at(0)); - llvm::Value* valueToRaw = __context.scope->process(aggrE.operands.at(1)); aggrRaw = llvm->irBuilder.CreateInsertValue(aggrRaw, valueFromRaw, 0); aggrRaw = llvm->irBuilder.CreateInsertValue(aggrRaw, valueToRaw, 1); return aggrRaw; } +llvm::Value* +RangeIR::init(const Expression& aggrE, const ExpandedType& aggrT, const std::string& hintAlias){ + assert(aggrE.op == Operator::LIST_RANGE); + assert(aggrE.operands.size()==2); + + llvm::Value* valueFromRaw = __context.scope->process(aggrE.operands.at(0)); + llvm::Value* valueToRaw = __context.scope->process(aggrE.operands.at(1)); + + return create(aggrT, valueFromRaw, valueToRaw); +} + llvm::Value* RangeIR::getValueFrom(llvm::Value* aggrRaw){ LLVMLayer* llvm = __context.pass->man->llvm; return llvm->irBuilder.CreateExtractValue(aggrRaw, llvm::ArrayRef{0}); } llvm::Value* RangeIR::getValueTo(llvm::Value* aggrRaw){ LLVMLayer* llvm = __context.pass->man->llvm; return llvm->irBuilder.CreateExtractValue(aggrRaw, llvm::ArrayRef{1}); } llvm::StructType* RangeIR::getRawType(const ExpandedType& aggrT, LLVMLayer* llvm){ assert(aggrT->__operator == TypeOperator::ARRAY); ExpandedType elT(aggrT->__operands.at(0)); llvm::Type* elRawT = llvm->toLLVMType(elT); std::vector fieldsVec = {elRawT, elRawT}; llvm::ArrayRef fieldsArr(fieldsVec); llvm::StructType* rangeRawT = llvm::StructType::get(llvm->llvmContext, fieldsArr, false); return rangeRawT; } llvm::Value* FwdIteratorIR::begin(llvm::Value* aggrRaw){ RangeIR compiler(__context); return compiler.getValueFrom(aggrRaw); } llvm::Value* FwdIteratorIR::end(llvm::Value* aggrRaw){ RangeIR compiler(__context); return compiler.getValueTo(aggrRaw); } llvm::Value* FwdIteratorIR::get(llvm::Value* aggrRaw, llvm::Value *idxRaw, const std::string &hintAlias){ return idxRaw; } llvm::Value* FwdIteratorIR::advance(llvm::Value* idxRaw, const std::string& hintAlias) { LLVMLayer* llvm = __context.pass->man->llvm; TypesHelper types(llvm); llvm::Type* intT = types.getPreferredIntTy(); return llvm->irBuilder.CreateAdd(idxRaw, llvm::ConstantInt::get(intT, 1), hintAlias); } }} //end of xreate::containers diff --git a/cpp/src/compilation/containers.h b/cpp/src/compilation/containers.h index 40d73b9..1c919ed 100644 --- a/cpp/src/compilation/containers.h +++ b/cpp/src/compilation/containers.h @@ -1,140 +1,141 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * File: containers.h * Author: pgess */ #ifndef CODEINSTRUCTIONS_H #define CODEINSTRUCTIONS_H #include "ast.h" #include "llvmlayer.h" #include "pass/compilepass.h" #include "compilation/control.h" #include "query/containers.h" #include "analysis/typehints.h" namespace xreate { namespace containers { class IFwdIteratorIR; class IContainersIR{ public: static IContainersIR *create( const Expression &aggrE, const TypeAnnotation &expectedT, const compilation::Context &context); + virtual ~IContainersIR(){} static ImplementationType getImplementation(const Expression& aggrE, AST* ast); static llvm::Type* getRawType(const Expression& aggrE, const ExpandedType& aggrT, LLVMLayer* llvm); static llvm::Type* getRawTypeByHint(const Expression& hintE, const ExpandedType& aggrT, LLVMLayer* llvm); - virtual llvm::Value *init(const std::string &hintAlias = "") = 0; - virtual llvm::Value *update(llvm::Value *aggrRaw, const Expression &updE, const std::string &hintAlias) = 0; virtual IFwdIteratorIR* getFwdIterator() = 0; - virtual ~IContainersIR(){} + virtual llvm::Value *init(const std::string &hintAlias = "") = 0; + virtual llvm::Value *update(llvm::Value *aggrRaw, const Expression &updE, const std::string &hintAlias) = 0; + virtual llvm::Value* keys(llvm::Value* aggrRaw, const std::string &hintAlias = "") { return nullptr; } }; class RecordIR{ public: RecordIR(const compilation::Context& context): __context(context){} llvm::Value* init(llvm::StructType* tyAggr); llvm::Value* init(std::forward_list fields); llvm::Value* update(llvm::Value* aggrRaw, const ExpandedType& aggrT, const Expression& updE); private: compilation::Context __context; }; /** * \brief A factory to create a concrete iterator based on the solution provided by xreate::containers::Query * \sa xreate::containers::Query */ class IFwdIteratorIR{ public : virtual ~IFwdIteratorIR(){}; virtual llvm::Value* begin(llvm::Value* aggrRaw) = 0; virtual llvm::Value* end(llvm::Value* aggrRaw) = 0; virtual llvm::Value* get(llvm::Value* aggrRaw, llvm::Value *idxRaw, const std::string &hintAlias="") = 0; virtual llvm::Value* advance(llvm::Value* idxRaw, const std::string& hintAlias="") = 0; static IFwdIteratorIR* create(const Expression& aggrE, const ExpandedType& aggrT, const compilation::Context& context); static IFwdIteratorIR* createByHint(const Expression& hintE, const ExpandedType& aggrT, const compilation::Context& context); }; template class FwdIteratorIR; class FlyIR{ public: FlyIR(typehints::FlyHint hint, compilation::Context context); llvm::Value* init(llvm::Value* sourceRaw, CodeScope* body, const std::string& hintAlias); llvm::Value* getSourceAggr(llvm::Value* aggrRaw); llvm::Value* getTransformFn(llvm::Value* aggrRaw); llvm::Value* operatorMap(const Expression& expr, const std::string& hintAlias); static llvm::Type *getRawType(const ExpandedType& aggrT, const typehints::FlyHint& hint, LLVMLayer* llvm); private: typehints::FlyHint __hint; compilation::Context __context; }; /** \brief The lazy container implementation. * * Represents computation on the fly. * \sa xreate::containers::IFwdIteratorIR, \sa xreate::containers::Query */ template<> class FwdIteratorIR : public IFwdIteratorIR { public: FwdIteratorIR(typehints::FlyHint hint, const ExpandedType &aggrT, compilation::Context context) : __aggrT(aggrT), __hint(hint), __context(context){} virtual llvm::Value* begin(llvm::Value* aggrRaw) override; virtual llvm::Value* end(llvm::Value* aggrRaw) override; virtual llvm::Value* get(llvm::Value* aggrRaw, llvm::Value *idxRaw, const std::string &hintAlias="") override; virtual llvm::Value* advance(llvm::Value* idxRaw, const std::string& hintAlias="") override; private: ExpandedType __aggrT; typehints::FlyHint __hint; compilation::Context __context; }; class RangeIR{ public: RangeIR(const compilation::Context& ctx): __context(ctx){} llvm::Value* getValueFrom(llvm::Value* aggrRaw); llvm::Value* getValueTo(llvm::Value* aggrRaw); static llvm::StructType* getRawType(const ExpandedType& aggrT, LLVMLayer* llvm); llvm::Value* init(const Expression& aggrE, const ExpandedType& aggrT, const std::string& hintAlias=""); - + llvm::Value* create(const ExpandedType& aggrT, llvm::Value* valueFromRaw, llvm::Value* valueToRaw); private: compilation::Context __context; }; template<> class FwdIteratorIR: public IFwdIteratorIR { public: FwdIteratorIR(compilation::Context ctx): __context(ctx){} virtual llvm::Value* begin(llvm::Value* aggrRaw) override; virtual llvm::Value* end(llvm::Value* aggrRaw) override; virtual llvm::Value* get(llvm::Value* aggrRaw, llvm::Value *idxRaw, const std::string &hintAlias="") override; virtual llvm::Value* advance(llvm::Value* idxRaw, const std::string& hintAlias="") override; private: compilation::Context __context; }; }} //end of xreate::containers #endif //CODEINSTRUCTIONS_H diff --git a/cpp/src/compilation/containers/arrays.cpp b/cpp/src/compilation/containers/arrays.cpp index b0c03f2..5cd0ce7 100644 --- a/cpp/src/compilation/containers/arrays.cpp +++ b/cpp/src/compilation/containers/arrays.cpp @@ -1,167 +1,179 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * File: arrays.cpp * Author: pgess * * Created in March 2020. */ #include "compilation/containers/arrays.h" #include "aux/expressions.h" using namespace std; using namespace llvm; namespace xreate { namespace containers{ llvm::PointerType* ArrayIR::getRawType(const ExpandedType& aggrT, const typehints::ArrayHint& hint, LLVMLayer* llvm){ assert(aggrT->__operator == TypeOperator::ARRAY); assert(aggrT->__operands.size() == 1); llvm::Type* elRawT = llvm->toLLVMType(ExpandedType(aggrT->__operands.at(0))); return llvm::ArrayType::get(elRawT, hint.size)->getPointerTo(); } llvm::Value* ArrayIR::init(const string& hintAlias){ LLVMLayer* llvm = __context.pass->man->llvm; TypesHelper helper(llvm); llvm::PointerType* aggrRawT = getRawType(__aggrT, __hint, __context.pass->man->llvm); //llvm::Value* aggrLengthRaw = ConstantInt::get(helper.getPreferredIntTy(), aggrInfo.size); llvm::Value* aggrRaw = llvm->irBuilder.CreateAlloca(aggrRawT->getElementType(), nullptr, hintAlias); return aggrRaw; } llvm::Value* ArrayIR::update(llvm::Value* aggrRaw, const Expression& updE, const std::string& hintAlias) { LLVMLayer* llvm = __context.pass->man->llvm; TypesHelper helper(llvm); llvm::IntegerType* intT = helper.getPreferredIntTy(); llvm::Value* idxZeroRaw = ConstantInt::get(intT, 0); llvm::PointerType* aggrRawT = getRawType(__aggrT, __hint, __context.pass->man->llvm); const TypeAnnotation& elT = __aggrT->__operands.at(0); //llvm::Type* elTRaw = llvm->toLLVMType(ExpandedType(aggrT->__operands.at(0))); for (const auto& entry: reprListAsDict(updE)){ llvm::Value* keyRaw = __context.scope->process(entry.first); llvm::Value* elRaw = __context.scope->process(entry.second, "", elT); llvm::Value* elLoc = llvm->irBuilder.CreateGEP( aggrRawT->getElementType(), aggrRaw, ArrayRef(std::vector{idxZeroRaw, keyRaw})); llvm->irBuilder.CreateStore(elRaw, elLoc) ; } return aggrRaw; } llvm::Value* ArrayIR::get(llvm::Value* aggrRaw, std::vector idxL, const std::string& hintAlias) { LLVMLayer* llvm = __context.pass->man->llvm; TypesHelper helper(llvm); llvm::IntegerType* intT = helper.getPreferredIntTy(); llvm::Value* zeroRaw = ConstantInt::get(intT, 0); idxL.insert(idxL.begin(), zeroRaw); llvm::Value *pEl = llvm->irBuilder.CreateGEP(aggrRaw, llvm::ArrayRef(idxL)); return llvm->irBuilder.CreateLoad(pEl, hintAlias); } llvm::Value* ArrayIR::operatorMap(const Expression& expr, const std::string& hintAlias) { assert(false); return nullptr; //EXPAND_CONTEXT UNUSED(scope); // //initializationcompileListAsSolidArray // Symbol symbolIn = Attachments::get(expr.getOperands()[0]); // // ImplementationRec implIn = containers::Query::queryImplementation(symbolIn).extract(); // impl of input list // size_t size = implIn.size; // CodeScope* scopeLoop = expr.blocks.front(); // std::string varEl = scopeLoop->__bindings[0]; // // IFwdIteratorIR* it = IFwdIteratorIR::create(context, symbolIn); // llvm::Value *rangeFrom = it->begin(); // llvm::Value *rangeTo = it->end(); // // //definitions // ArrayType* tyNumArray = nullptr; //(ArrayType*) (llvm->toLLVMType(ExpandedType(TypeAnnotation(tag_array, TypePrimitive::Int, size)))); // llvm::IRBuilder<> &builder = llvm->irBuilder; // // llvm::BasicBlock *blockLoop = llvm::BasicBlock::Create(llvm->llvmContext, "loop", function->raw); // llvm::BasicBlock *blockBeforeLoop = builder.GetInsertBlock(); // llvm::BasicBlock *blockAfterLoop = llvm::BasicBlock::Create(llvm->llvmContext, "postloop", function->raw); // Value* dataOut = llvm->irBuilder.CreateAlloca(tyNumArray, ConstantInt::get(tyNum, size), NAME("map")); // // // * initial check // Value* condBefore = builder.CreateICmpSLE(rangeFrom, rangeTo); // builder.CreateCondBr(condBefore, blockLoop, blockAfterLoop); // // // create PHI: // builder.SetInsertPoint(blockLoop); // llvm::PHINode *stateLoop = builder.CreatePHI(tyNum, 2, "mapIt"); // stateLoop->addIncoming(rangeFrom, blockBeforeLoop); // // // loop body: // Value* elIn = it->get(stateLoop, varEl); // compilation::IBruteScope* scopeLoopUnit = function->getBruteScope(scopeLoop); // scopeLoopUnit->bindArg(elIn, move(varEl)); // Value* elOut = scopeLoopUnit->compile(); // Value *pElOut = builder.CreateGEP(dataOut, ArrayRef(std::vector{ConstantInt::get(tyNum, 0), stateLoop})); // builder.CreateStore(elOut, pElOut); // // //next iteration preparing // Value *stateLoopNext = builder.CreateAdd(stateLoop, llvm::ConstantInt::get(tyNum, 1)); // stateLoop->addIncoming(stateLoopNext, builder.GetInsertBlock()); // // //next iteration checks: // Value* condAfter = builder.CreateICmpSLE(stateLoopNext, rangeTo); // builder.CreateCondBr(condAfter, blockLoop, blockAfterLoop); // // //finalization: // builder.SetInsertPoint(blockAfterLoop); // // return dataOut; } +llvm::Value* +ArrayIR::keys(llvm::Value* aggrRaw, const std::string &hintAlias){ + TypesHelper helper(__context.pass->man->llvm); + RangeIR compiler(__context); + + llvm::Type* intRawT = helper.getPreferredIntTy(); + llvm::Value* keyBeginRaw = llvm::ConstantInt::get(intRawT, 0); + llvm::Value* keyEndRaw = llvm::ConstantInt::get(intRawT, __hint.size); + + return compiler.create(__aggrT, keyBeginRaw, keyEndRaw); +} + IFwdIteratorIR* ArrayIR::getFwdIterator(){ return new FwdIteratorIR(*this); } llvm::Value * FwdIteratorIR::begin(llvm::Value* aggrRaw){ TypesHelper helper(__compiler.__context.pass->man->llvm); llvm::IntegerType* intT = helper.getPreferredIntTy(); return llvm::ConstantInt::get(intT, 0); } llvm::Value * FwdIteratorIR::end(llvm::Value* aggrRaw){ TypesHelper helper(__compiler.__context.pass->man->llvm); llvm::IntegerType* intT = helper.getPreferredIntTy(); size_t size = __compiler.__hint.size; return llvm::ConstantInt::get(intT, size); } llvm::Value * FwdIteratorIR::get(llvm::Value* aggrRaw, llvm::Value *idxRaw, const std::string &hintAlias){ return __compiler.get(aggrRaw, {idxRaw}, hintAlias); } llvm::Value * FwdIteratorIR::advance(llvm::Value *idxRaw, const std::string &hintAlias){ LLVMLayer* llvm = __compiler.__context.pass->man->llvm; TypesHelper helper(llvm); llvm::IntegerType* intT = helper.getPreferredIntTy(); llvm::Value* cnstOneRaw = llvm::ConstantInt::get(intT, 1); return llvm->irBuilder.CreateAdd(idxRaw, cnstOneRaw, hintAlias); } }} //xreate::containers \ No newline at end of file diff --git a/cpp/src/compilation/containers/arrays.h b/cpp/src/compilation/containers/arrays.h index f8aa251..77c6586 100644 --- a/cpp/src/compilation/containers/arrays.h +++ b/cpp/src/compilation/containers/arrays.h @@ -1,63 +1,65 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * File: arrays.h * Author: pgess * * Created in March 2020. */ #ifndef XREATE_ARRAYSIR_H #define XREATE_ARRAYSIR_H #include "compilation/containers.h" namespace xreate { namespace containers{ class IFwdIteratorIR; /** \brief The contiguous container implementation. * * Represents contiguous in memory(array) implementation. * \sa xreate::containers::IFwdIteratorIR, \sa xreate::containers::Query */ class ArrayIR : public IContainersIR{ friend class FwdIteratorIR; public: ArrayIR(const ExpandedType &aggrT, const typehints::ArrayHint &hints, const compilation::Context &context) : __context(context), __aggrT(aggrT), __hint(hints){} virtual llvm::Value *init(const std::string &hintAlias = "") override; virtual llvm::Value *update(llvm::Value *aggrRaw, const Expression &updE, const std::string &hintAlias) override; - virtual IFwdIteratorIR* getFwdIterator() override; + virtual llvm::Value* keys(llvm::Value* aggrRaw, const std::string &hintAlias = "") override; + llvm::Value *get(llvm::Value *aggrRaw, std::vector idxL, const std::string &hintAlias); + virtual IFwdIteratorIR* getFwdIterator() override; static llvm::PointerType *getRawType(const ExpandedType& aggrT, const typehints::ArrayHint& hint, LLVMLayer* llvm); /** \brief `loop map` statement compilation*/ llvm::Value* operatorMap(const Expression& expr, const std::string& hintAlias); private: compilation::Context __context; ExpandedType __aggrT; typehints::ArrayHint __hint; }; template<> class FwdIteratorIR: public IFwdIteratorIR { public: FwdIteratorIR(const ArrayIR& arraysIR): __compiler(arraysIR) {}; virtual llvm::Value* begin(llvm::Value* aggrRaw) override; virtual llvm::Value* end(llvm::Value* aggrRaw) override; virtual llvm::Value* get(llvm::Value* aggrRaw, llvm::Value *idxRaw, const std::string &hintAlias="") override; virtual llvm::Value* advance(llvm::Value* idxRaw, const std::string& hintAlias="") override; private: ArrayIR __compiler; }; }} // xreate::containers #endif //XREATE_ARRAYSIR_H diff --git a/cpp/src/compilation/intrinsics.cpp b/cpp/src/compilation/intrinsics.cpp index c8582ba..1ca85b6 100644 --- a/cpp/src/compilation/intrinsics.cpp +++ b/cpp/src/compilation/intrinsics.cpp @@ -1,58 +1,75 @@ //March 2020 #include "compilation/intrinsics.h" +#include "compilation/containers.h" #include "analysis/utils.h" #include "llvmlayer.h" using namespace std; namespace xreate{ namespace compilation{ llvm::Value* IntrinsicCompiler::compile(const Expression& e, const Context& context, const std::string& hintAlias){ switch ((IntrinsicFn) e.getValueDouble()){ case IntrinsicFn::ARR_INIT:{ return nullptr; // const ExpandedType& typAggr = context.pass->man->root->getType(e); // llvm::Type* typAggrRaw = context.pass->man->llvm->toLLVMType(typAggr); // llvm::Value* lengthRaw = context.scope->process(e.operands.at(0)); // // ContainerInst engine(context); // return engine.array_init(lengthRaw, typAggrRaw); } + case IntrinsicFn::CON_KEYS: + return con_keys(e, context, hintAlias); + default: break; } assert(false); return nullptr; } Expression IntrinsicCompiler::interpret(const Expression& e){ switch ((IntrinsicFn) e.getValueDouble()){ case IntrinsicFn::REC_FIELDS: { return rec_fields(e); } default: break; } assert(false); return Expression(); } Expression IntrinsicCompiler::rec_fields(const Expression& e){ TypesHelper helper(__man->llvm); assert(e.operands.size() == 1); const Expression argTypeE = e.operands.at(0); assert(argTypeE.__state == Expression::STRING); const string& argTypeS = argTypeE.getValueString(); const ExpandedType argTypeT = __man->root->findType(argTypeS); const auto& fields = helper.getRecordFields(argTypeT); return analysis::representVecStr(fields); } +llvm::Value* +IntrinsicCompiler::con_keys(const Expression& e, const Context& context, const std::string& hintAlias){ + const Expression& aggrE = e.operands.at(0); + const ExpandedType& aggrT = context.pass->man->root->getType(aggrE); + llvm::Value* aggrRaw = context.scope->process(aggrE); + + std::unique_ptr compiler(containers::IContainersIR::create( + aggrE, aggrT.get(), context + )); + + return compiler->keys(aggrRaw, hintAlias); +} + }} \ No newline at end of file diff --git a/cpp/src/compilation/intrinsics.h b/cpp/src/compilation/intrinsics.h index 98f3c42..78f235d 100644 --- a/cpp/src/compilation/intrinsics.h +++ b/cpp/src/compilation/intrinsics.h @@ -1,26 +1,27 @@ //March 2020 #ifndef XREATE_INTRINSICS_H #define XREATE_INTRINSICS_H #include "ast.h" #include "pass/compilepass.h" namespace llvm { class Value; } namespace xreate{ namespace compilation{ class IntrinsicCompiler{ public: IntrinsicCompiler(PassManager* manager): __man(manager){}; llvm::Value* compile(const Expression& e, const Context& context, const std::string& hintAlias); Expression interpret(const Expression& e); private: PassManager* __man; Expression rec_fields(const Expression& e); + llvm::Value* con_keys(const Expression& e, const Context& context, const std::string& hintAlias); }; }} #endif //XREATE_INTRINSICS_H diff --git a/cpp/src/compilation/targetinterpretation.cpp b/cpp/src/compilation/targetinterpretation.cpp index d6f93b9..90e7491 100644 --- a/cpp/src/compilation/targetinterpretation.cpp +++ b/cpp/src/compilation/targetinterpretation.cpp @@ -1,646 +1,646 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * File: targetinterpretation.cpp * Author: pgess * * Created on June 29, 2016, 6:45 PM */ /** * \file targetinterpretation.h * \brief Interpretation support. See more details on [Interpretation](/d/concepts/interpretation/) */ #include "compilation/targetinterpretation.h" #include "pass/interpretationpass.h" #include "analysis/typeinference.h" #include "llvmlayer.h" #include "compilation/decorators.h" #include "compilation/i12ninst.h" #include "compilation/intrinsics.h" #include #include #include using namespace std; using namespace xreate::compilation; namespace xreate{ namespace interpretation{ const Expression EXPRESSION_FALSE = Expression(Atom(0)); const Expression EXPRESSION_TRUE = Expression(Atom(1)); CodeScope* InterpretationScope::processOperatorIf(const Expression& expression) { const Expression& exprCondition = process(expression.getOperands()[0]); if (exprCondition == EXPRESSION_TRUE) { return expression.blocks.front(); } return expression.blocks.back(); } CodeScope* InterpretationScope::processOperatorSwitch(const Expression& expression) { const Expression& exprCondition = process(expression.operands[0]); bool flagHasDefault = expression.operands[1].op == Operator::CASE_DEFAULT; //TODO check that one and only one case variant is appropriate for (size_t size = expression.operands.size(), i = flagHasDefault ? 2 : 1; i < size; ++i) { const Expression& exprCase = process(expression.operands[i]); if (function->getScope((const CodeScope*) exprCase.blocks.front())->processScope() == exprCondition) { return exprCase.blocks.back(); } } if (flagHasDefault) { const Expression& exprCaseDefault = expression.operands[1]; return exprCaseDefault.blocks.front(); } assert(false && "Switch has no appropriate variant"); return nullptr; } CodeScope* InterpretationScope::processOperatorSwitchVariant(const Expression& expression) { const ExpandedType& conditionT = function->__pass->man->root->getType(expression.operands.at(0)); const Expression& conditionE = process(expression.operands.at(0)); assert(conditionE.op == Operator::VARIANT); const string& aliasS = expression.bindings.front(); unsigned caseExpectedId = (int) conditionE.getValueDouble(); auto itFoundValue = std::find_if(++expression.operands.begin(), expression.operands.end(), [caseExpectedId](const auto& caseActualE){ return (unsigned) caseActualE.getValueDouble() == caseExpectedId; }); assert(itFoundValue != expression.operands.end()); int caseScopeId = itFoundValue - expression.operands.begin() - 1; auto caseScopeRef = expression.blocks.begin(); std::advance(caseScopeRef, caseScopeId); InterpretationScope* scopeI12n = function->getScope(*caseScopeRef); if(conditionE.operands.size()) { Expression valueE(Operator::LIST, {}); valueE.operands = conditionE.operands; valueE.bindings = conditionT->__operands.at(caseExpectedId).fields; scopeI12n->overrideBindings({ {valueE, aliasS} }); }; return *caseScopeRef; } llvm::Value* InterpretationScope::processLate(const InterpretationOperator& op, const Expression& expression, const Context& context, const std::string& hintAlias) { switch(op) { case IF_INTERPRET_CONDITION: { CodeScope* scopeResult = processOperatorIf(expression); llvm::Value* result = context.function->getBruteScope(scopeResult)->compile(); return result; } case SWITCH_INTERPRET_CONDITION: { CodeScope* scopeResult = processOperatorSwitch(expression); llvm::Value* result = context.function->getBruteScope(scopeResult)->compile(); return result; } case SWITCH_VARIANT: { CodeScope* scopeResult = processOperatorSwitchVariant(expression); const Expression& condCrudeE = expression.operands.at(0); const Expression& condE = process(condCrudeE); const string identCondition = expression.bindings.front(); auto scopeCompilation = Decorators::getInterface( context.function->getBruteScope(scopeResult)); if(condE.operands.size()) { //override value Symbol symbCondition{ScopedSymbol{scopeResult->__identifiers.at(identCondition), versions::VERSION_NONE}, scopeResult}; scopeCompilation->overrideDeclarations({ {symbCondition, Expression(condE.operands.at(0))}} ); //set correct type for binding: const ExpandedType& typeVariant = function->__pass->man->root->getType(condCrudeE); int conditionIndex = condE.getValueDouble(); ScopedSymbol symbolInternal = scopeResult->findSymbolByAlias(identCondition); scopeResult->__declarations[symbolInternal].bindType(typeVariant->__operands.at(conditionIndex)); } llvm::Value* result = context.function->getBruteScope(scopeResult)->compile(); return result; } case SWITCH_LATE: { return nullptr; // latereasoning::LateReasoningCompiler compiler(dynamic_cast(this->function), context); // return compiler.processSwitchLateStatement(expression, ""); } case FOLD_INTERPRET_INPUT: { //initialization const Expression& containerE = process(expression.getOperands().at(0)); const TypeAnnotation& accumT = expression.type; assert(containerE.op == Operator::LIST); CodeScope* bodyScope = expression.blocks.front(); const string& elAlias = expression.bindings[0]; Symbol elS{ScopedSymbol{bodyScope->__identifiers.at(elAlias), versions::VERSION_NONE}, bodyScope}; const std::string& accumAlias = expression.bindings[1]; llvm::Value* accumRaw = context.scope->process(expression.getOperands().at(1), accumAlias, accumT); InterpretationScope* bodyI12n = function->getScope(bodyScope); auto bodyBrute = Decorators::getInterface(context.function->getBruteScope(bodyScope)); const std::vector& containerVec = containerE.getOperands(); for(size_t i = 0; i < containerVec.size(); ++i) { const Expression& elE = containerVec[i]; bodyI12n->overrideBindings({ {elE, elAlias} }); bodyBrute->overrideDeclarations({ {elS, elE} }); //resets bodyBrute bodyBrute->bindArg(accumRaw, string(accumAlias)); accumRaw = bodyBrute->compile(); } return accumRaw; } // case FOLD_INF_INTERPRET_INOUT: // { // } //TODO refactor as InterpretationCallStatement class case CALL_INTERPRET_PARTIAL: { const std::string &calleeName = expression.getValueString(); IBruteScope* scopeUnitSelf = context.scope; ManagedFnPtr callee = this->function->__pass->man->root->findFunction(calleeName); const I12nFunctionSpec& calleeData = FunctionInterpretationHelper::getSignature(callee); std::vector argsActual; PIFnSignature sig; sig.declaration = callee; for(size_t no = 0, size = expression.operands.size(); no < size; ++no) { const Expression& op = expression.operands[no]; if (calleeData.signature.at(no) == INTR_ONLY) { sig.bindings.push_back(process(op)); continue; } argsActual.push_back(scopeUnitSelf->process(op)); } TargetInterpretation* man = dynamic_cast (this->function->__pass); PIFunction* pifunction = man->getFunction(move(sig)); llvm::Function* raw = pifunction->compile(); boost::scoped_ptr statement(new BruteFnInvocation(raw, man->pass->man->llvm)); return (*statement)(move(argsActual)); } case QUERY_LATE: { return nullptr; // return IntrinsicQueryInstruction( // dynamic_cast(this->function)) // .processLate(expression, context); } default: break; } assert(false && "Unknown late interpretation operator"); return nullptr; } llvm::Value* InterpretationScope::compile(const Expression& expression, const Context& context, const std::string& hintAlias) { - const InterpretationData& data = Attachments::get(expression); + InterpretationData data = Attachments::get(expression); if (data.op != InterpretationOperator::NONE) { return processLate(data.op, expression, context, hintAlias); } Expression result = process(expression); return context.scope->process(result, hintAlias); } Expression InterpretationScope::process(const Expression& expression) { #ifndef NDEBUG if (expression.tags.count("bpoint")) { std::raise(SIGINT); } #endif PassManager* man = function->__pass->man; switch (expression.__state) { case Expression::INVALID: assert(false); case Expression::NUMBER: case Expression::STRING: return expression; case Expression::IDENT: { Symbol s = Attachments::get(expression); return Parent::processSymbol(s); } case Expression::COMPOUND: break; default: assert(false); } switch (expression.op) { case Operator::EQU: { const Expression& left = process(expression.operands[0]); const Expression& right = process(expression.operands[1]); if (left == right) return EXPRESSION_TRUE; return EXPRESSION_FALSE; } case Operator::NE: { const Expression& left = process(expression.operands[0]); const Expression& right = process(expression.operands[1]); if (left == right) return EXPRESSION_FALSE; return EXPRESSION_TRUE; } case Operator::LOGIC_AND: { assert(expression.operands.size() == 1); return process (expression.operands[0]); } // case Operator::LOGIC_OR: case Operator::CALL: { const std::string &fnName = expression.getValueString(); ManagedFnPtr fnAst = man->root->findFunction(fnName); InterpretationFunction* fnUnit = this->function->__pass->getFunction(fnAst); vector args; args.reserve(expression.getOperands().size()); for(size_t i = 0, size = expression.getOperands().size(); i < size; ++i) { args.push_back(process(expression.getOperands()[i])); } return fnUnit->process(args); } case Operator::CALL_INTRINSIC: { const Expression& opCallIntrCrude = expression; vector argsActual; argsActual.reserve(opCallIntrCrude.getOperands().size()); for(const auto& op: opCallIntrCrude.getOperands()) { argsActual.push_back(process(op)); } Expression opCallIntr(Operator::CALL_INTRINSIC, {}); opCallIntr.setValueDouble(opCallIntrCrude.getValueDouble()); opCallIntr.operands = argsActual; compilation::IntrinsicCompiler compiler(man); return compiler.interpret(opCallIntr); } case Operator::QUERY: { return Expression(); // return IntrinsicQueryInstruction(dynamic_cast(this->function)) // .process(expression); } case Operator::QUERY_LATE: { assert(false && "Can't be interpretated"); return Expression(); } case Operator::IF: { CodeScope* scopeResult = processOperatorIf(expression); return function->getScope(scopeResult)->processScope(); } case Operator::SWITCH: { CodeScope* scopeResult = processOperatorSwitch(expression); return function->getScope(scopeResult)->processScope(); } case Operator::SWITCH_VARIANT: { CodeScope* scopeResult = processOperatorSwitchVariant(expression); return function->getScope(scopeResult)->processScope(); } case Operator::VARIANT: { Expression result{Operator::VARIANT, {}}; result.setValueDouble(expression.getValueDouble()); for(const Expression& op: expression.operands){ result.operands.push_back(process(op)); } return result; } case Operator::INDEX: { Expression aggrE = process(expression.operands[0]); for (size_t keyId = 1; keyId < expression.operands.size(); ++keyId) { const Expression& keyE = process(expression.operands[keyId]); if (keyE.__state == Expression::STRING) { const string& fieldExpectedS = keyE.getValueString(); unsigned fieldId; for(fieldId = 0; fieldId < aggrE.bindings.size(); ++fieldId){ if (aggrE.bindings.at(fieldId) == fieldExpectedS){break;} } assert(fieldId < aggrE.bindings.size()); aggrE = Expression(aggrE.operands.at(fieldId)); continue; } if (keyE.__state == Expression::NUMBER) { int opId = keyE.getValueDouble(); aggrE = Expression(aggrE.operands.at(opId)); continue; } assert(false && "Inappropriate key"); } return aggrE; } case Operator::FOLD: { const Expression& exprInput = process(expression.getOperands()[0]); const Expression& exprInit = process(expression.getOperands()[1]); const std::string& argEl = expression.bindings[0]; const std::string& argAccum = expression.bindings[1]; InterpretationScope* body = function->getScope(expression.blocks.front()); Expression accum = exprInit; for(size_t size = exprInput.getOperands().size(), i = 0; i < size; ++i) { body->overrideBindings({ {exprInput.getOperands()[i], argEl}, {accum, argAccum} }); accum = body->processScope(); } return accum; } case Operator::LIST: case Operator::LIST_RANGE: { Expression result(expression.op,{}); result.operands.resize(expression.operands.size()); result.bindings = expression.bindings; int keyId = 0; for(const Expression& opCurrent : expression.operands) { result.operands[keyId++] = process(opCurrent); } return result; } // case Operator::MAP: { // break; // } default: break; } return expression; } InterpretationFunction* TargetInterpretation::getFunction(IBruteFunction* unit) { if (__dictFunctionsByUnit.count(unit)) { return __dictFunctionsByUnit.at(unit); } InterpretationFunction* f = new InterpretationFunction(unit->getASTFn(), this); __dictFunctionsByUnit.emplace(unit, f); assert(__functions.emplace(unit->getASTFn().id(), f).second); return f; } PIFunction* TargetInterpretation::getFunction(PIFnSignature&& sig) { auto f = __pifunctions.find(sig); if (f != __pifunctions.end()) { return f->second; } PIFunction* result = new PIFunction(PIFnSignature(sig), __pifunctions.size(), this); __pifunctions.emplace(move(sig), result); assert(__dictFunctionsByUnit.emplace(result->fnRaw, result).second); return result; } InterpretationScope* TargetInterpretation::transformContext(const Context& c) { return this->getFunction(c.function)->getScope(c.scope->scope); } llvm::Value* TargetInterpretation::compile(const Expression& expression, const Context& ctx, const std::string& hintAlias) { return transformContext(ctx)->compile(expression, ctx, hintAlias); } InterpretationFunction::InterpretationFunction(const ManagedFnPtr& function, Target* target) : Function(function, target) { } Expression InterpretationFunction::process(const std::vector& args) { InterpretationScope* body = getScope(__function->__entry); list> bindings; for(size_t i = 0, size = args.size(); i < size; ++i) { bindings.push_back(make_pair(args.at(i), body->scope->__bindings.at(i))); } body->overrideBindings(bindings); return body->processScope(); } // Partial function interpretation typedef BasicBruteFunction BruteFunction; class PIBruteFunction : public BruteFunction{ public: PIBruteFunction(ManagedFnPtr f, std::set&& arguments, size_t id, CompilePass* p) : BruteFunction(f, p), argumentsActual(move(arguments)), __id(id) { } virtual std::string prepareName() override { return BruteFunction::prepareName() + "_" + std::to_string(__id); } protected: std::vector prepareSignature() override { LLVMLayer* llvm = BruteFunction::pass->man->llvm; AST* ast = BruteFunction::pass->man->root; CodeScope* entry = IBruteFunction::__entry; std::vector signature; for(size_t no : argumentsActual) { VNameId argId = entry->__identifiers.at(entry->__bindings.at(no)); ScopedSymbol arg{argId, versions::VERSION_NONE}; signature.push_back(llvm->toLLVMType(ast->expandType(entry->__declarations.at(arg).type))); } return signature; } llvm::Function::arg_iterator prepareBindings() override{ CodeScope* entry = IBruteFunction::__entry; IBruteScope* entryCompilation = BruteFunction::getBruteScope(entry); llvm::Function::arg_iterator fargsI = BruteFunction::raw->arg_begin(); for(size_t no : argumentsActual) { ScopedSymbol arg{entry->__identifiers.at(entry->__bindings.at(no)), versions::VERSION_NONE}; entryCompilation->bindArg(&*fargsI, arg); fargsI->setName(entry->__bindings.at(no)); ++fargsI; } return fargsI; } private: std::set argumentsActual; size_t __id; } ; PIFunction::PIFunction(PIFnSignature&& sig, size_t id, TargetInterpretation* target) : InterpretationFunction(sig.declaration, target), instance(move(sig)) { const I12nFunctionSpec& functionData = FunctionInterpretationHelper::getSignature(instance.declaration); std::set argumentsActual; for (size_t no = 0, size = functionData.signature.size(); no < size; ++no) { if (functionData.signature.at(no) != INTR_ONLY) { argumentsActual.insert(no); } } fnRaw = new PIBruteFunction(instance.declaration, move(argumentsActual), id, target->pass); CodeScope* entry = instance.declaration->__entry; auto entryUnit = Decorators::getInterface<>(fnRaw->getEntry()); InterpretationScope* entryIntrp = InterpretationFunction::getScope(entry); list> bindingsPartial; list> declsPartial; for(size_t no = 0, sigNo = 0, size = entry->__bindings.size(); no < size; ++no) { if(functionData.signature.at(no) == INTR_ONLY) { bindingsPartial.push_back({instance.bindings[sigNo], entry->__bindings[no]}); VNameId argId = entry->__identifiers.at(entry->__bindings[no]); Symbol argSymbol{ScopedSymbol {argId, versions::VERSION_NONE}, entry}; declsPartial.push_back({argSymbol, instance.bindings[sigNo]}); ++sigNo; } } entryIntrp->overrideBindings(bindingsPartial); entryUnit->overrideDeclarations(declsPartial); } llvm::Function* PIFunction::compile() { llvm::Function* raw = fnRaw->compile(); return raw; } bool operator<(const PIFnSignature& lhs, const PIFnSignature& rhs) { if (lhs.declaration.id() != rhs.declaration.id()) { return lhs.declaration.id() < rhs.declaration.id(); } return lhs.bindings < rhs.bindings; } bool operator<(const PIFnSignature& lhs, PIFunction * const rhs) { return lhs < rhs->instance; } bool operator<(PIFunction * const lhs, const PIFnSignature& rhs) { return lhs->instance < rhs; } } } /** \class xreate::interpretation::InterpretationFunction * * Holds list of xreate::interpretation::InterpretationScope 's focused on interpretation of individual code scopes * * There is particulat subclass PIFunction intended to represent partially interpreted functions. *\sa TargetInterpretation, [Interpretation Concept](/d/concepts/interpretation/) */ /** \class xreate::interpretation::TargetInterpretation * * TargetInterpretation is executed during compilation and is intended to preprocess eligible for interpretation parts of a source code. * * Keeps a list of InterpretationFunction / PIFunction that represent interpretation for an individual functions. * * There is \ref InterpretationScopeDecorator that embeds interpretation to an overall compilation process. * \sa InterpretationPass, compilation::Target, [Interpretation Concept](/d/concepts/interpretation/) * */ diff --git a/cpp/src/pass/compilepass.cpp b/cpp/src/pass/compilepass.cpp index 4ab33f7..60d53ec 100644 --- a/cpp/src/pass/compilepass.cpp +++ b/cpp/src/pass/compilepass.cpp @@ -1,909 +1,911 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * Author: pgess */ /** * \file compilepass.h * \brief Main compilation routine. See \ref xreate::CompilePass */ #include "compilepass.h" #include "transcendlayer.h" #include "ast.h" #include "llvmlayer.h" #include "compilation/decorators.h" #include "compilation/pointers.h" #include "analysis/typeinference.h" #include "compilation/control.h" #include "compilation/demand.h" +#include "compilation/intrinsics.h" #include "analysis/resources.h" + #ifdef XREATE_ENABLE_EXTERN #include "ExternLayer.h" #endif #include "compilation/containers.h" #include "compilation/containers/arrays.h" #ifndef XREATE_CONFIG_MIN #include "query/containers.h" #include "pass/versionspass.h" #include "compilation/targetinterpretation.h" #endif #include #include using namespace std; using namespace llvm; using namespace xreate::typehints; using namespace xreate::containers; namespace xreate{ namespace compilation{ #define DEFAULT(x) (hintAlias.empty()? x: hintAlias) std::string BasicBruteFunction::prepareName() { AST* ast = IBruteFunction::pass->man->root; string name = ast->getFnSpecializations(__function->__name).size() > 1 ? __function->__name + std::to_string(__function.id()) : __function->__name; return name; } std::vector BasicBruteFunction::prepareSignature() { CodeScope* entry = __function->__entry; return getScopeSignature(entry); } llvm::Type* BasicBruteFunction::prepareResult() { LLVMLayer* llvm = IBruteFunction::pass->man->llvm; AST* ast = IBruteFunction::pass->man->root; CodeScope* entry = __function->__entry; const Expression retE = entry->__declarations.at(ScopedSymbol::RetSymbol); const ExpandedType& retT = ast->getType(retE); return llvm->toLLVMType(retT, retE); } llvm::Function::arg_iterator BasicBruteFunction::prepareBindings() { CodeScope* entry = __function->__entry; IBruteScope* entryCompilation = IBruteFunction::getBruteScope(entry); llvm::Function::arg_iterator fargsI = IBruteFunction::raw->arg_begin(); for (std::string &arg : entry->__bindings) { ScopedSymbol argid{entry->__identifiers[arg], versions::VERSION_NONE}; entryCompilation->bindArg(&*fargsI, argid); fargsI->setName(arg); ++fargsI; } return fargsI; } void BasicBruteFunction::applyAttributes(){} IBruteScope::IBruteScope(const CodeScope * const codeScope, IBruteFunction* f, CompilePass* compilePass) : pass(compilePass), function(f), scope(codeScope), lastBlockRaw(nullptr) { } llvm::Value* BruteFnInvocation::operator()(std::vector&& args, const std::string& hintDecl) { if (__calleeTy) { auto argsFormalT = __calleeTy->params(); size_t sizeArgsF = __calleeTy->getNumParams(); assert(args.size() >= sizeArgsF); assert(__calleeTy->isVarArg() || args.size() == sizeArgsF); auto argFormalT = argsFormalT.begin(); for(size_t argId = 0; argId < args.size(); ++argId){ if(argFormalT != argsFormalT.end()){ args[argId] = typeinference::doAutomaticTypeConversion( args.at(argId), *argFormalT, llvm->irBuilder); ++argFormalT; } } } //Do not name function call that returns Void. std::string hintName = (!__calleeTy->getReturnType()->isVoidTy()) ? hintDecl : ""; return llvm->irBuilder.CreateCall(__calleeTy, __callee, args, hintName); } llvm::Value* HiddenArgsFnInvocation::operator() (std::vector&& args, const std::string& hintDecl) { args.insert(args.end(), __args.begin(), __args.end()); return __parent->operator ()(std::move(args), hintDecl); } class CallStatementInline : public IFnInvocation{ public: CallStatementInline(IBruteFunction* caller, IBruteFunction* callee, LLVMLayer* l) : __caller(caller), __callee(callee), llvm(l) { } llvm::Value* operator()(std::vector&& args, const std::string& hintDecl) { return nullptr; } private: IBruteFunction* __caller; IBruteFunction* __callee; LLVMLayer* llvm; bool isInline() { // Symbol ret = Symbol{0, function->__entry}; // bool flagOnTheFly = SymbolAttachments::get(ret, false); //TODO consider inlining return false; } } ; BasicBruteScope::BasicBruteScope(const CodeScope * const codeScope, IBruteFunction* f, CompilePass* compilePass) : IBruteScope(codeScope, f, compilePass) { } llvm::Value* BasicBruteScope::processSymbol(const Symbol& s, std::string hintRetVar) { Expression declaration = CodeScope::getDefinition(s); const CodeScope* scopeExternal = s.scope; IBruteScope* scopeBruteExternal = IBruteScope::function->getBruteScope(scopeExternal); assert(scopeBruteExternal->lastBlockRaw); llvm::Value* resultRaw; llvm::BasicBlock* blockOwn = pass->man->llvm->irBuilder.GetInsertBlock(); if (scopeBruteExternal->lastBlockRaw == blockOwn) { resultRaw = scopeBruteExternal->process(declaration, hintRetVar); scopeBruteExternal->lastBlockRaw = lastBlockRaw = pass->man->llvm->irBuilder.GetInsertBlock(); } else { pass->man->llvm->irBuilder.SetInsertPoint(scopeBruteExternal->lastBlockRaw); resultRaw = scopeBruteExternal->processSymbol(s, hintRetVar); pass->man->llvm->irBuilder.SetInsertPoint(blockOwn); } return resultRaw; } IFnInvocation* BasicBruteScope::findFunction(const Expression& opCall) { const std::string& calleeName = opCall.getValueString(); LLVMLayer* llvm = pass->man->llvm; const std::list& specializations = pass->man->root->getFnSpecializations(calleeName); #ifdef XREATE_ENABLE_EXTERN //if no specializations registered - check external function if (specializations.size() == 0) { llvm::Function* external = llvm->layerExtern->lookupFunction(calleeName); llvm::outs() << "Debug/External function: " << calleeName; external->getType()->print(llvm::outs(), true); llvm::outs() << "\n"; return new BruteFnInvocation(external, llvm); } #endif //There should be only one specialization without any valid guards at this point return new BruteFnInvocation(pass->getBruteFn( pass->man->root->findFunction(calleeName))->compile(), llvm); } //DISABLEDFEATURE transformations // if (pass->transformations->isAcceptable(expr)){ // return pass->transformations->transform(expr, result, ctx); // } llvm::Value* BasicBruteScope::process(const Expression& expr, const std::string& hintAlias, const TypeAnnotation& expectedT) { llvm::Value *leftRaw; llvm::Value *rightRaw; LLVMLayer& l = *pass->man->llvm; Context ctx{this, function, pass}; xreate::compilation::ControlIR controlIR = xreate::compilation::ControlIR({this, function, pass}); switch (expr.op) { case Operator::ADD: case Operator::SUB: case Operator::MUL: case Operator::MOD: case Operator::DIV: case Operator::EQU: case Operator::LSS: case Operator::GTR: case Operator::NE: case Operator::LSE: case Operator::GTE: assert(expr.__state == Expression::COMPOUND); assert(expr.operands.size() == 2); leftRaw = process(expr.operands.at(0)); rightRaw = process(expr.operands.at(1)); break; default:; } switch (expr.op) { case Operator::AND: { assert(expr.operands.size()); llvm::Value* resultRaw = process(expr.operands.at(0)); if (expr.operands.size() == 1) return resultRaw; for(size_t i=1; i< expr.operands.size()-1; ++i){ resultRaw = l.irBuilder.CreateAnd(resultRaw, process(expr.operands.at(i))); } return l.irBuilder.CreateAnd(resultRaw, process(expr.operands.at(expr.operands.size()-1)), hintAlias); } case Operator::OR: { assert(expr.operands.size()); llvm::Value* resultRaw = process(expr.operands.at(0)); if (expr.operands.size() == 1) return resultRaw; for(size_t i=1; i< expr.operands.size()-1; ++i){ resultRaw = l.irBuilder.CreateOr(resultRaw, process(expr.operands.at(i))); } return l.irBuilder.CreateOr(resultRaw, process(expr.operands.at(expr.operands.size()-1)), hintAlias); } case Operator::ADD: { return l.irBuilder.CreateAdd(leftRaw, rightRaw, hintAlias); } case Operator::SUB: return l.irBuilder.CreateSub(leftRaw, rightRaw, hintAlias); break; case Operator::MUL: return l.irBuilder.CreateMul(leftRaw, rightRaw, hintAlias); break; case Operator::DIV: if (leftRaw->getType()->isIntegerTy()) return l.irBuilder.CreateSDiv(leftRaw, rightRaw, hintAlias); if (leftRaw->getType()->isFloatingPointTy()) return l.irBuilder.CreateFDiv(leftRaw, rightRaw, hintAlias); break; case Operator::MOD:{ return l.irBuilder.CreateSRem(leftRaw, rightRaw, hintAlias); } case Operator::EQU: { if (leftRaw->getType()->isIntegerTy()) return l.irBuilder.CreateICmpEQ(leftRaw, rightRaw, hintAlias); if (leftRaw->getType()->isFloatingPointTy()) return l.irBuilder.CreateFCmpOEQ(leftRaw, rightRaw, hintAlias); const ExpandedType& leftT = pass->man->root->getType(expr.operands[0]); const ExpandedType& rightT = pass->man->root->getType(expr.operands[1]); if(leftT->__operator == TypeOperator::VARIANT && rightT->__operator == TypeOperator::VARIANT){ llvm::Type* selectorT = llvm::cast(leftRaw->getType())->getElementType(0); llvm::Value* leftUnwapped = typeinference::doAutomaticTypeConversion(leftRaw, selectorT, l.irBuilder); llvm::Value* rightUnwapped = typeinference::doAutomaticTypeConversion(rightRaw, selectorT, l.irBuilder); return l.irBuilder.CreateICmpEQ(leftUnwapped, rightUnwapped, hintAlias); } break; } case Operator::NE: return l.irBuilder.CreateICmpNE(leftRaw, rightRaw, hintAlias); break; case Operator::LSS: return l.irBuilder.CreateICmpSLT(leftRaw, rightRaw, hintAlias); break; case Operator::LSE: return l.irBuilder.CreateICmpSLE(leftRaw, rightRaw, hintAlias); break; case Operator::GTR: return l.irBuilder.CreateICmpSGT(leftRaw, rightRaw, hintAlias); break; case Operator::GTE: return l.irBuilder.CreateICmpSGE(leftRaw, rightRaw, hintAlias); break; case Operator::NEG: { leftRaw = process(expr.operands[0]); ExpandedType leftTy = pass->man->root->getType(expr.operands[0]); if (leftTy->__value == TypePrimitive::Bool){ return l.irBuilder.CreateNot(leftRaw, hintAlias); } else { return l.irBuilder.CreateNeg(leftRaw, hintAlias); } break; } case Operator::CALL: { assert(expr.__state == Expression::COMPOUND); shared_ptr callee(findFunction(expr)); const std::string& nameCallee = expr.getValueString(); //prepare arguments std::vector args; args.reserve(expr.operands.size()); std::transform(expr.operands.begin(), expr.operands.end(), std::inserter(args, args.end()), [this](const Expression & operand) { return process(operand); } ); return (*callee)(move(args), hintAlias); } case Operator::IF: { return controlIR.compileIf(expr, hintAlias); } case Operator::SWITCH: { return controlIR.compileSwitch(expr, hintAlias); } case Operator::LOGIC_AND: { assert(expr.operands.size() == 1); return process(expr.operands[0]); } case Operator::LIST: //init record or array { ExpandedType exprT = l.ast->getType(expr, expectedT); TypesHelper helper(pass->man->llvm); enum {RECORD, ARRAY} kind; if (helper.isArrayT(exprT)){ kind = ARRAY; } else if (helper.isRecordT(exprT)){ kind = RECORD; } else { assert(false && "Inapproriate type"); } #ifdef XREATE_ENABLE_EXTERN if (exprT->__operator == TypeOperator::ALIAS){ if (l.layerExtern->isArrayType(exprT->__valueCustom)){ flagIsArray = true; break; } if (l.layerExtern->isRecordType(exprT->__valueCustom)){ flagIsArray = false; break; } assert(false && "Inapproriate external type"); } #endif switch(kind){ case RECORD:{ const std::vector fieldsFormal = helper.getRecordFields(exprT); containers::RecordIR irRecords(ctx); llvm::StructType *recordTRaw = llvm::cast(l.toLLVMType(exprT)); llvm::Value *resultRaw = irRecords.init(recordTRaw); return irRecords.update(resultRaw, exprT, expr); } case ARRAY: { std::unique_ptr containerIR( containers::IContainersIR::create(expr, expectedT, ctx)); llvm::Value* aggrRaw = containerIR->init(hintAlias); return containerIR->update(aggrRaw, expr, hintAlias); } } break; }; case Operator::LIST_RANGE: { containers::RangeIR compiler(ctx); const ExpandedType& aggrT = pass->man->root->getType(expr); return compiler.init(expr, aggrT, hintAlias); }; case Operator::MAP: { assert(expr.blocks.size()); containers::ImplementationType implType = containers::IContainersIR::getImplementation(expr, pass->man->root); switch(implType){ case containers::ImplementationType::SOLID: { ExpandedType exprT = pass->man->root->getType(expr, expectedT); ArrayHint hint = find(expr, ArrayHint{}); containers::ArrayIR compiler(exprT, hint, ctx); return compiler.operatorMap(expr, hintAlias); } case containers::ImplementationType::ON_THE_FLY:{ FlyHint hint = find(expr, {}); containers::FlyIR compiler(hint, ctx); return compiler.operatorMap(expr, hintAlias); } default: break; } assert(false && "Operator MAP does not support this container impl"); return nullptr; }; case Operator::FOLD: { return controlIR.compileFold(expr, hintAlias); }; case Operator::FOLD_INF: { return controlIR.compileFoldInf(expr, hintAlias); }; case Operator::INDEX: { assert(expr.operands.size() > 1); const Expression& aggrE = expr.operands[0]; const ExpandedType& aggrT = pass->man->root->getType(aggrE); llvm::Value* aggrRaw = process(aggrE); switch (aggrT->__operator) { case TypeOperator::RECORD: { list fieldsList; for(auto opIt = ++expr.operands.begin(); opIt!=expr.operands.end(); ++opIt){ fieldsList.push_back(getIndexStr(*opIt)); } return controlIR.compileStructIndex(aggrRaw, aggrT, fieldsList); }; case TypeOperator::ARRAY: { std::vector indexes; std::transform(++expr.operands.begin(), expr.operands.end(), std::inserter(indexes, indexes.end()), [this] (const Expression & op) { return process(op); } ); std::unique_ptr containersIR( containers::IContainersIR::create(aggrE, expectedT, ctx) ); containers::ArrayIR* arraysIR = static_cast(containersIR.get()); return arraysIR->get(aggrRaw, indexes, hintAlias); }; default: assert(false); } }; - case Operator::CALL_INTRINSIC: - { + case Operator::CALL_INTRINSIC:{ + IntrinsicCompiler compiler(this->pass->man); + return compiler.compile(expr, ctx, hintAlias); + } + // const std::string op = expr.getValueString(); // // if (op == "copy") { // llvm::Value* result = process(expr.getOperands().at(0)); // // auto decoratorVersions = Decorators::getInterface(this); // llvm::Value* storage = decoratorVersions->processIntrinsicInit(result->getType()); // decoratorVersions->processIntrinsicCopy(result, storage); // // return l.irBuilder.CreateLoad(storage, hintAlias); // } - assert(false && "undefined intrinsic"); - } - case Operator::QUERY: case Operator::QUERY_LATE: { assert(false && "Should be processed by interpretation"); } case Operator::VARIANT: { const ExpandedType& typResult = pass->man->root->getType(expr); llvm::Type* typResultRaw = l.toLLVMType(typResult); llvm::Type* typIdRaw = llvm::cast(typResultRaw)->getElementType(0); uint64_t id = expr.getValueDouble(); llvm::Value* resultRaw = llvm::UndefValue::get(typResultRaw); resultRaw = l.irBuilder.CreateInsertValue(resultRaw, llvm::ConstantInt::get(typIdRaw, id), llvm::ArrayRef({0})); const ExpandedType& typVariant = ExpandedType(typResult->__operands.at(id)); llvm::Type* typVariantRaw = l.toLLVMType(typVariant); llvm::Value* variantRaw = llvm::UndefValue::get(typVariantRaw); assert(expr.operands.size() == typVariant->__operands.size() && "Wrong variant arguments count"); if (!typVariant->__operands.size()) return resultRaw; for (unsigned int fieldId = 0; fieldId < expr.operands.size(); ++fieldId) { const ExpandedType& typField = ExpandedType(typVariant->__operands.at(fieldId)); Attachments::put(expr.operands.at(fieldId), typField); llvm::Value* fieldRaw = process(expr.operands.at(fieldId)); assert(fieldRaw); variantRaw = l.irBuilder.CreateInsertValue(variantRaw, fieldRaw, llvm::ArrayRef({fieldId})); } llvm::Type* typStorageRaw = llvm::cast(typResultRaw)->getElementType(1); llvm::Value* addrAsStorage = l.irBuilder.CreateAlloca(typStorageRaw); llvm::Value* addrAsVariant = l.irBuilder.CreateBitOrPointerCast(addrAsStorage, typVariantRaw->getPointerTo()); l.irBuilder.CreateStore(variantRaw, addrAsVariant); llvm::Value* storageRaw = l.irBuilder.CreateLoad(typStorageRaw, addrAsStorage); resultRaw = l.irBuilder.CreateInsertValue(resultRaw, storageRaw, llvm::ArrayRef({1})); return resultRaw; } case Operator::SWITCH_VARIANT: { return controlIR.compileSwitchVariant(expr, hintAlias); } case Operator::SWITCH_LATE: { assert(false && "Instruction's compilation should've been redirected to interpretation"); return nullptr; } case Operator::SEQUENCE: { return controlIR.compileSequence(expr); } case Operator::UNDEF: { llvm::Type* typExprUndef = l.toLLVMType(pass->man->root->getType(expr, expectedT)); return llvm::UndefValue::get(typExprUndef); } case Operator::UPDATE: { TypesHelper helper(pass->man->llvm); containers::RecordIR irRecords(ctx); const Expression& aggrE = expr.operands.at(0); const Expression& updE = expr.operands.at(1); const ExpandedType& aggrT = pass->man->root->getType(aggrE); llvm::Value* aggrRaw = process(aggrE); if (helper.isRecordT(aggrT)){ return irRecords.update(aggrRaw, aggrT, updE); } if (helper.isArrayT(aggrT)){ if (updE.op == Operator::LIST_INDEX){ std::unique_ptr containersIR( containers::IContainersIR::create(aggrE, TypeAnnotation(), ctx )); return containersIR->update(aggrRaw, updE, hintAlias); } } assert(false); return nullptr; } case Operator::INVALID: assert(expr.__state != Expression::COMPOUND); switch (expr.__state) { case Expression::IDENT: { Symbol s = Attachments::get(expr); return processSymbol(s, expr.getValueString()); } case Expression::NUMBER: { llvm::Type* typConst = l.toLLVMType(pass->man->root->getType(expr, expectedT)); int literal = expr.getValueDouble(); if (typConst->isFloatingPointTy()) return llvm::ConstantFP::get(typConst, literal); if (typConst->isIntegerTy()) return llvm::ConstantInt::get(typConst, literal); assert(false && "Can't compile literal"); } case Expression::STRING: { return controlIR.compileConstantStringAsPChar(expr.getValueString(), hintAlias); }; default: { break; } }; break; default: break; } assert(false && "Can't compile expression"); return 0; } llvm::Value* BasicBruteScope::compile(const std::string& hintBlockDecl) { LLVMLayer* llvm = pass->man->llvm; if (!hintBlockDecl.empty()) { llvm::BasicBlock *block = llvm::BasicBlock::Create(llvm->llvmContext, hintBlockDecl, function->raw); pass->man->llvm->irBuilder.SetInsertPoint(block); } lastBlockRaw = pass->man->llvm->irBuilder.GetInsertBlock(); Symbol symbScope = Symbol{ScopedSymbol::RetSymbol, scope}; //set hint for an entry scope string retAlias = (scope->__parent)? "" : function->prepareName(); return processSymbol(symbScope, retAlias); } IBruteScope::~IBruteScope() { } IBruteFunction::~IBruteFunction() { } llvm::Function* IBruteFunction::compile() { if (raw != nullptr) return raw; LLVMLayer* llvm = pass->man->llvm; llvm::IRBuilder<>& builder = llvm->irBuilder; string&& functionName = prepareName(); std::vector&& types = prepareSignature(); llvm::Type* expectedResultType = prepareResult(); llvm::FunctionType *ft = llvm::FunctionType::get(expectedResultType, types, false); raw = llvm::cast(llvm->module->getOrInsertFunction(functionName, ft)); prepareBindings(); applyAttributes(); const std::string& blockName = "entry"; llvm::BasicBlock* blockCurrent = builder.GetInsertBlock(); llvm::Value* result = getBruteScope(__entry)->compile(blockName); assert(result); //SECTIONTAG types/convert function ret value builder.CreateRet(typeinference::doAutomaticTypeConversion(result, expectedResultType, llvm->irBuilder)); if (blockCurrent) { builder.SetInsertPoint(blockCurrent); } llvm->moveToGarbage(ft); return raw; } IBruteScope* IBruteFunction::getBruteScope(const CodeScope * const scope) { if (__scopes.count(scope)) { auto result = __scopes.at(scope).lock(); if (result) { return result.get(); } } std::shared_ptr unit(pass->buildCodeScopeUnit(scope, this)); if (scope->__parent != nullptr) { auto parentUnit = Decorators::getInterface(getBruteScope(scope->__parent)); parentUnit->registerChildScope(unit); } else { __orphanedScopes.push_back(unit); } if (!__scopes.emplace(scope, unit).second) { __scopes[scope] = unit; } return unit.get(); } IBruteScope* IBruteFunction::getScopeUnit(ManagedScpPtr scope) { return getBruteScope(&*scope); } IBruteScope* IBruteFunction::getEntry() { return getBruteScope(__entry); } std::vector IBruteFunction::getScopeSignature(CodeScope* scope){ LLVMLayer* llvm = IBruteFunction::pass->man->llvm; AST* ast = IBruteFunction::pass->man->root; std::vector result; std::transform(scope->__bindings.begin(), scope->__bindings.end(), std::inserter(result, result.end()), [llvm, ast, scope](const std::string & argAlias)->llvm::Type* { assert(scope->__identifiers.count(argAlias)); ScopedSymbol argS{scope->__identifiers.at(argAlias), versions::VERSION_NONE}; const Expression& argE = scope->__declarations.at(argS); const ExpandedType& argT = ast->expandType(argE.type); return llvm->toLLVMType(argT, argE); }); if(scope->trackExternalSymbs){ std::transform(scope->boundExternalSymbs.begin(), scope->boundExternalSymbs.end(), std::inserter(result, result.end()), [llvm, ast](const Symbol& argS){ const Expression& argE = CodeScope::getDefinition(argS); const ExpandedType& argT = ast->expandType(argE.type); return llvm->toLLVMType(argT, argE); }); } return result; } template<> compilation::IBruteFunction* CompilePassCustomDecorators ::buildFunctionUnit(const ManagedFnPtr& function) { return new BruteFunctionDefault(function, this); } template<> compilation::IBruteScope* CompilePassCustomDecorators ::buildCodeScopeUnit(const CodeScope * const scope, IBruteFunction* function) { return new DefaultCodeScopeUnit(scope, function, this); } std::string BasicBruteScope::getIndexStr(const Expression& index){ switch(index.__state){ //named struct field case Expression::STRING: return index.getValueString(); break; //anonymous struct field case Expression::NUMBER: return to_string((int) index.getValueDouble()); break; default: assert(false && "Wrong index for a struct"); } return ""; } } // end of compilation compilation::IBruteFunction* CompilePass::getBruteFn(const ManagedFnPtr& function) { unsigned int id = function.id(); if (!functions.count(id)) { compilation::IBruteFunction* unit = buildFunctionUnit(function); functions.emplace(id, unit); return unit; } return functions.at(id); } void CompilePass::prepare(){ //Initialization: #ifndef XREATE_CONFIG_MIN #endif managerTransformations = new xreate::compilation::TransformationsManager(); targetInterpretation = new interpretation::TargetInterpretation(man, this); } void CompilePass::run() { prepare(); //Determine entry function: StaticModel modelEntry = man->transcend->query(analysis::FN_ENTRY_PREDICATE); if (man->options.requireEntryFn){ assert(modelEntry.size() && "Error: No entry function found"); assert(modelEntry.size() == 1 && "Error: Ambiguous entry function"); } if(modelEntry.size()){ string fnEntryName = std::get<0>(TranscendLayer::parse(modelEntry.begin()->second)); compilation::IBruteFunction* fnEntry = getBruteFn(man->root->findFunction(fnEntryName)); __fnEntryRaw = fnEntry->compile(); } //Compile exterior functions: StaticModel modelExterior = man->transcend->query(analysis::FN_EXTERIOR_PREDICATE); for(const auto entry: modelExterior){ - const string& fnName = std::get<0>(TranscendLayer::parse(entry.second)); + string fnName = std::get<0>(TranscendLayer::parse(entry.second)); getBruteFn(man->root->findFunction(fnName))->compile(); } } llvm::Function* CompilePass::getEntryFunction() { return __fnEntryRaw; } void CompilePass::prepareQueries(TranscendLayer* transcend) { #ifndef XREATE_CONFIG_MIN transcend->registerQuery(new latex::LatexQuery(), QueryId::LatexQuery); #endif transcend->registerQuery(new containers::Query(), QueryId::ContainersQuery); transcend->registerQuery(new demand::DemandQuery(), QueryId::DemandQuery); transcend->registerQuery(new polymorph::PolymorphQuery(), QueryId::PolymorphQuery); } } //end of namespace xreate /** * \class xreate::CompilePass * \brief The owner of the compilation process. Performs fundamental compilation activities along with the xreate::compilation's routines * * xreate::CompilePass traverses over xreate::AST tree and produces executable code. * The pass performs compilation using the following data sources: * - %Attachments: the data gathered by the previous passes. See \ref xreate::Attachments. * - Transcend solutions accessible via queries. See \ref xreate::IQuery, \ref xreate::TranscendLayer. * * The pass generates a bytecode by employing \ref xreate::LLVMLayer(wrapper over LLVM toolchain). * Many compilation activities are delegated to more specific routines. Most notable delegated compilation aspects are: * - Containers support. See \ref xreate::containers. * - Latex compilation. See \ref xreate::latex. * - Interpretation support. See \ref xreate::interpretation. * - Loop saturation support. See \ref xreate::compilation::TransformationsScopeDecorator. * - External code interaction support. See \ref xreate::ExternLayer (wrapper over Clang library). * * \section adaptability_sect Adaptability * xreate::CompilePass's behaviour can be adapted in several ways: * - %Function Decorators to alter function-level compilation. See \ref xreate::compilation::IBruteFunction * - Code Block Decorators to alter code block level compilation. See \ref xreate::compilation::ICodeScopeUnit. * Default functionality defined by \ref xreate::compilation::DefaultCodeScopeUnit * - Targets to allow more versitile extensions. * Currently only xreate::interpretation::TargetInterpretation use Targets infrastructure. See \ref xreate::compilation::Target. * - Altering %function invocation. See \ref xreate::compilation::IFnInvocation. * * Clients are free to construct a compiler instantiation with the desired decorators by using \ref xreate::compilation::CompilePassCustomDecorators. * As a handy alias, `CompilePassCustomDecorators` constructs the default compiler. * - */ \ No newline at end of file + */ diff --git a/cpp/tests/containers.cpp b/cpp/tests/containers.cpp index ebc9a09..a960a2d 100644 --- a/cpp/tests/containers.cpp +++ b/cpp/tests/containers.cpp @@ -1,340 +1,365 @@ /* Any copyright is dedicated to the Public Domain. * http://creativecommons.org/publicdomain/zero/1.0/ * * containers.cpp * * Created on: Jun 9, 2015 * Author: pgess */ #include "xreatemanager.h" #include "query/containers.h" #include "main/Parser.h" #include "pass/compilepass.h" #include "llvmlayer.h" #include "supplemental/docutils.h" #include "supplemental/basics.h" #include "gtest/gtest.h" using namespace std; using namespace xreate::grammar::main; using namespace xreate::containers; using namespace xreate; struct Tuple2 {intmax_t a; intmax_t b;}; typedef Tuple2 (*FnTuple2)(); struct Tuple4 {intmax_t a; intmax_t b; intmax_t c; intmax_t d;}; typedef Tuple4 (*FnTuple4)(); TEST(Containers, RecInitByList1){ string code = R"( Rec = type {x:: int, y:: int}. test = function(a:: int, b::int):: Rec; entry() { {x = a + b, y = 2} } )"; auto man = XreateManager::prepare(move(code)); man->run(); } TEST(Containers, RecInitByList2){ string code = R"( Rec = type {x:: int, y:: int}. test = function(a:: int, b::int):: Rec; entry() { {a + b, y = 2} } )"; auto man = XreateManager::prepare(move(code)); man->run(); } TEST(Containers, RecUpdateByList1){ string code = R"( Rec = type {x:: int, y:: int}. test = function(a:: int, b::int):: Rec; entry() { r = {0, y = 2}:: Rec. r : {a + b} } )"; auto man = XreateManager::prepare(move(code)); man->run(); } TEST(Containers, RecUpdateByListIndex1){ string code = R"( Rec = type {x:: int, y:: int}. test = function(a:: int, b::int):: int; entry() { r1 = undef:: Rec. r2 = r1 : {[1] = b, [0] = a}:: Rec. r2["x"] } )"; auto man = XreateManager::prepare(move(code)); Fn2Args program = (Fn2Args) man->run(); ASSERT_EQ(10, program(10, 11)); } TEST(Containers, RecUpdateInLoop1){ - FILE* code = fopen("scripts/containers/RecUpdateInLoop1.xreate", "r"); + FILE* code = fopen("scripts/containers/containers-tests.xreate", "r"); assert(code != nullptr); - auto man = XreateManager::prepare(code); - Fn1Args program = (Fn1Args) man->run(); - ASSERT_EQ(11, program(10)); + std::unique_ptr man(XreateManager::prepare(code)); + man->transcend->addRawScript("select(function(\"fn-RecUpdateInLoop1\"))."); + man->options.requireEntryFn = false; + man->run(); + + { + Fn1Args fn = (Fn1Args) man->getExteriorFn("fn-RecUpdateInLoop1"); + ASSERT_EQ(11, fn(10)); + } } TEST(Containers, ArrayInit1){ XreateManager* man = XreateManager::prepare( R"Code( main = function(x:: int):: int; entry() { a = {1, 2, 3}:: [int]. a[x] } )Code"); void* mainPtr = man->run(); Fn1Args main = (Fn1Args) mainPtr; ASSERT_EQ(2, main(1)); delete man; } TEST(Containers, ArrayUpdate1){ XreateManager* man = XreateManager::prepare(R"( main = function(x::int):: int; entry() { a = {1, 2, 3}:: [int]; csize(5). b = a : {[1] = x}:: [int]; csize(5). b[1] } )"); void* mainPtr = man->run(); Fn1Args main = (Fn1Args) mainPtr; ASSERT_EQ(2, main(2)); delete man; } TEST(Containers, FlyMap1){ std::unique_ptr man(XreateManager::prepare(R"( main = function:: int; entry() { x = {1, 2, 3, 4}:: [int]. y = loop map(x->el::int)::[int]; fly(csize(4)) {2 * el:: int }. loop fold((y::[int]; fly(csize(4)))->el:: int, 0->sum):: int {sum + el}-20 } )")); FnNoArgs mainFn = (FnNoArgs) man->run(); intmax_t valueMain = mainFn(); ASSERT_EQ(0, valueMain); } TEST(Containers, ArrayArg1){ FILE* code = fopen("scripts/containers/containers-tests.xreate", "r"); assert(code != nullptr); std::unique_ptr man(XreateManager::prepare(code)); + man->transcend->addRawScript("select(function(\"fn-ArrayArg1\"))."); man->options.requireEntryFn = false; man->run(); FnNoArgs fnTested = (FnNoArgs) man->getExteriorFn("fn-ArrayArg1"); ASSERT_EQ(1, fnTested()); } TEST(Containers, FlyArg1){ FILE* code = fopen("scripts/containers/containers-tests.xreate", "r"); assert(code != nullptr); std::unique_ptr man(XreateManager::prepare(code)); + man->transcend->addRawScript("select(function(\"fn-FlyArg1\"))."); man->options.requireEntryFn = false; man->run(); FnNoArgs fnTested = (FnNoArgs) man->getExteriorFn("fn-FlyArg1"); ASSERT_EQ(8, fnTested()); } TEST(Containers, Range1){ FILE* code = fopen("scripts/containers/containers-tests.xreate", "r"); assert(code != nullptr); std::unique_ptr man(XreateManager::prepare(code)); + man->transcend->addRawScript("select(function(\"fn-Range1\"; \"fn-Range2\"))."); man->options.requireEntryFn = false; man->run(); { FnNoArgs fnRange1 = (FnNoArgs) man->getExteriorFn("fn-Range1"); ASSERT_EQ(10, fnRange1()); } { FnNoArgs fnRange2 = (FnNoArgs) man->getExteriorFn("fn-Range2"); ASSERT_EQ(20, fnRange2()); } } TEST(Containers, RetRange1){ FILE* code = fopen("scripts/containers/containers-tests.xreate", "r"); assert(code != nullptr); std::unique_ptr man(XreateManager::prepare(code)); + man->transcend->addRawScript("select(function(\"fn-RetRange1\"))."); man->options.requireEntryFn = false; man->run(); { FnNoArgs fnRange1 = (FnNoArgs) man->getExteriorFn("fn-RetRange1"); ASSERT_EQ(10, fnRange1()); } } +TEST(Containers, IntrinsicKeys1){ + FILE* code = fopen("scripts/containers/containers-tests.xreate", "r"); + assert(code != nullptr); + + std::unique_ptr man(XreateManager::prepare(code)); + man->transcend->addRawScript("select(function(\"fn-Keys1\"))."); + man->options.requireEntryFn = false; + man->run(); + + { + FnNoArgs fn = (FnNoArgs) man->getExteriorFn("fn-Keys1"); + ASSERT_EQ(6, fn()); + } +} + //TEST(Containers, ListAsArray2){ // XreateManager* man = XreateManager::prepare( // //R"Code( // // CONTAINERS // import raw("scripts/dfa/ast-attachments.lp"). // import raw("scripts/containers/containers.lp"). // // main = function:: int;entry { // a= {1, 2, 3}:: [int]. // b= loop map(a->el:: int):: [int]{ // 2 * el // }. // // sum = loop fold(b->el:: int, 0->acc):: int { // acc + el // }. // // sum // } //)Code"); // // void* mainPtr = man->run(); // FnNoArgs main = (FnNoArgs) mainPtr; // ASSERT_EQ(12, main()); // // delete man; //} // //TEST(Containers, Doc_RecField1){ // string code_Variants1 = getDocumentationExampleById("documentation/Syntax/syntax.xml", "RecField1"); // XreateManager::prepare(move(code_Variants1)); // // ASSERT_TRUE(true); //} // //TEST(Containers, Doc_RecUpdate1){ // string code_Variants1 = getDocumentationExampleById("documentation/Syntax/syntax.xml", "RecUpdate1"); // XreateManager::prepare(move(code_Variants1)); // // ASSERT_TRUE(true); //} // //TEST(Containers, ContanierLinkedList1){ // FILE* input = fopen("scripts/containers/Containers_Implementation_LinkedList1.xreate","r"); // assert(input != nullptr); // // Scanner scanner(input); // Parser parser(&scanner); // parser.Parse(); // // AST* ast = parser.root->finalize(); // CodeScope* body = ast->findFunction("test")->getEntryScope(); // const Symbol symb_chilrenRaw{body->findSymbolByAlias("childrenRaw"), body}; // // containers::ImplementationLinkedList iLL(symb_chilrenRaw); // // ASSERT_EQ(true, static_cast(iLL)); // ASSERT_EQ("next", iLL.fieldPointer); // // Implementation impl = Implementation::create(symb_chilrenRaw); // ASSERT_NO_FATAL_FAILURE(impl.extract()); // // ImplementationRec recOnthefly = impl.extract(); // ASSERT_EQ(symb_chilrenRaw, recOnthefly.source); //} // //TEST(Containers, Implementation_LinkedListFull){ // FILE* input = fopen("scripts/containers/Containers_Implementation_LinkedList1.xreate","r"); // assert(input != nullptr); // // std::unique_ptr program(XreateManager::prepare(input)); // void* mainPtr = program->run(); // int (*main)() = (int (*)())(intptr_t)mainPtr; // // intmax_t answer = main(); // ASSERT_EQ(17, answer); // // fclose(input); //} // //TEST(Containers, Doc_Intr_1){ // string example = R"Code( // import raw("scripts/containers/containers.lp"). // // test = function:: int; entry // { // // x // } // )Code"; // string body = getDocumentationExampleById("documentation/Concepts/containers.xml", "Intr_1"); // replace(example, "", body); // // XreateManager* xreate = XreateManager::prepare(move(example)); // FnNoArgs program = (FnNoArgs) xreate->run(); // // intmax_t result = program(); // ASSERT_EQ(1, result); //} // //TEST(Containers, Doc_OpAccessSeq_1){ // string example = getDocumentationExampleById("documentation/Concepts/containers.xml", "OpAccessSeq_1"); // XreateManager* xreate = XreateManager::prepare(move(example)); // FnNoArgs program = (FnNoArgs) xreate->run(); // // intmax_t result = program(); // ASSERT_EQ(15, result); //} // //TEST(Containers, Doc_OpAccessRand_1){ // string example = getDocumentationExampleById("documentation/Concepts/containers.xml", "OpAccessRand_1"); // XreateManager* xreate = XreateManager::prepare(move(example)); // FnNoArgs program = (FnNoArgs) xreate->run(); // // intmax_t result = program(); // ASSERT_EQ(2, result); //} // //TEST(Containers, Doc_ASTAttach_1){ // string example = getDocumentationExampleById("documentation/Concepts/containers.xml", "ASTAttach_1"); // string outputExpected = "containers_impl(s(1,-2,0),onthefly)"; // XreateManager* xreate = XreateManager::prepare(move(example)); // // testing::internal::CaptureStdout(); // xreate->run(); // std::string outputActual = testing::internal::GetCapturedStdout(); // // ASSERT_NE(std::string::npos, outputActual.find(outputExpected)); //} // //TEST(Containers, IntrinsicArrInit1){ // XreateManager* man = XreateManager::prepare( // //R"Code( //FnAnns = type predicate { // entry //} // //main = function(x:: int):: int; entry() { // a{0} = intrinsic array_init(16):: [int]. // a{1} = a{0} + {15: 12} //} //)Code"); //} diff --git a/cpp/tests/transcend.cpp b/cpp/tests/transcend.cpp index e5d6436..91433f3 100644 --- a/cpp/tests/transcend.cpp +++ b/cpp/tests/transcend.cpp @@ -1,102 +1,119 @@ /* Any copyright is dedicated to the Public Domain. * http://creativecommons.org/publicdomain/zero/1.0/ * * Author: pgess * Created on June 7, 2018, 3:35 PM * * \file transcend.cpp * \brief Transcend's tests */ #include "xreatemanager.h" #include "transcendlayer.h" +#include "analysis/resources.h" #include "supplemental/docutils.h" #include using namespace xreate; using namespace std; TEST(Transcend, Parse1) { std::string script = R"Code( )Code"; std::unique_ptr man(details::tier1::XreateManager::prepare(std::move(script))); std::string scriptTranscend = R"Code( test1((1)). test2((1, 2)). test3(1, "a"). )Code"; man->transcend->addRawScript(move(scriptTranscend)); man->analyse(); StaticModel solution = man->transcend->query("test1"); Gringo::Symbol symbTest1 = solution.begin()->second; auto answer1 = man->transcend->parse>(symbTest1); ASSERT_EQ(1, get<0>(answer1).size()); solution = man->transcend->query("test2"); Gringo::Symbol symbTest2 = solution.begin()->second; auto answer2 = get<0>(man->transcend->parse>(symbTest2)); ASSERT_EQ(2, answer2.size()); typedef std::tuple Predicate3; solution = man->transcend->query("test3"); Gringo::Symbol symbTest3 = solution.begin()->second; auto answer3a = get<0>(man->transcend->parse(schemeT(), symbTest3)); auto answer3b = get<1>(man->transcend->parse(schemeT(), symbTest3)); ASSERT_EQ(1, answer3a); ASSERT_STREQ("a", answer3b.c_str()); } +TEST(Transcend, ClaspBug1){ + std::string scriptTranscend = + R"Code( + exterior("fn-RecUpdateInLoop1"). + )Code"; + + std::unique_ptr man(details::tier1::XreateManager::prepare("")); + man->transcend->addRawScript(move(scriptTranscend)); + man->analyse(); + StaticModel solution = man->transcend->query(analysis::FN_EXTERIOR_PREDICATE); + + auto entry = *solution.begin(); + string answer = std::get<0>(TranscendLayer::parse(entry.second)); + ASSERT_STREQ("fn-RecUpdateInLoop1", answer.c_str()); +} + TEST(Transcend, Doc_Expressions1) { string code = getDocumentationExampleById("documentation/Transcend/transcend.xml", "Expressions1"); XreateManager* man = XreateManager::prepare(move(code)); man->run(); delete man; ASSERT_TRUE(true); } TEST(Transcend, Doc_SlaveTypes1){ string code = getDocumentationExampleById("documentation/Transcend/transcend.xml", "Codeblocks1"); XreateManager::prepare(move(code)); ASSERT_TRUE(true); } TEST(Transcend, Doc_Codeblocks1) { string code = getDocumentationExampleById("documentation/Transcend/transcend.xml", "Codeblocks1"); XreateManager::prepare(move(code)); ASSERT_TRUE(true); } TEST(Transcend, Doc_Diagnostics1) { string code = getDocumentationExampleById("documentation/Transcend/transcend.xml", "Diagnostics1"); string scriptTranscend = getDocumentationExampleById("documentation/Transcend/transcend.xml", "Diagnostics1_Rules"); string scriptSupport = R"Code( scope_func_dict(S, Fn):- cfa_parent(S, function(Fn)). scope_func_dict(S1, Fn):- cfa_parent(S1, scope(S2)); scope_func_dict(S2, Fn). )Code"; auto man = XreateManager::prepare(move(code)); man->transcend->addRawScript(move(scriptTranscend)); man->transcend->addRawScript(move(scriptSupport)); testing::internal::CaptureStdout(); man->run(); delete man; std::string outputActual = testing::internal::GetCapturedStdout(); std::cout << outputActual << std::endl; string outputExpected = "warning(\"Visibility violation\",\"test\",\"sum\")"; ASSERT_NE(std::string::npos, outputActual.find(outputExpected)); } \ No newline at end of file diff --git a/scripts/containers/RecUpdateInLoop1.xreate b/scripts/containers/RecUpdateInLoop1.xreate deleted file mode 100644 index 18f677e..0000000 --- a/scripts/containers/RecUpdateInLoop1.xreate +++ /dev/null @@ -1,12 +0,0 @@ -Rec = type {x:: int, y:: int}. - -test = function(base:: int):: int; entry() { - fields = intrinsic rec_fields("Rec"):: [string]; i12n(on()). - - result = loop fold(fields->field:: string, {undef, 0}->ctx):: {rec:: Rec, id:: int} - { - { (ctx["rec"]::Rec) : {[field] = base + ctx["id"] }, ctx["id"]+1 }:: {rec:: Rec, id:: int} - }. - - result["rec"]["y"] -} diff --git a/scripts/containers/containers-tests.assembly.lp b/scripts/containers/containers-tests.assembly.lp index a9e3d97..c0c6b76 100644 --- a/scripts/containers/containers-tests.assembly.lp +++ b/scripts/containers/containers-tests.assembly.lp @@ -1,9 +1,6 @@ -select(test(common)). -%select(function("fn-RetRange1")). - bind_func(Fn, exterior):- select(test(Template)); bind_func(Fn, test(Template)). bind_func(FnName, exterior):- select(function(FnName)). diff --git a/scripts/containers/containers-tests.xreate b/scripts/containers/containers-tests.xreate index 79bc100..2a617fc 100644 --- a/scripts/containers/containers-tests.xreate +++ b/scripts/containers/containers-tests.xreate @@ -1,88 +1,110 @@ import raw ("scripts/containers/containers-tests.assembly.lp"). Test = type predicate{ common }. FnAnns = type predicate{ test(kind:: Test) } min = function(x:: [int]; csize(5)):: int { loop fold((x:: [int]; csize(5))->el:: int, 1000->min):: int { if (el < min):: int { el } else { min } } } min2 = function(x:: [int]; fly(csize(5))):: int { loop fold((x:: [int]; fly(csize(5)))->el:: int, 1000->min):: int { if (el < min):: int { el } else { min } } } +Rec = type {x:: int, y:: int}. + +fn-RecUpdateInLoop1 = function(base:: int):: int { + fields = intrinsic fields("Rec"):: [string]; i12n(on()). + + result = loop fold(fields->field:: string, {undef, 0}->ctx):: {rec:: Rec, id:: int} + { + { (ctx["rec"]::Rec) : {[field] = base + ctx["id"] }, ctx["id"]+1 }:: {rec:: Rec, id:: int} + }. + + result["rec"]["y"] +} + +fn-Keys1 = function:: int +{ + data = {16, 3, 2, 5}:: [int]; csize(4). + keys = intrinsic keys(data):: [int]; range(). + + loop fold(keys-> key:: int, 0->sum):: int + { sum + key } +} + fn-ArrayArg1 = function:: int; test(common()) { a = {3, 2, 1, 4, 5}:: [int]; csize(5). min(a) } fn-FlyArg1 = function:: int; test(common()) { a = {3, 2, 1, 4, 5}:: [int]; csize(5). b = loop map(a->x:: int):: [int]; fly(csize(5)) { 8 * x :: int }. min2(b) } fn-Range1 = function:: int; test(common()) { range = [1..5]:: [int]; range(). loop fold(range->x:: int, 0->sum):: int {sum + x} } fn-Range2 = function:: int; test(common()) { range1 = [1..5]:: [int]; range(). range2 = loop map (range1->x:: int):: [int]; fly(range()) {2 * x:: int}. loop fold(range2->x:: int, 0->sum):: int {sum + x} } fn-GenRange1 = function:: [int]; range() { [1..5]:: [int]; range() } fn-RetRange1 = function:: int; test(common()) { loop fold((fn-GenRange1()::[int]; range()) -> x:: int, 0->sum):: int { sum + x } } /* reorder = function(aggrSrc:: [int], idxs::[int]):: [int] { loop map(idxs->idx)::[int] { aggrSrc[idx]) } } reverse = function(aggrSrc::[int])::[int] { sizeDst = 5:: int. idxsDst = intrinsic keys(aggrSrc):: [int]. idxsTnsf = loop map(idxsDst-> idx:: int):: [int] { sizeDst - idx - 1 } reorder(aggrSrc, idxsTnsf) } */