diff --git a/config/default.json b/config/default.json index 95a6f34..338ac69 100644 --- a/config/default.json +++ b/config/default.json @@ -1,72 +1,73 @@ { "containers": { "id": { "implementations": "impl_fulfill_cluster", "clusters": "var_cluster", "prototypes": "proto_cluster", "linkedlist": "linkedlist" }, "impl": { "solid": "solid", "onthefly": "on_the_fly" } }, "logging": { "id": "logging" }, "function-entry": "entry", "clasp": { "bindings" : { "variable": "bind", "function": "bind_func", "scope": "bind_scope", "function_demand" : "bind_function_demand", "scope_decision": "bind_scope_decision" }, "context" : { "decisions":{ "dependent": "resolution_dependency" } }, "nonevalue": "nonevalue", "ret": { "symbol": "retv", "tag": "ret" } }, "tests": { - "template": "default", + "template": "sequence", "templates": { - "current-fix":"Compilation.full_IFStatementWithVariantType", + "sequence": "Compilation.Sequence1", + "current-fix":"", "default": "*-Adhoc.*:Containers.*:Compilation.full_IFStatementWithVariantType:Types.full_VariantType_Switch1:Context.full_LateContext:Context.pathDependentContext", "ast": "AST.*", "adhocs": "Adhoc.*", "effects": "Effects.*", "basic": "Attachments.*", "context": "Context.*", "compilation": "Compilation.*-Compilation.full_IFStatementWithVariantType", "communication": "Communication.*", "cfa": "CFA.*", "containers": "Containers.*", "dfa": "DFA.*", "diagnostic": "Diagnostic.*", "dsl": "Association.*:Interpretation.SwitchVariantAlias", "ExpressionSerializer": "ExpressionSerializer.*", "externc": "InterfaceExternC.*", "loops": "Loop.*", "modules": "Modules.*", "polymorphs": "Polymorphs.call1", "types": "Types.*", "vendorsAPI/clang": "ClangAPI.*", "vendorsAPI/xml2": "libxml2*" } } } diff --git a/cpp/src/ast.h b/cpp/src/ast.h index 0d3b02c..5e19dda 100644 --- a/cpp/src/ast.h +++ b/cpp/src/ast.h @@ -1,734 +1,734 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * Author: pgess * File: ast.h */ #ifndef AST_H #define AST_H #include "attachments.h" #include #include #include #include #include #include #include #include "utils.h" #include namespace llvm { class Value; } namespace xreate { struct ScopedSymbol; struct Symbol; } namespace std { template<> struct hash { std::size_t operator()(xreate::ScopedSymbol const& s) const; }; template<> struct equal_to { bool operator()(const xreate::ScopedSymbol& __x, const xreate::ScopedSymbol& __y) const; }; template<> struct hash { size_t operator()(xreate::Symbol const& s) const; }; template<> struct equal_to { bool operator()(const xreate::Symbol& __x, const xreate::Symbol& __y) const; }; } namespace xreate { struct String_t { }; struct Identifier_t { }; struct Number_t { }; struct Type_t { }; template class Atom { }; //DEBT store line:col for all atoms/identifiers template<> class Atom { public: Atom(const std::wstring& value); Atom(std::string && name); const std::string& get() const; private: std::string __value; }; template<> class Atom { public: Atom(wchar_t* value); Atom(int value); double get()const; private: double __value; }; template<> class Atom { public: Atom(const std::wstring& value); Atom(std::string && name); const std::string& get() const; private: std::string __value; }; enum class TypePrimitive { Invalid, Bool, I8, I32, I64, Num, Int, Float, String }; enum class TypeOperator { NONE, CALL, CUSTOM, VARIANT, LIST, LIST_NAMED, ACCESS, LINK }; struct llvm_array_tag { }; struct struct_tag { }; const llvm_array_tag tag_array = llvm_array_tag(); const struct_tag tag_struct = struct_tag(); /** * \brief Represents type to support type system * * This class represents type in denormalized form, i.e. without arguments and aliases substitution * \sa AST::expandType() */ class TypeAnnotation { public: TypeAnnotation(); TypeAnnotation(const Atom& typ); TypeAnnotation(TypePrimitive typ); TypeAnnotation(llvm_array_tag, TypeAnnotation typ, int size); TypeAnnotation(TypeOperator op, std::initializer_list operands); TypeAnnotation(TypeOperator op, std::vector&& operands); void addBindings(std::vector>&& params); void addFields(std::vector>&& listFields); bool operator<(const TypeAnnotation& t) const; // TypeAnnotation (struct_tag, std::initializer_list); bool isValid() const; TypeOperator __operator = TypeOperator::NONE; std::vector __operands; TypePrimitive __value; std::string __valueCustom; int conjuctionId = -1; //conjunction point id (relevant for recursive types) uint64_t __size = 0; std::vector fields; std::vector bindings; private: }; enum class Operator { ADD, SUB, MUL, DIV, EQU, NE, NEG, LSS, LSE, GTR, GTE, LIST, LIST_RANGE, LIST_NAMED, CALL, CALL_INTRINSIC, NONE, IMPL/* implication */, MAP, FOLD, FOLD_INF, LOOP_CONTEXT, INDEX, IF, SWITCH, SWITCH_ADHOC, SWITCH_VARIANT, CASE, CASE_DEFAULT, LOGIC_AND, - ADHOC, CONTEXT_RULE, VARIANT + ADHOC, CONTEXT_RULE, VARIANT, SEQUENCE }; class Function; class AST; class CodeScope; class MetaRuleAbstract; typedef ManagedPtr ManagedFnPtr; typedef ManagedPtr ManagedScpPtr; typedef ManagedPtr ManagedRulePtr; const ManagedScpPtr NO_SCOPE = ManagedScpPtr(UINT_MAX, 0); /** * \brief Represents every instruction in Xreate's syntax tree * \attention In case of any changes update xreate::ExpressionHints auxiliary helper as well * * Expression is generic building block of syntax tree able to hold node data * as well as child nodes as operands. Not only instructions use expression for representation in syntax tree * but annotation as well. * * Additionally, `types` as a special kind of annotations use Expression-like data structure TypeAnnotation * \sa xreate::AST, xreate::TypeAnnotation */ // struct Expression { friend class CodeScope; friend class ClaspLayer; friend class CFAPass; friend class ExpressionHints; Expression(const Operator &oprt, std::initializer_list params); Expression(const Atom& ident); Expression(const Atom& number); Expression(const Atom& a); Expression(); void setOp(Operator oprt); void addArg(Expression&& arg); void addBindings(std::initializer_list> params); void bindType(TypeAnnotation t); template void addBindings(InputIt paramsBegin, InputIt paramsEnd); void addTags(const std::list tags) const; void addBlock(ManagedScpPtr scope); const std::vector& getOperands() const; double getValueDouble() const; void setValueDouble(double value); const std::string& getValueString() const; void setValue(const Atom&& v); bool isValid() const; bool isDefined() const; bool operator==(const Expression& other) const; /** * \brief is it string, number, compound operation and so on */ enum { INVALID, COMPOUND, IDENT, NUMBER, STRING, BINDING } __state = INVALID; /** * \brief Valid for compound State. Holds type of compound operator */ Operator op; /** * \brief Unique id to identify expression within syntax tree */ unsigned int id; /** * \brief Exact meaning depends on particular instruction * \details As an example, named lists/structs hold field names in bindings */ std::vector bindings; std::map __indexBindings; /** * \brief Holds child instructions as arguments */ std::vector operands; /** * \brief Holds type of instruction's result */ TypeAnnotation type; /** * \brief Holds additional annotations */ mutable std::map tags; /** * \brief Child code blocks * \details For example, If statement holds TRUE-branch as first and FALSE-branch as second block here */ std::list blocks; private: std::string __valueS; double __valueD; static unsigned int nextVacantId; }; bool operator<(const Expression&, const Expression&); template void Expression::addBindings(InputIt paramsBegin, InputIt paramsEnd) { size_t index = bindings.size(); std::transform(paramsBegin, paramsEnd, std::inserter(bindings, bindings.end()), [&index, this] (const Atom atom) { std::string key = atom.get(); this->__indexBindings[key] = index++; return key; }); } typedef std::list ExpressionList; enum class TagModifier { NONE, ASSERT, REQUIRE }; enum class DomainAnnotation { FUNCTION, VARIABLE }; class RuleArguments : public std::vector> { public: void add(const Atom& name, DomainAnnotation typ); }; class RuleGuards : public std::vector { public: void add(Expression&& e); }; class ClaspLayer; class LLVMLayer; class MetaRuleAbstract { public: MetaRuleAbstract(RuleArguments&& args, RuleGuards&& guards); virtual ~MetaRuleAbstract(); virtual void compile(ClaspLayer& layer) = 0; protected: RuleArguments __args; RuleGuards __guards; }; class RuleWarning : public MetaRuleAbstract { friend class ClaspLayer; public: RuleWarning(RuleArguments&& args, RuleGuards&& guards, Expression&& condition, Atom&& message); virtual void compile(ClaspLayer& layer); ~RuleWarning(); private: std::string __message; Expression __condition; }; typedef unsigned int VNameId; namespace versions { typedef int VariableVersion; const VariableVersion VERSION_NONE = -2; const VariableVersion VERSION_INIT = 0; } template<> struct AttachmentsDict { typedef versions::VariableVersion Data; static const unsigned int key = 6; }; struct ScopedSymbol { VNameId id; versions::VariableVersion version; static const ScopedSymbol RetSymbol; }; struct Symbol { ScopedSymbol identifier; const CodeScope * scope; }; struct IdentifierSymbol{}; struct SymbolAlias{}; template<> struct AttachmentsDict { typedef Symbol Data; static const unsigned int key = 7; }; template<> struct AttachmentsDict { typedef Symbol Data; static const unsigned int key = 9; }; typedef std::pair Tag; bool operator<(const ScopedSymbol& s1, const ScopedSymbol& s2); bool operator==(const ScopedSymbol& s1, const ScopedSymbol& s2); bool operator<(const Symbol& s1, const Symbol& s2); bool operator==(const Symbol& s1, const Symbol& s2); /** * \brief Represents code block and single scope of visibility * * Holds single expression as a *body* and set of variable assignments(declarations) used in body's expression * \sa xreate::AST */ class CodeScope { friend class Function; friend class PassManager; public: CodeScope(CodeScope* parent = 0); ~CodeScope(); /** \brief Set expression as a body */ void setBody(const Expression& body); /** \brief Returns current code scope body */ const Expression& getBody() const; /** \brief Adds variable definition to be used in body as well as in other declarations */ Symbol addDefinition(Expression&& var, Expression&& body); /** \brief Returns symbols' definition */ static const Expression& getDefinition(const Symbol& symbol, bool flagAllowUndefined = false); const Expression& getDefinition(const ScopedSymbol& symbol, bool flagAllowUndefined = false) const; /** \brief Adds variable defined elsewhere */ void addBinding(Expression&& var, Expression&& argument); std::vector __bindings; std::map __identifiers; CodeScope* __parent; //TODO move __definitions to SymbolsAttachments data //NOTE: definition of return type has index 0 std::unordered_map __declarations; std::vector tags; std::vector contextRules; private: VNameId __vCounter = 1; ScopedSymbol registerIdentifier(const Expression& identifier); public: bool recognizeIdentifier(const Expression& identifier) const; ScopedSymbol getSymbol(const std::string& alias); }; /** * \brief Represents single function in Xreate's syntax tree * * Holds an entry code scope and `guardContext` required for function to operate * \sa xreate::AST */ class Function { friend class Expression; friend class CodeScope; friend class AST; public: Function(const Atom& name); /** * \brief Adds function arguments */ void addBinding(Atom && name, Expression&& argument); /** * \brief Adds additional function annotations */ void addTag(Expression&& tag, const TagModifier mod); const std::string& getName() const; const std::map& getTags() const; CodeScope* getEntryScope() const; CodeScope* __entry; std::string __name; bool isPrefunction = false; //SECTIONTAG adhoc Function::isPrefunction flag Expression guardContext; Expression guard; private: std::map __tags; }; class ExternData; struct ExternEntry { std::string package; std::vector headers; }; typedef Expanded ExpandedType; struct TypeInferred{}; template<> struct AttachmentsDict { typedef ExpandedType Data; static const unsigned int key = 11; }; enum ASTInterface { CFA, DFA, Extern, Adhoc }; struct FunctionSpecialization { std::string guard; size_t id; }; struct FunctionSpecializationQuery { std::unordered_set context; }; template<> struct AttachmentsId{ static unsigned int getId(const Expression& expression){ return expression.id; } }; template<> struct AttachmentsId{ static unsigned int getId(const Symbol& s){ return s.scope->__declarations.at(s.identifier).id; } }; template<> struct AttachmentsId{ static unsigned int getId(const ManagedFnPtr& f){ const Symbol symbolFunction{ScopedSymbol::RetSymbol, f->getEntryScope()}; return AttachmentsId::getId(symbolFunction); } }; template<> struct AttachmentsId{ static unsigned int getId(const unsigned int id){ return id; } }; class TypesResolver; namespace details { namespace inconsistent { /** * \brief Syntax tree under construction in inconsistent form * * Represents Syntax Tree under construction(**inconsistent state**). * \attention Clients should use rather xreate::AST unless client's code explicitly works with Syntax Tree during construction. * * Typically instance only created by xreate::XreateManager and filled in by Parser * \sa xreate::XreateManager::prepare(std::string&&) */ class AST { friend class xreate::TypesResolver; public: AST(); /** * \brief Adds new function to AST * \param f Function to register */ void add(Function* f); /** * \brief Adds new declarative rule to AST * \param r Declarative Rule */ void add(MetaRuleAbstract* r); /** \brief Registers new code block */ ManagedScpPtr add(CodeScope* scope); /** * \brief Add new type to AST * @param t Type definition * @param alias Typer name */ void add(TypeAnnotation t, Atom alias); /** \brief Current module's name */ std::string getModuleName(); /** * \brief Looks for function with given name * \param name Function name to find * \note Requires that only one function exists under given name * \return Found function */ ManagedPtr findFunction(const std::string& name); /** \brief Returns all function in AST */ std::list getAllFunctions() const; /** * \brief Returns all specializations of a function with a given name * \param fnName function to find * \return list of found function specializations */ std::list getFunctionSpecializations(const std::string& fnName) const; /** * \return First element in Functions/Scopes/Rules list depending on template parameter * \tparam Target either Function or CodeScope or MetaRuleAbstract */ template ManagedPtr begin(); /** * \brief Performs all necessary steps after AST is built * * Performs all finzalisation steps and move AST into consistent state represented by xreate::AST * \sa xreate::AST * \return AST in consistent state */ xreate::AST* finalize(); typedef std::multimap FUNCTIONS_REGISTRY; std::vector __externdata; std::list __dfadata; //TODO move to more appropriate place std::list __rawImports; //TODO move to more appropriate place std::multimap __interfacesData; //TODO CFA data here. private: std::vector __rules; std::vector __functions; std::vector __scopes; FUNCTIONS_REGISTRY __indexFunctions; protected: std::map __indexTypeAliases; public: /** * \brief Stores DFA scheme for later use by DFA Pass * * Treats expression as a DFA scheme and feeds to a DFA Pass later * \paramn Expression DFA Scheme * \sa xreate::DFAPass */ void addDFAData(Expression&& data); /** \brief Stores data for later use by xreate::ExternLayer */ void addExternData(ExternData&& data); /** * \brief Generalized function to store particular data for later use by particular pass * \param interface Particular Interface * \param data Particular data */ void addInterfaceData(const ASTInterface& interface, Expression&& data); /**\name Symbols Recognition */ ///@{ public: //TODO revisit enums/variants, move to codescope /** * \brief Tries to find out whether expression is Variant constructor */ void recognizeVariantConstructor(Expression& function); Atom recognizeVariantConstructor(Atom ident); private: std::map> __dictVariants; public: std::set> bucketUnrecognizedIdentifiers; public: /** * \brief Postpones unrecognized identifier for future second round of recognition * \param scope Code block identifier is encountered * \param id Identifier */ void postponeIdentifier(CodeScope* scope, const Expression& id); /** \brief Second round of identifiers recognition done right after AST is fully constructed */ void recognizePostponedIdentifiers(); ///@} }; template<> ManagedPtr AST::begin(); template<> ManagedPtr AST::begin(); template<> ManagedPtr AST::begin(); } } // namespace details::incomplete /** * \brief Xreate's Syntax Tree in consistent state * * Syntax Tree has two mutually exclusive possible states: * - inconsistent state while AST is under construction. Represented by xreate::details::inconsistent::AST * - consistent state when AST is built and finalize() is done. * * This class represents consistent state and should be used everywhere unless client's code explicitly works with AST under construction. * Consistent AST enables access to additional functions(currently related to type management). * \sa xreate::details::inconsistent::AST */ class AST : public details::inconsistent::AST { public: AST() : details::inconsistent::AST() {} /** * \brief Computes fully expanded form of type by substituting all arguments and aliases * \param t Type to expand * \return Expdanded or normal form of type * \sa TypeAnnotation */ ExpandedType expandType(const TypeAnnotation &t) const; /** * Searches type by given name * \param name Typename to search * \return Expanded or normal form of desired type * \note if type name is not found returns new undefined type with this name */ ExpandedType findType(const std::string& name); /** * Invokes Type Inference Analysis to find out expanded(normal) form expressions's type * \sa typeinference.h * \param expression * \return Type of expression */ ExpandedType getType(const Expression& expression); }; } #endif // AST_H diff --git a/cpp/src/compilation/advancedinstructions.cpp b/cpp/src/compilation/advancedinstructions.cpp index b0f9f8f..59bbdd4 100644 --- a/cpp/src/compilation/advancedinstructions.cpp +++ b/cpp/src/compilation/advancedinstructions.cpp @@ -1,456 +1,460 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * File: InstructionsAdvanced.cpp * Author: pgess * * Created on June 26, 2016, 6:00 PM */ /** * \file advanced.h * \brief Compilation of statements that require more than one LLVM instruction */ #include "compilation/advancedinstructions.h" #include "compilation/containers.h" #include "compilation/transformersaturation.h" #include "query/context.h" #include "query/containers.h" #include "llvmlayer.h" #include "ast.h" using namespace std; using namespace llvm; using namespace xreate; using namespace xreate::containers; using namespace xreate::compilation; #define NAME(x) (hintRetVar.empty()? x : hintRetVar) #define UNUSED(x) (void)(x) #define EXPAND_CONTEXT \ LLVMLayer* llvm = context.pass->man->llvm; \ compilation::ICodeScopeUnit* scope = context.scope; \ compilation::IFunctionUnit* function = context.function; AdvancedInstructions::AdvancedInstructions(compilation::Context ctx) : context(ctx), tyNum(static_cast (ctx.pass->man->llvm->toLLVMType(ExpandedType(TypeAnnotation(TypePrimitive::Num))))) { } llvm::Value* AdvancedInstructions::compileMapSolidOutput(const Expression &expr, const std::string hintRetVar) { - EXPAND_CONTEXT - UNUSED(scope); + EXPAND_CONTEXT UNUSED(scope); //initialization Symbol symbolIn = Attachments::get(expr.getOperands()[0]); ImplementationRec implIn = containers::Query::queryImplementation(symbolIn).extract(); // impl of input list size_t size = implIn.size; CodeScope* scopeLoop = expr.blocks.front(); std::string varEl = scopeLoop->__bindings[0]; Iterator* it = Iterator::create(context, symbolIn); llvm::Value *rangeFrom = it->begin(); llvm::Value *rangeTo = it->end(); //definitions ArrayType* tyNumArray = (ArrayType*) (llvm->toLLVMType(ExpandedType(TypeAnnotation(tag_array, TypePrimitive::Num, size)))); llvm::IRBuilder<> &builder = llvm->builder; llvm::BasicBlock *blockLoop = llvm::BasicBlock::Create(llvm::getGlobalContext(), "loop", function->raw); llvm::BasicBlock *blockBeforeLoop = builder.GetInsertBlock(); llvm::BasicBlock *blockAfterLoop = llvm::BasicBlock::Create(llvm::getGlobalContext(), "postloop", function->raw); Value* dataOut = llvm->builder.CreateAlloca(tyNumArray, ConstantInt::get(tyNum, size), NAME("map")); // * initial check Value* condBefore = builder.CreateICmpSLE(rangeFrom, rangeTo); builder.CreateCondBr(condBefore, blockLoop, blockAfterLoop); // create PHI: builder.SetInsertPoint(blockLoop); llvm::PHINode *stateLoop = builder.CreatePHI(tyNum, 2, "mapIt"); stateLoop->addIncoming(rangeFrom, blockBeforeLoop); // loop body: Value* elIn = it->get(stateLoop, varEl); compilation::ICodeScopeUnit* scopeLoopUnit = function->getScopeUnit(scopeLoop); scopeLoopUnit->bindArg(elIn, move(varEl)); Value* elOut = scopeLoopUnit->compile(); Value *pElOut = builder.CreateGEP(dataOut, ArrayRef(std::vector{ConstantInt::get(tyNum, 0), stateLoop})); builder.CreateStore(elOut, pElOut); //next iteration preparing Value *stateLoopNext = builder.CreateAdd(stateLoop, llvm::ConstantInt::get(tyNum, 1)); stateLoop->addIncoming(stateLoopNext, builder.GetInsertBlock()); //next iteration checks: Value* condAfter = builder.CreateICmpSLE(stateLoopNext, rangeTo); builder.CreateCondBr(condAfter, blockLoop, blockAfterLoop); //finalization: builder.SetInsertPoint(blockAfterLoop); return dataOut; } Value* AdvancedInstructions::compileArrayIndex(llvm::Value* aggregate, std::vector indexes, std::string hintRetVar) { - EXPAND_CONTEXT - UNUSED(function); - UNUSED(scope); + EXPAND_CONTEXT UNUSED(function); UNUSED(scope); indexes.insert(indexes.begin(), llvm::ConstantInt::get(tyNum, 0)); llvm::Value *pEl = llvm->builder.CreateGEP(aggregate, llvm::ArrayRef(indexes)); return llvm->builder.CreateLoad(pEl, NAME("el")); } Value* AdvancedInstructions::compileStructIndex(llvm::Value* aggregate, const ExpandedType& t, const std::string& idx) { - EXPAND_CONTEXT - UNUSED(scope); - UNUSED(function); + EXPAND_CONTEXT UNUSED(scope); UNUSED(function); + TypeUtils types(llvm); std::vector&& fields = types.getStructFields(t); for (unsigned i = 0, size = fields.size(); i < size; ++i) { if (fields.at(i) == idx) { //dereference pointer if (types.isPointer(t)) { llvm::Value* addr = llvm->builder.CreateConstGEP2_32(nullptr, aggregate, 0, i); return llvm->builder.CreateLoad(addr); } return llvm->builder.CreateExtractValue(aggregate, llvm::ArrayRef{i}); } } assert(false && "not found required struct field"); return nullptr; } llvm::Value* AdvancedInstructions::compileFold(const Expression& fold, const std::string& hintRetVar) { EXPAND_CONTEXT assert(fold.op == Operator::FOLD); //initialization: Symbol varInSymbol = Attachments::get(fold.getOperands()[0]); Implementation info = Query::queryImplementation(varInSymbol); Iterator* it = Iterator::create(context, varInSymbol); llvm::Value* rangeBegin = it->begin(); llvm::Value* rangeEnd = it->end(); llvm::Value* accumInit = scope->process(fold.getOperands()[1]); std::string varIn = fold.getOperands()[0].getValueString(); std::string varAccum = fold.bindings[1]; std::string varEl = fold.bindings[0]; llvm::BasicBlock *blockBeforeLoop = llvm->builder.GetInsertBlock(); std::unique_ptr transformerSaturation(new TransformerSaturation(blockBeforeLoop, context.pass->managerTransformations)); llvm::BasicBlock *blockLoop = llvm::BasicBlock::Create(llvm::getGlobalContext(), "fold", function->raw); llvm::BasicBlock *blockLoopBody = llvm::BasicBlock::Create(llvm::getGlobalContext(), "fold_body", function->raw); llvm::BasicBlock *blockAfterLoop = llvm::BasicBlock::Create(llvm::getGlobalContext(), "fold_after", function->raw); llvm::BasicBlock *blockNext = llvm::BasicBlock::Create(llvm::getGlobalContext(), "fold_next", function->raw); llvm->builder.CreateBr(blockLoop); // * create phi llvm->builder.SetInsertPoint(blockLoop); llvm::PHINode *accum = llvm->builder.CreatePHI(accumInit->getType(), 2, varAccum); accum->addIncoming(accumInit, blockBeforeLoop); llvm::PHINode *itLoop = llvm->builder.CreatePHI(rangeBegin->getType(), 2, "foldIt"); itLoop->addIncoming(rangeBegin, blockBeforeLoop); // * loop checks Value* condRange = llvm->builder.CreateICmpNE(itLoop, rangeEnd); llvm->builder.CreateCondBr(condRange, blockLoopBody, blockAfterLoop); // * loop body llvm->builder.SetInsertPoint(blockLoopBody); CodeScope* scopeLoop = fold.blocks.front(); compilation::ICodeScopeUnit* loopUnit = function->getScopeUnit(scopeLoop); Value* elIn = it->get(itLoop); loopUnit->bindArg(accum, move(varAccum)); loopUnit->bindArg(elIn, move(varEl)); Value* accumNext = loopUnit->compile(); // * Loop saturation checks bool flagSaturationTriggered = transformerSaturation->insertSaturationChecks(blockNext, blockAfterLoop, context); llvm::BasicBlock* blockSaturation = llvm->builder.GetInsertBlock(); if (!flagSaturationTriggered){ llvm->builder.CreateBr(blockNext); } // * computing next iteration state llvm->builder.SetInsertPoint(blockNext); Value *itLoopNext = it->advance(itLoop); accum->addIncoming(accumNext, llvm->builder.GetInsertBlock()); itLoop->addIncoming(itLoopNext, llvm->builder.GetInsertBlock()); llvm->builder.CreateBr(blockLoop); // * finalization: llvm->builder.SetInsertPoint(blockAfterLoop); if (!flagSaturationTriggered){ return accum; } llvm::PHINode* result = llvm->builder.CreatePHI(accumInit->getType(), 2); result->addIncoming(accum, blockLoop); result->addIncoming(accumNext, blockSaturation); return result; } llvm::Value* AdvancedInstructions::compileFoldInf(const Expression& fold, const std::string& hintRetVar) { EXPAND_CONTEXT assert(fold.op == Operator::FOLD_INF); std::string accumName = fold.bindings[0]; llvm::Value* accumInit = scope->process(fold.getOperands()[0]); llvm::BasicBlock *blockBeforeLoop = llvm->builder.GetInsertBlock(); llvm::BasicBlock *blockLoop = llvm::BasicBlock::Create(llvm::getGlobalContext(), "foldinf", function->raw); llvm::BasicBlock *blockNext = llvm::BasicBlock::Create(llvm::getGlobalContext(), "foldinf_next", function->raw); llvm::BasicBlock *blockAfterLoop = llvm::BasicBlock::Create(llvm::getGlobalContext(), "foldinf_post", function->raw); std::unique_ptr transformerSaturation(new TransformerSaturation(blockBeforeLoop, context.pass->managerTransformations)); llvm->builder.CreateBr(blockLoop); // * create phi llvm->builder.SetInsertPoint(blockLoop); llvm::PHINode *accum = llvm->builder.CreatePHI(accumInit->getType(), 2, accumName); accum->addIncoming(accumInit, blockBeforeLoop); // * loop body CodeScope* scopeLoop = fold.blocks.front(); compilation::ICodeScopeUnit* unitLoop = function->getScopeUnit(scopeLoop); unitLoop->bindArg(accum, move(accumName)); Value* accumNext = unitLoop->compile(); // * Loop saturation checks bool flagSaturationTriggered = transformerSaturation->insertSaturationChecks(blockNext, blockAfterLoop, context); assert(flagSaturationTriggered); // * computing next iteration state llvm->builder.SetInsertPoint(blockNext); accum->addIncoming(accumNext, llvm->builder.GetInsertBlock()); llvm->builder.CreateBr(blockLoop); // finalization: llvm->builder.SetInsertPoint(blockAfterLoop); return accumNext; } llvm::Value* AdvancedInstructions::compileIf(const Expression& exprIf, const std::string& hintRetVar) { EXPAND_CONTEXT const Expression& condExpr = exprIf.getOperands()[0]; llvm::IRBuilder<>& builder = llvm->builder; assert(builder.GetInsertBlock() == scope->currentBlockRaw); //initialization: llvm::BasicBlock *blockEpilog = llvm::BasicBlock::Create(llvm::getGlobalContext(), "ifAfter", function->raw); llvm::BasicBlock *blockTrue = llvm::BasicBlock::Create(llvm::getGlobalContext(), "ifTrue", function->raw); llvm::BasicBlock *blockFalse = llvm::BasicBlock::Create(llvm::getGlobalContext(), "ifFalse", function->raw); llvm::Value* cond = scope->process(condExpr); builder.SetInsertPoint(blockTrue); CodeScope* scopeTrue = exprIf.blocks.front(); llvm::Value* resultTrue = function->getScopeUnit(scopeTrue)->compile(); llvm::BasicBlock * blockTrueEnd = builder.GetInsertBlock(); builder.CreateBr(blockEpilog); builder.SetInsertPoint(blockFalse); CodeScope* scopeFalse = exprIf.blocks.back(); llvm::Value* resultFalse = function->getScopeUnit(scopeFalse)->compile(); llvm::BasicBlock * blockFalseEnd = builder.GetInsertBlock(); builder.CreateBr(blockEpilog); builder.SetInsertPoint(scope->currentBlockRaw); llvm->builder.CreateCondBr(cond, blockTrue, blockFalse); builder.SetInsertPoint(blockEpilog); llvm::PHINode *ret = builder.CreatePHI(resultTrue->getType(), 2, NAME("if")); ret->addIncoming(resultTrue, blockTrueEnd); ret->addIncoming(resultFalse, blockFalseEnd); return ret; } //TODO Switch: default variant no needed when all possible conditions are considered llvm::Value* AdvancedInstructions::compileSwitch(const Expression& exprSwitch, const std::string& hintRetVar) { - EXPAND_CONTEXT - UNUSED(function); + EXPAND_CONTEXT UNUSED(function); AST* root = context.pass->man->root; llvm::IRBuilder<>& builder = llvm->builder; assert(exprSwitch.operands.size() >= 2); assert(exprSwitch.operands[1].op == Operator::CASE_DEFAULT && "No default case in Switch Statement"); int countCases = exprSwitch.operands.size() - 1; llvm::BasicBlock* blockProlog = builder.GetInsertBlock(); llvm::BasicBlock *blockEpilog = llvm::BasicBlock::Create(llvm::getGlobalContext(), "switchAfter", function->raw); builder.SetInsertPoint(blockEpilog); llvm::Type* exprSwitchType = llvm->toLLVMType(root->getType(exprSwitch)); llvm::PHINode *ret = builder.CreatePHI(exprSwitchType, countCases, NAME("switch")); builder.SetInsertPoint(blockProlog); llvm::Value * conditionSwitch = scope->process(exprSwitch.operands[0]); llvm::BasicBlock *blockDefault = llvm::BasicBlock::Create(llvm::getGlobalContext(), "caseDefault", function->raw); llvm::SwitchInst * instructionSwitch = builder.CreateSwitch(conditionSwitch, blockDefault, countCases); for (int size = exprSwitch.operands.size(), i = 2; i < size; ++i) { llvm::BasicBlock *blockCase = llvm::BasicBlock::Create(llvm::getGlobalContext(), "case" + std::to_string(i), function->raw); llvm::Value* condCase = function->getScopeUnit(exprSwitch.operands[i].blocks.front())->compile(); builder.SetInsertPoint(blockCase); llvm::Value* resultCase = function->getScopeUnit(exprSwitch.operands[i].blocks.back())->compile(); builder.CreateBr(blockEpilog); ret->addIncoming(resultCase, builder.GetInsertBlock()); builder.SetInsertPoint(blockProlog); instructionSwitch->addCase(dyn_cast(condCase), blockCase); } //compile default block: builder.SetInsertPoint(blockDefault); CodeScope* scopeDefault = exprSwitch.operands[1].blocks.front(); llvm::Value* resultDefault = function->getScopeUnit(scopeDefault)->compile(); builder.CreateBr(blockEpilog); ret->addIncoming(resultDefault, builder.GetInsertBlock()); builder.SetInsertPoint(blockEpilog); return ret; } llvm::Value* AdvancedInstructions::compileSwitchVariant(const Expression& exprSwitch, const std::string& hintRetVar) { - EXPAND_CONTEXT - UNUSED(function); + EXPAND_CONTEXT UNUSED(function); AST* root = context.pass->man->root; llvm::IRBuilder<>& builder = llvm->builder; llvm::Type* typI8= llvm::Type::getInt8Ty(llvm::getGlobalContext()); const ExpandedType& typVariant = root->getType(exprSwitch.operands.at(0)); llvm::Type* typVariantRaw = llvm->toLLVMType(typVariant); assert(typVariant->__operands.size() == exprSwitch.operands.size() - 1 && "Ill-formed Switch Variant"); int casesCount = exprSwitch.operands.size(); llvm::BasicBlock* blockProlog = builder.GetInsertBlock(); llvm::BasicBlock *blockEpilog = llvm::BasicBlock::Create(llvm::getGlobalContext(), "switchAfter", function->raw); builder.SetInsertPoint(blockEpilog); llvm::Type* resultType = llvm->toLLVMType(root->getType(exprSwitch)); llvm::PHINode *ret = builder.CreatePHI(resultType, casesCount, NAME("switch")); builder.SetInsertPoint(blockProlog); llvm::Value * conditionSwitchRaw = scope->process(exprSwitch.operands.at(0)); llvm::Value* idRaw = builder.CreateExtractValue(conditionSwitchRaw, llvm::ArrayRef({0})); //Dereference preparation const bool flagDoDerefence = llvm::cast(typVariantRaw)->getStructNumElements() > 1; llvm::Value* addrAsStorage = nullptr; if (flagDoDerefence){ llvm::Type* typStorageRaw = llvm::cast(typVariantRaw)->getElementType(1); llvm::Value* storageRaw = builder.CreateExtractValue(conditionSwitchRaw, llvm::ArrayRef({1})); addrAsStorage = llvm->builder.CreateAlloca(typStorageRaw); llvm->builder.CreateStore(storageRaw, addrAsStorage); } llvm::SwitchInst * instructionSwitch = builder.CreateSwitch(idRaw, nullptr, casesCount); llvm::BasicBlock* blockDefaultUndefined; std::list::const_iterator scopeCaseIt = exprSwitch.blocks.begin(); for (int instancesSize = exprSwitch.operands.size()-1, instId = 0; instId < instancesSize; ++instId) { llvm::BasicBlock *blockCase = llvm::BasicBlock::Create(llvm::getGlobalContext(), "case" + std::to_string(instId), function->raw); builder.SetInsertPoint(blockCase); ICodeScopeUnit* unitCase = function->getScopeUnit(*scopeCaseIt); //Actual variant Derefence if (flagDoDerefence) { assert(exprSwitch.bindings.size() && "Switch condition alias not found"); string identCondition = exprSwitch.bindings.front(); const ExpandedType& instType = ExpandedType(typVariant->__operands.at(instId)); llvm::Type* instTypeRaw = llvm->toLLVMType(instType); llvm::Value* addrAsInst = llvm->builder.CreateBitOrPointerCast(addrAsStorage, instTypeRaw->getPointerTo()); llvm::Value* instRaw = llvm->builder.CreateLoad(instTypeRaw, addrAsInst); const Symbol& identSymb = unitCase->bindArg(instRaw, move(identCondition)); Attachments::put(identSymb, instType); } llvm::Value* resultCase = function->getScopeUnit(*scopeCaseIt)->compile(); builder.CreateBr(blockEpilog); ret->addIncoming(resultCase, blockDefaultUndefined = builder.GetInsertBlock()); builder.SetInsertPoint(blockProlog); instructionSwitch->addCase(dyn_cast(llvm::ConstantInt::get(typI8, exprSwitch.operands.at(instId+1).getValueDouble())), blockCase); ++scopeCaseIt; } instructionSwitch->setDefaultDest(blockDefaultUndefined); builder.SetInsertPoint(blockEpilog); return ret; } //TODO recognize cases to make const arrays/stored in global mem/stack alloced. llvm::Value* AdvancedInstructions::compileListAsSolidArray(const Expression &expr, const std::string& hintRetVar) { - EXPAND_CONTEXT - UNUSED(scope); - UNUSED(function); + EXPAND_CONTEXT UNUSED(scope); UNUSED(function); AST* root = context.pass->man->root; const size_t& length = expr.getOperands().size(); const Expression& expression = expr; llvm::Value* zero = ConstantInt::get(tyNum, 0); llvm::Value* one = ConstantInt::get(tyNum, 1); ExpandedType typAggrExpanded = root->getType(expression); assert(typAggrExpanded->__operator == TypeOperator::LIST); llvm::Type* typEl = llvm->toLLVMType(ExpandedType(typAggrExpanded->__operands[0])); ArrayType* typAggr = (ArrayType*) llvm::ArrayType::get(typEl, length); llvm::Value* list = llvm->builder.CreateAlloca(typAggr, ConstantInt::get(Type::getInt32Ty(llvm::getGlobalContext()), length, false), hintRetVar); const std::vector& operands = expression.getOperands(); llvm::Value* addrOperand = llvm->builder.CreateGEP(typAggr, list, ArrayRef(std::vector{zero, zero})); llvm->builder.CreateStore(scope->process(operands.front()), addrOperand) ; for (auto i=++operands.begin(); i!=operands.end(); ++i){ addrOperand = llvm->builder.CreateGEP(typEl, addrOperand, ArrayRef(std::vector{one})); llvm->builder.CreateStore(scope->process(*i), addrOperand) ; } return list; // Value* listDest = l.builder.CreateAlloca(typList, ConstantInt::get(typI32, __size), *hintRetVar); // l.buil1der.CreateMemCpy(listDest, listSource, __size, 16); } llvm::Value* - AdvancedInstructions::compileConstantStringAsPChar(const string& data, const std::string& hintRetVar) { - EXPAND_CONTEXT - UNUSED(function); - UNUSED(scope); +AdvancedInstructions::compileConstantStringAsPChar(const string& data, const std::string& hintRetVar) { + EXPAND_CONTEXT UNUSED(function); UNUSED(scope); - Type* typPchar = PointerType::getUnqual(Type::getInt8Ty(llvm::getGlobalContext())); - //ArrayType* typStr = (ArrayType*) (llvm->toLLVMType(ExpandedType(TypeAnnotation(tag_array, TypePrimitive::I8, size+1)))); + Type* typPchar = PointerType::getUnqual(Type::getInt8Ty(llvm::getGlobalContext())); + //ArrayType* typStr = (ArrayType*) (llvm->toLLVMType(ExpandedType(TypeAnnotation(tag_array, TypePrimitive::I8, size+1)))); - /* - std::vector chars; - chars.reserve(size+1); + /* + std::vector chars; + chars.reserve(size+1); - for (size_t i=0; i< size; ++i){ - chars[i] = ConstantInt::get(typI8, (unsigned char) data[i]); - } - chars[size] = ConstantInt::get(typI8, 0); - */ + for (size_t i=0; i< size; ++i){ + chars[i] = ConstantInt::get(typI8, (unsigned char) data[i]); + } + chars[size] = ConstantInt::get(typI8, 0); + */ - Value* rawData = ConstantDataArray::getString(llvm::getGlobalContext(), data); - Value* rawPtrData = llvm->builder.CreateAlloca(rawData->getType(), ConstantInt::get(Type::getInt32Ty(llvm::getGlobalContext()), 1, false)); - llvm->builder.CreateStore(rawData, rawPtrData); + Value* rawData = ConstantDataArray::getString(llvm::getGlobalContext(), data); + Value* rawPtrData = llvm->builder.CreateAlloca(rawData->getType(), ConstantInt::get(Type::getInt32Ty(llvm::getGlobalContext()), 1, false)); + llvm->builder.CreateStore(rawData, rawPtrData); return llvm->builder.CreateCast(llvm::Instruction::BitCast, rawPtrData, typPchar, hintRetVar); } + +llvm::Value* +AdvancedInstructions::compileSequence(const Expression &expr){ + EXPAND_CONTEXT UNUSED(scope); UNUSED(llvm); + + llvm::Value* result; + for(CodeScope* scope: expr.blocks){ + result = function->getScopeUnit(scope)->compile(); + } + + return result; +} + + diff --git a/cpp/src/compilation/advancedinstructions.h b/cpp/src/compilation/advancedinstructions.h index 5c7bd16..22a97cb 100644 --- a/cpp/src/compilation/advancedinstructions.h +++ b/cpp/src/compilation/advancedinstructions.h @@ -1,53 +1,54 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * File: AdvancedInstructions.h * Author: pgess * * Created on June 26, 2016, 6:00 PM */ #ifndef INSTRUCTIONSADVANCED_H #define INSTRUCTIONSADVANCED_H #include "ast.h" #include "llvmlayer.h" #include "pass/compilepass.h" #include namespace xreate { namespace compilation { class AdvancedInstructions { public: AdvancedInstructions(compilation::Context ctx); llvm::Value* compileArrayIndex(llvm::Value* aggregate, std::vector indexes, std::string ident = ""); llvm::Value* compileStructIndex(llvm::Value* aggregate, const ExpandedType& t, const std::string& idx); /* * - map Computation -> Llvm_Array: Prohibited, we do not know a result size * - map Llvm_Array -> Computation: considered in `compileGetElement` * - map Llvm_Array -> Llvm_Array considered by this method */ llvm::Value* compileMapSolidOutput(const Expression &expr, const std::string hintRetVar = ""); llvm::Value* compileFold(const Expression& fold, const std::string& ident=""); llvm::Value* compileFoldInf(const Expression& fold, const std::string& ident=""); //DISABLEDFEATURE Context Loop llvm::Value* compileLoopContext(const Expression& expression, const std::string& hintRetVar); llvm::Value* compileIf(const Expression& exprIf, const std::string& ident); llvm::Value* compileSwitch(const Expression& exprSwitch, const std::string& hintRetVar); llvm::Value* compileSwitchVariant(const Expression& exprSwitch, const std::string& hintRetVar); llvm::Value* compileConstantStringAsPChar(const std::string &data, const std::string& hintRetVar); llvm::Value* compileListAsSolidArray(const Expression &expr, const std::string& hintRetVar); + llvm::Value* compileSequence(const Expression &expr); private: compilation::Context context; llvm::IntegerType* const tyNum; }; }} #endif /* INSTRUCTIONSADVANCED_H */ diff --git a/cpp/src/pass/compilepass.cpp b/cpp/src/pass/compilepass.cpp index 66d630c..bd83691 100644 --- a/cpp/src/pass/compilepass.cpp +++ b/cpp/src/pass/compilepass.cpp @@ -1,865 +1,876 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * Author: pgess * * compilepass.cpp */ /** * \file compilepass.h * \brief Compilation pass */ #include "compilepass.h" #include "clasplayer.h" #include #include "llvmlayer.h" #include "query/containers.h" #include "query/context.h" #include "compilation/containers.h" #include "compilation/latecontextcompiler2.h" #include "ExternLayer.h" #include "pass/adhocpass.h" #include "compilation/targetinterpretation.h" #include "pass/versionspass.h" #include "compilation/scopedecorators.h" #include "compilation/adhocfunctiondecorator.h" #include "compilation/operators.h" #include "analysis/typeinference.h" #include #include #include using namespace std; using namespace llvm; //TODO use Scope //SECTIONTAG late-context FunctionDecorator namespace xreate{namespace context{ /** \brief Late Context enabled decorator for IFunctionUnit * \extends IFunctionUnit */ template class LateContextFunctionDecorator : public Parent { public: LateContextFunctionDecorator(ManagedFnPtr f, CompilePass* p) : Parent(f, p), contextCompiler(this, p) { } protected: std::vector prepareArguments() { std::vector&& arguments = Parent::prepareArguments(); size_t sizeLateContextDemand = contextCompiler.getFunctionDemandSize(); if (sizeLateContextDemand) { llvm::Type* ty32 = llvm::Type::getInt32Ty(llvm::getGlobalContext()); llvm::Type* tyDemand = llvm::ArrayType::get(ty32, sizeLateContextDemand); arguments.push_back(tyDemand); } return arguments; } llvm::Function::arg_iterator prepareBindings() { llvm::Function::arg_iterator fargsI = Parent::prepareBindings(); size_t sizeLateContextDemand = contextCompiler.getFunctionDemandSize(); if (sizeLateContextDemand) { fargsI->setName("latecontext"); contextCompiler.rawContextArgument = &*fargsI; ++fargsI; } return fargsI; } public: context::LateContextCompiler2 contextCompiler; }; }} //end of namespace xreate::context namespace xreate { namespace compilation{ std::string BasicFunctionUnit::prepareName(){ AST* ast = IFunctionUnit::pass->man->root; string name = ast->getFunctionSpecializations(IFunctionUnit::function->__name).size() > 1 ? IFunctionUnit::function->__name + std::to_string(IFunctionUnit::function.id()) : IFunctionUnit::function->__name; return name; } std::vector BasicFunctionUnit::prepareArguments() { LLVMLayer* llvm = IFunctionUnit::pass->man->llvm; AST* ast = IFunctionUnit::pass->man->root; CodeScope* entry = IFunctionUnit::function->__entry; std::vector signature; std::transform(entry->__bindings.begin(), entry->__bindings.end(), std::inserter(signature, signature.end()), [llvm, ast, entry](const std::string & arg)->llvm::Type* { assert(entry->__identifiers.count(arg)); ScopedSymbol argid{entry->__identifiers.at(arg), versions::VERSION_NONE}; return llvm->toLLVMType(ast->expandType(entry->__declarations.at(argid).type)); }); return signature; } llvm::Type* BasicFunctionUnit::prepareResult() { LLVMLayer* llvm = IFunctionUnit::pass->man->llvm; AST* ast = IFunctionUnit::pass->man->root; CodeScope* entry = IFunctionUnit::function->__entry; return llvm->toLLVMType(ast->expandType(entry->__declarations.at(ScopedSymbol::RetSymbol).type)); } llvm::Function::arg_iterator BasicFunctionUnit::prepareBindings() { CodeScope* entry = IFunctionUnit::function->__entry; ICodeScopeUnit* entryCompilation = IFunctionUnit::getScopeUnit(entry); llvm::Function::arg_iterator fargsI = IFunctionUnit::raw->arg_begin(); for (std::string &arg : entry->__bindings) { ScopedSymbol argid{entry->__identifiers[arg], versions::VERSION_NONE}; entryCompilation->bindArg(&*fargsI, argid); fargsI->setName(arg); ++fargsI; } return fargsI; } //DEBT compiler rigidly depends on exact definition of DefaultFunctionUnit typedef context::LateContextFunctionDecorator< adhoc::AdhocFunctionDecorator< BasicFunctionUnit>> DefaultFunctionUnit; ICodeScopeUnit::ICodeScopeUnit(const CodeScope* const codeScope, IFunctionUnit* f, CompilePass* compilePass) : pass(compilePass), function(f), scope(codeScope), currentBlockRaw(nullptr) { } llvm::Value* CallStatementRaw::operator()(std::vector&& args, const std::string& hintDecl) { llvm::Function* calleeInfo = dyn_cast(__callee); if (calleeInfo) { auto argsFormal = calleeInfo->args(); int pos = 0; //SECTIONTAG types/convert function ret value for (auto argFormal = argsFormal.begin(); argFormal != argsFormal.end(); ++argFormal, ++pos) { args[pos] = typeinference::doAutomaticTypeConversion(args[pos], argFormal->getType(), llvm->builder); } } - return llvm->builder.CreateCall(__calleeTy, __callee, args, hintDecl); + //Do not name function call that returns Void. + std::string nameStatement = hintDecl; + if (calleeInfo->getReturnType()->isVoidTy()){ + nameStatement.clear(); + } + + return llvm->builder.CreateCall(__calleeTy, __callee, args, nameStatement); } //DESABLEDFEATURE implement inlining class CallStatementInline : public ICallStatement { public: CallStatementInline(IFunctionUnit* caller, IFunctionUnit* callee, LLVMLayer* l) : __caller(caller), __callee(callee), llvm(l) { } llvm::Value* operator()(std::vector&& args, const std::string& hintDecl) { //TOTEST inlining // CodeScopeUnit* entryCompilation = outer->getScopeUnit(function->__entry); // for(int i=0, size = args.size(); ibindArg(args.at(i), string(entryCompilation->scope->__bindings.at(i))); // } // // // return entryCompilation->compile(); return nullptr; } private: IFunctionUnit* __caller; IFunctionUnit* __callee; LLVMLayer* llvm; bool isInline() { // Symbol ret = Symbol{0, function->__entry}; // bool flagOnTheFly = SymbolAttachments::get(ret, false); //TODO consider inlining return false; } }; BasicCodeScopeUnit::BasicCodeScopeUnit(const CodeScope* const codeScope, IFunctionUnit* f, CompilePass* compilePass) : ICodeScopeUnit(codeScope, f, compilePass) { } llvm::Value* BasicCodeScopeUnit::processSymbol(const Symbol& s, std::string hintRetVar) { Expression declaration = CodeScope::getDefinition(s); const CodeScope* scope = s.scope; ICodeScopeUnit* scopeExternal = ICodeScopeUnit::function->getScopeUnit(scope); llvm::Value* resultRaw; if (scopeExternal == this){ resultRaw = process(declaration, hintRetVar); currentBlockRaw = pass->man->llvm->builder.GetInsertBlock(); } else { assert(scopeExternal->currentBlockRaw); llvm::BasicBlock* blockOwn = pass->man->llvm->builder.GetInsertBlock(); pass->man->llvm->builder.SetInsertPoint(scopeExternal->currentBlockRaw); resultRaw = scopeExternal->processSymbol(s, hintRetVar); pass->man->llvm->builder.SetInsertPoint(blockOwn); } return resultRaw; } //TASK Isolate out context functionalty in decorator //TOTEST static late context decisions //TOTEST dynamic late context decisions ICallStatement* BasicCodeScopeUnit::findFunction(const Expression& opCall) { const std::string& calleeName = opCall.getValueString(); LLVMLayer* llvm = pass->man->llvm; ClaspLayer* clasp = pass->man->clasp; DefaultFunctionUnit* function = dynamic_cast (this->function); context::ContextQuery* queryContext = pass->queryContext; const std::list& specializations = pass->man->root->getFunctionSpecializations(calleeName); //if no specializations registered - check external function if (specializations.size() == 0) { llvm::Function* external = llvm->layerExtern->lookupFunction(calleeName); llvm::outs() << "Debug/External function: " << calleeName; external->getType()->print(llvm::outs(), true); llvm::outs() << "\n"; return new CallStatementRaw(external, llvm); } //no decisions required if (specializations.size() == 1) { if (!specializations.front()->guardContext.isValid()) { return new CallStatementRaw(pass->getFunctionUnit(specializations.front())->compile(), llvm); } } //TODO move dictSpecialization over to a separate function in order to perform cache, etc. //prepare specializations dictionary std::map dictSpecializations; boost::optional variantDefault; boost::optional variant; for (const ManagedFnPtr& f : specializations) { const Expression& guard = f->guardContext; //default case: if (!guard.isValid()) { variantDefault = f; continue; } assert(dictSpecializations.emplace(guard, f).second && "Found several identical specializations"); } //check static context ScopePacked scopeCaller = clasp->pack(this->scope); const string atomSpecialization = "specialization"; const Expression topicSpecialization(Operator::CALL,{(Atom(string(atomSpecialization))), Expression(Operator::CALL, {Atom(string(calleeName))}), Atom(scopeCaller)}); const context::Decisions& decisions = queryContext->getFinalDecisions(scopeCaller); if (decisions.count(topicSpecialization)) { variant = dictSpecializations.at(decisions.at(topicSpecialization)); } //TODO check only demand for this particular topic. size_t sizeDemand = function->contextCompiler.getFunctionDemandSize(); //decision made if static context found or no late context exists(and there is default variant) bool flagHasStaticDecision = variant || (variantDefault && !sizeDemand); //if no late context exists if (flagHasStaticDecision) { IFunctionUnit* calleeUnit = pass->getFunctionUnit(variant ? *variant : *variantDefault); //inlining possible based on static decision only // if (calleeUnit->isInline()) { // return new CallStatementInline(function, calleeUnit); // } return new CallStatementRaw(calleeUnit->compile(), llvm); } //require default variant if no static decision made assert(variantDefault); llvm::Function* functionVariantDefault = this->pass->getFunctionUnit(*variantDefault)->compile(); llvm::Value* resultFn = function->contextCompiler.findFunction(calleeName, functionVariantDefault, scopeCaller); llvm::PointerType *resultPTy = cast(resultFn->getType()); llvm::FunctionType *resultFTy = cast(resultPTy->getElementType()); return new CallStatementRaw(resultFn, resultFTy, llvm); } //DISABLEDFEATURE transformations // if (pass->transformations->isAcceptable(expr)){ // return pass->transformations->transform(expr, result, ctx); // } llvm::Value* BasicCodeScopeUnit::process(const Expression& expr, const std::string& hintVarDecl) { #define DEFAULT(x) (hintVarDecl.empty()? x: hintVarDecl) llvm::Value *left; llvm::Value *right; LLVMLayer& l = *pass->man->llvm; xreate::compilation::AdvancedInstructions instructions = xreate::compilation::AdvancedInstructions({this, function, pass}); switch (expr.op) { case Operator::SUB: case Operator::MUL: case Operator::DIV: case Operator::EQU: case Operator::LSS: case Operator::GTR: case Operator::NE: case Operator::LSE: case Operator::GTE: assert(expr.__state == Expression::COMPOUND); assert(expr.operands.size() == 2); left = process(expr.operands[0]); right = process(expr.operands[1]); //SECTIONTAG types/convert binary operation right = typeinference::doAutomaticTypeConversion(right, left->getType(), l.builder); break; default:; } switch (expr.op) { case Operator::ADD: { left = process(expr.operands[0]); Context context{this, function, pass}; llvm::Value* resultSU = StructUpdate::add(expr.operands[0], left, expr.operands[1], context, DEFAULT("tmp_add")); if (resultSU) return resultSU; right = process(expr.operands[1]); llvm::Value* resultAddPA = pointerarithmetic::PointerArithmetic::add(left, right, context, DEFAULT("tmp_add")); if (resultAddPA) { return resultAddPA; } return l.builder.CreateAdd(left, right, DEFAULT("tmp_add")); break; } case Operator::SUB: return l.builder.CreateSub(left, right, DEFAULT("tmp_sub")); break; case Operator::MUL: return l.builder.CreateMul(left, right, DEFAULT("tmp_mul")); break; case Operator::DIV: return l.builder.CreateSDiv(left, right, DEFAULT("tmp_div")); break; case Operator::EQU: if (left->getType()->isIntegerTy()) return l.builder.CreateICmpEQ(left, right, DEFAULT("tmp_equ")); if (left->getType()->isFloatingPointTy()) return l.builder.CreateFCmpOEQ(left, right, DEFAULT("tmp_equ")); break; case Operator::NE: return l.builder.CreateICmpNE(left, right, DEFAULT("tmp_ne")); break; case Operator::LSS: return l.builder.CreateICmpSLT(left, right, DEFAULT("tmp_lss")); break; case Operator::LSE: return l.builder.CreateICmpSLE(left, right, DEFAULT("tmp_lse")); break; case Operator::GTR: return l.builder.CreateICmpSGT(left, right, DEFAULT("tmp_gtr")); break; case Operator::GTE: return l.builder.CreateICmpSGE(left, right, DEFAULT("tmp_gte")); break; case Operator::NEG: left = process(expr.operands[0]); return l.builder.CreateNeg(left, DEFAULT("tmp_neg")); break; case Operator::CALL: { assert(expr.__state == Expression::COMPOUND); shared_ptr callee(findFunction(expr)); const std::string& nameCallee = expr.getValueString(); //prepare arguments std::vector args; args.reserve(expr.operands.size()); std::transform(expr.operands.begin(), expr.operands.end(), std::inserter(args, args.end()), [this](const Expression & operand) { return process(operand); } ); ScopePacked outerScopeId = pass->man->clasp->pack(this->scope); //TASK a) refactor CALL/ADHOC/find function //SECTIONTAG late-context propagation arg size_t calleeDemandSize = pass->queryContext->getFunctionDemand(nameCallee).size(); if (calleeDemandSize) { DefaultFunctionUnit* function = dynamic_cast (this->function); llvm::Value* argLateContext = function->contextCompiler.compileContextArgument(nameCallee, outerScopeId); args.push_back(argLateContext); } return (*callee)(move(args), DEFAULT("res_" + nameCallee)); } case Operator::IF: { return instructions.compileIf(expr, DEFAULT("tmp_if")); } case Operator::SWITCH: { return instructions.compileSwitch(expr, DEFAULT("tmp_switch")); } case Operator::LOOP_CONTEXT: { assert(false); return nullptr; //return instructions.compileLoopContext(expr, DEFAULT("tmp_loop")); } case Operator::LOGIC_AND: { assert(expr.operands.size() == 1); return process(expr.operands[0]); } case Operator::LIST: { return instructions.compileListAsSolidArray(expr, DEFAULT("tmp_list")); }; case Operator::LIST_RANGE: { assert(false); //no compilation phase for a range list // return InstructionList(this).compileConstantArray(expr, l, hintRetVar); }; case Operator::LIST_NAMED: { typedef Expanded ExpandedType; ExpandedType tyStructLiteral = l.ast->getType(expr); const std::vector fieldsFormal = (tyStructLiteral.get().__operator == TypeOperator::CUSTOM) ? l.layerExtern->getStructFields(l.layerExtern->lookupType(tyStructLiteral.get().__valueCustom)) : tyStructLiteral.get().fields; std::map indexFields; for (size_t i = 0, size = fieldsFormal.size(); i < size; ++i) { indexFields.emplace(fieldsFormal[i], i); } llvm::StructType* tyLiteralRaw = llvm::cast(l.toLLVMType(tyStructLiteral)); llvm::Value* record = llvm::UndefValue::get(tyLiteralRaw); for (size_t i = 0; i < expr.operands.size(); ++i) { const Expression& operand = expr.operands.at(i); unsigned int fieldId = indexFields.at(expr.bindings.at(i)); llvm::Value* result = process(operand); assert(result); record = l.builder.CreateInsertValue(record, result, llvm::ArrayRef({fieldId})); } return record; }; case Operator::MAP: { assert(expr.blocks.size()); return instructions.compileMapSolidOutput(expr, DEFAULT("map")); }; case Operator::FOLD: { return instructions.compileFold(expr, DEFAULT("fold")); }; case Operator::FOLD_INF: { return instructions.compileFoldInf(expr, DEFAULT("fold")); }; case Operator::INDEX: { //TASK allow multiindex compilation assert(expr.operands.size() == 2); assert(expr.operands[0].__state == Expression::IDENT); const std::string& hintIdent = expr.operands[0].getValueString(); Symbol s = Attachments::get(expr.operands[0]); const ExpandedType& t2 = pass->man->root->getType(expr.operands[0]); llvm::Value* aggr = processSymbol(s, hintIdent); switch (t2.get().__operator) { case TypeOperator::LIST_NAMED: case TypeOperator::CUSTOM: { std::string idxField; const Expression& idx = expr.operands.at(1); switch (idx.__state) { //named struct field case Expression::STRING: idxField = idx.getValueString(); break; //anonymous struct field case Expression::NUMBER: idxField = to_string((int) idx.getValueDouble()); break; default: assert(false && "Wrong index for a struct"); } return instructions.compileStructIndex(aggr, t2, idxField); }; case TypeOperator::LIST: { std::vector indexes; std::transform(++expr.operands.begin(), expr.operands.end(), std::inserter(indexes, indexes.end()), [this] (const Expression & op) { return process(op); } ); return instructions.compileArrayIndex(aggr, indexes, DEFAULT(string("el_") + hintIdent)); }; default: assert(false); } }; //SECTIONTAG adhoc actual compilation //TODO a) make sure that it's correct: function->adhocImplementation built for Entry scope and used in another scope case Operator::ADHOC: { DefaultFunctionUnit* function = dynamic_cast (this->function); assert(function->adhocImplementation && "Adhoc implementation not found"); const Expression& comm = adhoc::AdhocExpression(expr).getCommand(); CodeScope* scope = function->adhocImplementation->getCommandImplementation(comm); ICodeScopeUnit* unitScope = function->getScopeUnit(scope); //SECTIONTAG types/convert ADHOC ret convertation llvm::Type* resultTy = l.toLLVMType(pass->man->root->expandType(function->adhocImplementation->getResultType())); return typeinference::doAutomaticTypeConversion(unitScope->compile(), resultTy, l.builder); }; case Operator::CALL_INTRINSIC: { const std::string op = expr.getValueString(); if (op == "copy") { llvm::Value* result = process(expr.getOperands().at(0)); auto decoratorVersions = Decorators::getInterface(this); llvm::Value* storage = decoratorVersions->processIntrinsicInit(result->getType()); decoratorVersions->processIntrinsicCopy(result, storage); return l.builder.CreateLoad(storage, hintVarDecl); } assert(false && "undefined intrinsic"); } case Operator::VARIANT: { const ExpandedType& typVariant = pass->man->root->getType(expr); llvm::Type* typVariantRaw = l.toLLVMType(typVariant); llvm::Type* typIdRaw = llvm::cast(typVariantRaw)->getElementType(0); uint64_t id = expr.getValueDouble(); llvm::Value* variantRaw = llvm::UndefValue::get(typVariantRaw); variantRaw = l.builder.CreateInsertValue(variantRaw, llvm::ConstantInt::get(typIdRaw, id), llvm::ArrayRef({0})); const bool flagDoReference = expr.operands.size(); if (flagDoReference){ const ExpandedType& subtyp = ExpandedType(typVariant->__operands.at(id)); llvm::Type* subtypRaw = l.toLLVMType(subtyp); Attachments::put(expr.operands.at(0), subtyp); llvm::Value* subtypValue = process(expr.operands.at(0)); llvm::Type* typStorageRaw = llvm::cast(typVariantRaw)->getElementType(1); llvm::Value* addrAsStorage = l.builder.CreateAlloca(typStorageRaw); llvm::Value* addrAsSubtyp = l.builder.CreateBitOrPointerCast(addrAsStorage, subtypRaw->getPointerTo()); l.builder.CreateStore(subtypValue, addrAsSubtyp); llvm::Value* storageRaw = l.builder.CreateLoad(typStorageRaw, addrAsStorage); variantRaw = l.builder.CreateInsertValue(variantRaw, storageRaw, llvm::ArrayRef({1})); } return variantRaw; } case Operator::SWITCH_VARIANT: { return instructions.compileSwitchVariant(expr, DEFAULT("tmpswitch")); } + case Operator::SEQUENCE: + { + return instructions.compileSequence(expr); + } + case Operator::NONE: assert(expr.__state != Expression::COMPOUND); switch (expr.__state) { case Expression::IDENT: { Symbol s = Attachments::get(expr); return processSymbol(s, expr.getValueString()); } case Expression::NUMBER: { llvm::Type* typConst; if (expr.type.isValid()) { typConst = l.toLLVMType(pass->man->root->getType(expr)); } else { typConst = llvm::Type::getInt32Ty(llvm::getGlobalContext()); } int literal = expr.getValueDouble(); return llvm::ConstantInt::get(typConst, literal); } case Expression::STRING: { return instructions.compileConstantStringAsPChar(expr.getValueString(), DEFAULT("tmp_str")); }; default: { break; } }; break; default: break; } assert(false && "Can't compile expression"); return 0; } llvm::Value* BasicCodeScopeUnit::compile(const std::string& hintBlockDecl) { if (!hintBlockDecl.empty()) { llvm::BasicBlock *block = llvm::BasicBlock::Create(llvm::getGlobalContext(), hintBlockDecl, function->raw); pass->man->llvm->builder.SetInsertPoint(block); } currentBlockRaw = pass->man->llvm->builder.GetInsertBlock(); Symbol symbScope = Symbol{ScopedSymbol::RetSymbol, scope}; return processSymbol(symbScope); } ICodeScopeUnit::~ICodeScopeUnit() { } IFunctionUnit::~IFunctionUnit() { } llvm::Function* IFunctionUnit::compile() { if (raw != nullptr) return raw; LLVMLayer* llvm = pass->man->llvm; llvm::IRBuilder<>& builder = llvm->builder; string&& functionName = prepareName(); std::vector&& types = prepareArguments(); llvm::Type* expectedResultType = prepareResult(); llvm::FunctionType *ft = llvm::FunctionType::get(expectedResultType, types, false); raw = llvm::cast(llvm->module->getOrInsertFunction(functionName, ft)); prepareBindings(); const std::string&blockName = "entry"; llvm::BasicBlock* blockCurrent = builder.GetInsertBlock(); llvm::Value* result = getScopeUnit(function->__entry)->compile(blockName); assert(result); //SECTIONTAG types/convert function ret value builder.CreateRet(typeinference::doAutomaticTypeConversion(result, expectedResultType, llvm->builder)); if (blockCurrent) { builder.SetInsertPoint(blockCurrent); } llvm->moveToGarbage(ft); return raw; } ICodeScopeUnit* IFunctionUnit::getScopeUnit(const CodeScope * const scope) { if (__scopes.count(scope)) { auto result = __scopes.at(scope).lock(); if (result) { return result.get(); } } std::shared_ptr unit(pass->buildCodeScopeUnit(scope, this)); if (scope->__parent != nullptr) { auto parentUnit = Decorators::getInterface(getScopeUnit(scope->__parent)); parentUnit->registerChildScope(unit); } else { __orphanedScopes.push_back(unit); } if (!__scopes.emplace(scope, unit).second) { __scopes[scope] = unit; } return unit.get(); } ICodeScopeUnit* IFunctionUnit::getScopeUnit(ManagedScpPtr scope) { return getScopeUnit(&*scope); } ICodeScopeUnit* IFunctionUnit::getEntry() { return getScopeUnit(function->getEntryScope()); } template<> compilation::IFunctionUnit* CompilePassCustomDecorators::buildFunctionUnit(const ManagedFnPtr& function){ return new DefaultFunctionUnit(function, this); } template<> compilation::ICodeScopeUnit* CompilePassCustomDecorators::buildCodeScopeUnit(const CodeScope* const scope, IFunctionUnit* function){ return new DefaultCodeScopeUnit(scope, function, this); } } // emf of compilation IFunctionUnit* CompilePass::getFunctionUnit(const ManagedFnPtr& function) { unsigned int id = function.id(); if (!functions.count(id)) { IFunctionUnit* unit = buildFunctionUnit(function); functions.emplace(id, unit); return unit; } return functions.at(id); } void CompilePass::run() { managerTransformations = new TransformationsManager(); targetInterpretation = new interpretation::TargetInterpretation(this->man->root, this); queryContext = reinterpret_cast (man->clasp->getQuery(QueryId::ContextQuery)); //Find out main function; ClaspLayer::ModelFragment model = man->clasp->query(Config::get("function-entry")); assert(model && "Error: No entry function found"); assert(model->first != model->second && "Error: Ambiguous entry function"); string nameMain = std::get<0>(ClaspLayer::parse(model->first->second)); IFunctionUnit* unitMain = getFunctionUnit(man->root->findFunction(nameMain)); entry = unitMain->compile(); } llvm::Function* CompilePass::getEntryFunction() { assert(entry); return entry; } void CompilePass::prepareQueries(ClaspLayer* clasp) { clasp->registerQuery(new containers::Query(), QueryId::ContainersQuery); clasp->registerQuery(new context::ContextQuery(), QueryId::ContextQuery); Attachments::init(); clasp->registerQuery(new polymorph::PolymorphQuery(), QueryId::PolymorphQuery); } } //end of namespace xreate /** * \class xreate::CompilePass * \brief Encapsulates all compilation activities * * xreate::CompilePass iterates over xreate::AST tree and produces executable code fed by data(via xreate::Attachments) gathered by previous passes as well as data via queries(xreate::IQuery) from xreate:ClaspLayer reasoner. * Compilation's done using xreate::LLVMLayer(wrapper over LLVM toolchain) and based on following aspects: * - Containers support. See \ref compilation/containers.h * - Late Conext compilation. See xreate::context::LateContextCompiler2 * - Interpretation support. See xreate::interpretation::TargetInterpretation * - Loop saturation support. See xreate::compilation::TransformerSaturation * - External Code access. See xreate::ExternLayer(wrapper over Clang library) * * \section adaptability_sect Adaptability * xreate::CompilePass's architecture provides adaptability by employing: * - %Function Decorators to alter function-level compilation. See xreate::compilation::IFunctionUnit * - Code Block Decorators to alter code block level compilation. See xreate::compilation::ICodeScopeUnit * Default functionality defined by \ref xreate::compilation::DefaultCodeScopeUnit * - Targets to allow more versitile extensions. * Currently only xreate::interpretation::TargetInterpretation use Targets infrastructure. See xreate::compilation::Target * - %Altering Function invocation. xreate::compilation::ICallStatement * * Client able to construct compiler with desired decorators using xreate::compilation::CompilePassCustomDecorators. * As a handy alias, `CompilePassCustomDecorators` constructs default compiler * */ diff --git a/cpp/tests/cfa.cpp b/cpp/tests/cfa.cpp index 7681f73..65ee929 100644 --- a/cpp/tests/cfa.cpp +++ b/cpp/tests/cfa.cpp @@ -1,122 +1,122 @@ /* Any copyright is dedicated to the Public Domain. * http://creativecommons.org/publicdomain/zero/1.0/ * * testsCFG.cpp * * Created on: Jul 17, 2015 * Author: pgess */ #include "xreatemanager.h" #include "pass/dfapass.h" #include "pass/cfapass.h" #include "analysis/DominatorsTreeAnalysisProvider.h" #include "gtest/gtest.h" #include #include using namespace xreate; using namespace xreate::cfa; using namespace std; TEST(CFA, testFunctionAnnotationsClasp){ string&& program = "f2 = function::int; annotationF2 {\n" " 0\n" "}\n" "\n" "f1 = function:: int; entry; annotationF1 {\n" " f2() + 10\n" "}"; details::tier1::XreateManager* man = details::tier1::XreateManager::prepare(move(program)); man->analyse(); ClaspLayer::ModelFragment answer = man->clasp->query("annotationF1"); int countNoneValue = 0; if (answer) countNoneValue = std::distance(answer->first, answer->second); EXPECT_EQ(1, countNoneValue); answer = man->clasp->query("annotationF2"); countNoneValue = 0; if (answer) countNoneValue = std::distance(answer->first, answer->second); EXPECT_EQ(1, countNoneValue); } TEST(CFA, testLoopContextExists){ details::tier1::XreateManager* man = details::tier1::XreateManager::prepare ( "interface(cfa){\n" " operator fold:: annotation1.\n" "}\n" "\n" "main = function:: int; entry {\n" " x = [1..10]:: [int].\n" " sum = loop fold (x->el:: int, 0->sum):: int {\n" " el + sum + f1()\n" " }. \n" " sum\n" "}" "case context:: annotation1 {" " f1 = function::int {\n" " x = 0:: int. " " x\n" " }" "}" ); man->analyse(); ClaspLayer::ModelFragment model = man->clasp->query("annotation1"); ScopePacked scopeIdActual = std::get<0>(ClaspLayer::parse(model->first->second)); CodeScope* scopeEntry = man->root->findFunction("main")->getEntryScope(); const Expression& exprSum = scopeEntry->getDefinition(scopeEntry->getSymbol("sum")); CodeScope* scopeExpected = exprSum.blocks.front(); ScopePacked scopeIdExpected = man->clasp->pack(scopeExpected); ASSERT_EQ(scopeIdExpected, scopeIdActual); } TEST(CFA, CFGRoots){ -// std::string program = -//R"CODE( -// main = function::int{a()+ b()} -// a= function::int {c1() + c2()} -// b= function::int {c2()} -// c1=function::int{0} -// c2=function::int{0} -//)CODE"; -// -// boost::scoped_ptr manager -// (XreateManager::prepare(move(program))); -// + std::string program = +R"CODE( + main = function::int{a()+ b()} + a= function::int {c1() + c2()} + b= function::int {c2()} + c1=function::int{0} + c2=function::int{0} +)CODE"; + + std::unique_ptr man(details::tier1::XreateManager::prepare(move(program))); + man->analyse(); + // manager->registerPass(new CFAPass(manager.get()) , PassId::CFGPass); // manager->executePasses(); // manager->clasp->run(); // // dominators::DominatorsTreeAnalysisProvider domProvider; // domProvider.run(manager->clasp); // // dominators::DominatorsTreeAnalysisProvider::Dominators expectedFDom= { // {0, {0, 9}} // ,{1, {1, 4}} // ,{2, {7, 8}} // ,{3, {2, 3}} // ,{4, {5, 6}} // }; // // dominators::DominatorsTreeAnalysisProvider::Dominators expectedPostDom= { // {0, {5, 6}} // ,{1, {3, 4}} // ,{2, {8, 9}} // ,{3, {1, 2}} // ,{4, {7, 10}} // }; // // ASSERT_EQ(expectedFDom, domProvider.getForwardDominators()); // ASSERT_EQ(expectedPostDom, domProvider.getPostDominators()); } diff --git a/cpp/tests/compilation.cpp b/cpp/tests/compilation.cpp index 5e61494..11cef99 100644 --- a/cpp/tests/compilation.cpp +++ b/cpp/tests/compilation.cpp @@ -1,201 +1,228 @@ /* Any copyright is dedicated to the Public Domain. * http://creativecommons.org/publicdomain/zero/1.0/ * * compilation.cpp * * Created on: - * Author: pgess */ #include "xreatemanager.h" #include "gtest/gtest.h" using namespace xreate; //DEBT implement no pkgconfig ways to link libs //TOTEST FunctionUnit::compileInline TEST(Compilation, functionEntry1){ std::unique_ptr program(XreateManager::prepare( "func1 = function(a:: int):: int {a+8} \ func2 = function::int; entry {12 + func1(4)} \ ")); void* entryPtr = program->run(); int (*entry)() = (int (*)())(intptr_t)entryPtr; int answer = entry(); ASSERT_EQ(24, answer); } TEST(Compilation, full_IFStatementWithVariantType){ XreateManager* man = XreateManager::prepare( "Color = type variant {RED, BLUE, GREEN}.\n" "\n" " main = function(x::int):: bool; entry {\n" " color = if (x == 0 )::Color {RED()} else {BLUE()}.\n" " if (color == BLUE())::bool {true} else {false}\n" " }" ); bool (*main)(int) = (bool (*)(int)) man->run(); ASSERT_FALSE(main(0)); ASSERT_TRUE(main(1)); } TEST(Compilation, full_Variant1){ XreateManager* man = XreateManager::prepare(R"Code( OneArgument = type{x::int}. TwoArguments = type{x::int, y::int}. Command= type variant{ Add::TwoArguments, Dec::OneArgument }. main = function::Command; entry { Dec({x=2})::Command } )Code"); void (*main)() = (void (*)()) man->run(); } TEST(Compilation, full_SwitchVariant1){ XreateManager* man = XreateManager::prepare(R"Code( OneArgument = type{x::int}. TwoArguments = type{x::int, y::int}. Command= type variant{ Add::TwoArguments, Dec::OneArgument }. main = function::int; entry { //command = Dec({x = 8}):: Command. command = Add({x= 3, y= 5}):: Command. switch variant(command)::int case(Add){command["x"] + command["y"]} case(Dec){command["x"]} } )Code"); int (*mainFn)() = (int (*)()) man->run(); int result = mainFn(); ASSERT_EQ(8, result); } TEST(Compilation, full_SwitchVariantNoArguments2){ XreateManager* man = XreateManager::prepare(R"Code( Command= type variant{Add, Dec}. main = function::int; entry { command = Dec():: Command. switch variant(command)::int case(Add){0} case(Dec){1} } )Code"); int (*mainFn)() = (int (*)()) man->run(); int result = mainFn(); ASSERT_EQ(1, result); } TEST(Compilation, full_SwitchVariantMixedArguments3){ XreateManager* man = XreateManager::prepare(R"Code( TwoArguments = type{x::int, y::int}. Command= type variant{ Add::TwoArguments, Dec }. main = function(arg::int):: int; entry { command = if (arg > 0)::Command {Dec()} else {Add({x=1,y=2})}. switch variant(command)::int case(Add){0} case(Dec){1} } )Code"); int (*mainFn)(int) = (int (*)(int)) man->run(); int result = mainFn(5); ASSERT_EQ(1, result); } TEST(Compilation, full_StructUpdate){ XreateManager* man = XreateManager::prepare( R"Code( Rec = type { a :: int, b:: int }. test= function:: int; entry { a = {a = 18, b = 20}:: Rec. b = a + {a = 11}:: Rec. b["a"] } )Code"); int (*main)() = (int (*)()) man->run(); int result = main(); ASSERT_EQ(11, result); } TEST(Compilation, AnonymousStruct_init_index){ std::string code = R"Code( main = function:: int; entry { x = {10, 15} :: {int, int}. x[1] } )Code"; std::unique_ptr man(XreateManager::prepare(move(code))); int (*main)() = (int (*)()) man->run(); EXPECT_EQ(15, main()); } TEST(Compilation, AnonymousStruct_init_update){ std::string code = R"Code( main = function:: int; entry { x = {10, 15} :: {int, int}. y = x + {6}:: {int, int}. y[0] } )Code"; std::unique_ptr man(XreateManager::prepare(move(code))); int (*main)() = (int (*)()) man->run(); EXPECT_EQ(6, main()); } TEST(Compilation, BugIncorrectScopes1){ std::string code = R"Code( init = function:: int {10} main = function(cmd:: int):: int; entry { x = init():: int. if(cmd > 0):: int { x + 1 } else { x } } )Code"; std::unique_ptr man(XreateManager::prepare(move(code))); int (*mainFn)(int) = (int (*)(int)) man->run(); EXPECT_EQ(11, mainFn(1)); } +TEST(Compilation, Sequence1){ + std::string code = +R"Code( + interface(extern-c){ + libbsd = library:: pkgconfig("libbsd"). + + include { + libbsd = ["bsd/stdlib.h", "string.h"] + }. + } + + start = function:: i32; entry { + seq { + nameNew = "TestingSequence":: string. + setprogname(nameNew) + + } {strlen(getprogname())}::i32 + } +)Code"; + + std::unique_ptr man(XreateManager::prepare(move(code))); + int (*startFn)() = (int (*)()) man->run(); + + int nameNewLen = startFn(); + ASSERT_EQ(15, nameNewLen); +} + diff --git a/grammar/xreate.ATG b/grammar/xreate.ATG index 455871e..5b18378 100644 --- a/grammar/xreate.ATG +++ b/grammar/xreate.ATG @@ -1,657 +1,664 @@ //TODO add ListLiteral //TODO ExprTyped: assign default(none) type #include "ast.h" #include "ExternLayer.h" #include "pass/adhocpass.h" #include #include #define wprintf(format, ...) \ char __buffer[100]; \ wcstombs(__buffer, format, 100); \ fprintf(stderr, __buffer, __VA_ARGS__) using namespace std; COMPILER Xreate details::inconsistent::AST* root = nullptr; // current program unit void ensureInitalizedAST(){ if (root == nullptr) root = new details::inconsistent::AST(); } struct { std::stack scopesOld; CodeScope* scope = nullptr; } context; void pushContextScope(CodeScope* scope){ context.scopesOld.push(context.scope); context.scope = scope; } void popContextScope(){ context.scope = context.scopesOld.top(); context.scopesOld.pop(); } int nextToken() { scanner->ResetPeek(); return scanner->Peek()->kind; } bool checkTokenAfterIdent(int key){ if (la->kind != _ident) return false; return nextToken() == key; } bool checkParametersList() { return la->kind == _ident && nextToken() == _lparen; } bool checkInfix() { return la->kind == _ident && nextToken() == _ident; } bool checkIndex() { return la->kind == _ident && nextToken() == _lbrack; } bool checkFuncDecl() { if (la->kind != _ident) return false; int token2 = nextToken(); int token3 = scanner->Peek()->kind; return token2 == _assign && (token3 == _function || token3 == _pre); } bool checkAssignment() { if (la->kind != _ident) return false; scanner->ResetPeek(); int token2 = scanner->Peek()->kind; if (token2 == _lcurbrack) { scanner->Peek(); int token3 = scanner->Peek()->kind; if (token3 != _rcurbrack) return false; int token4 = scanner->Peek()->kind; return token4 == _assign; } return token2 == _assign; } void recognizeIdentifier(Expression& i){ if (!context.scope->recognizeIdentifier(i)){ root->postponeIdentifier(context.scope, i); } } enum SwitchKind{SWITCH_NORMAL, SWITCH_META}; CHARACTERS letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz". any = ANY - '"'. digit = "0123456789". cr = '\r'. lf = '\n'. tab = '\t'. TOKENS ident = (letter | '_') {letter | digit | '_'}. number = (digit | '-' digit) {digit}. string = '"' { any } '"'. function = "function". pre = "pre". lparen = '('. rparen = ')'. lbrack = '['. rbrack = ']'. lcurbrack = '{'. rcurbrack = '}'. equal = "==". assign = '='. implic = '-' '>'. colon = ':'. context = "context". tagcolon = "::". lse = "<=". lss = "<". gte = ">=". gtr = ">". ne1 = "!=". ne2= "<>". COMMENTS FROM "/*" TO "*/" NESTED COMMENTS FROM "//" TO lf IGNORE cr + lf + tab PRODUCTIONS Xreate = (. Function* function; ensureInitalizedAST(); .) {( RuleDecl | InterfaceData | Imprt | ContextSection | GuardSection | IF(checkFuncDecl()) FDecl (. root->add(function); .) | TDecl | SkipModulesSection )} (. .) . Ident = ident (. name = t->val; .). VarIdent = ident (. e = Expression(Atom(t->val)); .) [ lcurbrack ( ident (. SemErr(coco_string_create("var version as ident is not implemented yet")); .) | number (. Attachments::put(e, Atom(t->val).get()); .) ) rcurbrack ] . FDecl = (. std::wstring fname; std::wstring argName; TypeAnnotation typIn; TypeAnnotation typOut; bool flagIsPrefunct = false; Expression binding; .) Ident assign [pre (. flagIsPrefunct = true; .)] function (. f = new Function(fname); f->isPrefunction = flagIsPrefunct; CodeScope* entry = f->getEntryScope(); .) ['(' Ident tagcolon ExprAnnotations (. f->addBinding(Atom(argName), move(binding)); .) {',' Ident tagcolon ExprAnnotations (. f->addBinding(Atom (argName), move(binding));.) } ')'] [ tagcolon ( IF(flagIsPrefunct) FnTag | Type ) {';' FnTag }] BDecl (. const_cast(entry->getBody()).bindType(move(typOut));.) . ContextSection<>= (. Expression context; Function* f; .) "case" "context" tagcolon MetaSimpExpr lcurbrack { FDecl (. f->guardContext = context; root->add(f); .) } rcurbrack. GuardSection<>= (. Expression guard; Function* f; .) "guard" tagcolon MetaSimpExpr lcurbrack { FDecl (. f->guard = guard; root->add(f); .) } rcurbrack. /** * TYPES * */ TypeTerm = (. std::wstring tid; .) ("string" (. typ = TypePrimitive::String;.) | "num" (. typ = TypePrimitive::Num;.) | "int" (. typ = TypePrimitive::Int;.) | "float" (. typ = TypePrimitive::Float;.) | "bool" (. typ = TypePrimitive::Bool; .) | "i8" (. typ = TypePrimitive::I8; .) | "i32" (. typ = TypePrimitive::I32; .) | "i64" (. typ = TypePrimitive::I64; .) ). Type = (. TypeAnnotation typ2; TypePrimitive typ3; std::wstring tid, field; .) ( TList | TStruct | TVariant | TypeTerm (. typ = typ3; .) | IF (checkIndex()) Ident lbrack Ident (. typ = TypeAnnotation(TypeOperator::ACCESS, {}); typ.__valueCustom = Atom(tid).get(); typ.fields.push_back(Atom(field).get()); .) {',' Ident (. typ.fields.push_back(Atom(field).get()); .) } rbrack | Ident (. typ = TypeAnnotation(TypeOperator::CUSTOM, {}); typ.__valueCustom = Atom(tid).get(); .) ['(' Type (. typ.__operator = TypeOperator::CALL; typ.__operands.push_back(typ2); .) {',' Type (. typ.__operands.push_back(typ2); .) } ')'] ) . TList = (. TypeAnnotation ty; .) '[' Type ']' (. typ = TypeAnnotation(TypeOperator::LIST, {ty}); .) . TStruct = (. TypeAnnotation t; std::wstring key; size_t keyCounter=0; .) lcurbrack ( IF(checkTokenAfterIdent(_tagcolon)) Ident tagcolon Type | Type (. key = to_wstring(keyCounter++); .) ) (. typ = TypeAnnotation(TypeOperator::LIST_NAMED, {t}); typ.fields.push_back(Atom(key).get()); .) {',' ( IF(checkTokenAfterIdent(_tagcolon)) Ident tagcolon Type | Type (. key = to_wstring(keyCounter++); .) ) (. typ.__operands.push_back(t); typ.fields.push_back(Atom(key).get()); .) } rcurbrack. TVariant= (. TypeAnnotation t, typVoid(TypeOperator::LIST_NAMED, {}); std::vector operands; std::vector> keys; std::wstring variant; .) "variant" lcurbrack Ident (. t=typVoid; .) [tagcolon Type] (. keys.push_back(Atom(variant)); operands.push_back(t); .) {',' Ident (. t=typVoid; .) [tagcolon Type] (. keys.push_back(Atom(variant)); operands.push_back(t); .) } rcurbrack (. typ = TypeAnnotation(TypeOperator::VARIANT, {}); typ.__operands = operands; typ.addFields(std::move(keys)); .) . TDecl = (. TypeAnnotation t; std::wstring tname, arg; std::vector> args; .) Ident assign "type" ['(' Ident (. args.push_back(Atom(arg)); .) {',' Ident (. args.push_back(Atom(arg)); .) } ')'] Type'.' (. t.addBindings(move(args)); root->add(move(t), Atom(tname)); .) . ContextDecl = (. Expression tag; .) context tagcolon MetaSimpExpr (. scope->tags.push_back(tag); .) {';' MetaSimpExpr (. scope->tags.push_back(tag); .) }. VDecl = (. std::wstring vname; Expression var, value;.) VarIdent assign ExprTyped (. Symbol identSymbol = f->addDefinition(move(var), move(value)); Attachments::put(value, identSymbol); .) . BDecl = lcurbrack (. Expression body; pushContextScope(scope); .) {(IF(checkAssignment()) VDecl '.' | RuleContextDecl | ContextDecl'.' | ExprTyped (. scope->setBody(body); Attachments::put(body, Symbol{ScopedSymbol::RetSymbol, scope});.) )} rcurbrack (. popContextScope(); .) . IfDecl = (. Expression cond; ManagedScpPtr blockTrue = root->add(new CodeScope(context.scope)); ManagedScpPtr blockFalse = root->add(new CodeScope(context.scope)); .) "if" '(' Expr ')' (. e = Expression(Operator::IF, {cond}); .) tagcolon ExprAnnotations BDecl<&*blockTrue> "else" BDecl<&*blockFalse> (. e.addBlock(blockTrue); e.addBlock(blockFalse); .) . LoopDecl = (. Expression eIn, eAcc, eFilters; std::wstring varEl, varAcc, contextClass; Expression tagsEl; ManagedScpPtr block = root->add(new CodeScope(context.scope)); .) "loop" ("map" '(' Expr implic Ident (. e = Expression(Operator::MAP, {eIn}); .) tagcolon ExprAnnotations ')' tagcolon ExprAnnotations (. e.addBindings({Atom(varEl)}); block->addBinding(Atom(varEl), move(tagsEl)); .) BDecl<&*block> (. e.addBlock(block); .) |"fold" ("inf" '(' Expr implic Ident ')' (. e = Expression(Operator::FOLD_INF, {eAcc}); e.addBindings({Atom(varAcc)}); block->addBinding(Atom(varAcc), Expression()); .) tagcolon ExprAnnotations BDecl<&*block> (. e.addBlock(block); .) | '(' Expr implic Ident tagcolon ExprAnnotations ['|' Expr ] ',' Expr implic Ident')' (. e = Expression(Operator::FOLD, {eIn, eAcc}); e.addBindings({Atom(varEl), Atom(varAcc)}); .) tagcolon ExprAnnotations (. block->addBinding(Atom(varEl), move(tagsEl)); block->addBinding(Atom(varAcc), Expression()); .) BDecl<&*block> (. e.addBlock(block); .) ) | "context" '(' string (. contextClass = t->val; .) ')' BDecl<&*block> (. e = Expression(Operator::LOOP_CONTEXT, {Expression(Atom(std::move(contextClass)))}); e.addBlock(block); .) ). // Switches SwitchDecl = (. TypeAnnotation typ; eSwitch = Expression(Operator::SWITCH, {}); Expression eCondition; Expression tag;.) "switch" ( SwitchVariantDecl | lparen ExprTyped rparen tagcolon ExprAnnotations (. eSwitch.operands.push_back(eCondition);.) CaseDecl {CaseDecl} ) . CaseDecl = (. ManagedScpPtr scope = root->add(new CodeScope(context.scope)); Expression condition; .) "case" ( IF(flagSwitchKind == SWITCH_META) lparen MetaSimpExpr rparen BDecl<&*scope> (. Expression exprCase(Operator::CASE, {}); exprCase.addTags({condition}); exprCase.addBlock(scope); outer.addArg(move(exprCase));.) | "default" BDecl<&*scope> (. Expression exprCase(Operator::CASE_DEFAULT, {}); exprCase.addBlock(scope); outer.operands.insert(++outer.operands.begin(), exprCase); .) | lparen CaseParams<&*scope> rparen (. ManagedScpPtr scopeBody = root->add(new CodeScope(&*scope)); Expression exprCase(Operator::CASE, {}); .) BDecl<&*scopeBody> (. exprCase.addBlock(scope); exprCase.addBlock(scopeBody); outer.addArg(move(exprCase)); .) ). CaseParams = (. Expression condition; Expression guard(Operator::LOGIC_AND, {}); pushContextScope(scope); .) ExprTyped (. guard.addArg(Expression(condition)); .) {',' ExprTyped (. guard.addArg(Expression(condition)); .) } (. scope->setBody(guard); popContextScope(); .) . SwitchVariantDecl = (. Expression varTested; std::wstring varAlias; bool flagAliasFound = false; expr = Expression(Operator::SWITCH_VARIANT, {}); .) "variant" lparen Expr [implic Ident (. flagAliasFound = true; .) ] [tagcolon ExprAnnotations] rparen tagcolon ExprAnnotations (. expr.addArg(std::move(varTested)); if (flagAliasFound) { expr.addBindings({Atom(varAlias)}); } else { if(varTested.__state == Expression::IDENT){ expr.addBindings({Atom(string(varTested.getValueString()))}); } } .) CaseVariantDecl {CaseVariantDecl} . CaseVariantDecl = (. ManagedScpPtr scope = root->add(new CodeScope(context.scope)); std::wstring key; scope->addBinding(Atom(string(expr.bindings.front())), Expression()); .) "case" lparen Ident rparen (. expr.addArg(root->recognizeVariantConstructor(Atom(std::move(key)))); .) BDecl<&*scope> (. expr.addBlock(scope); .) . IntrinsicDecl= (. std::wstring name; .) "intrinsic" Ident< name> (. outer = Expression(Operator::CALL_INTRINSIC, {}); outer.setValue(Atom(name)); .) lparen [CalleeParams] rparen . + +SequenceDecl = (. sequence = Expression(); sequence.setOp(Operator::SEQUENCE); ManagedScpPtr scope = root->add(new CodeScope(context.scope)); .) + "seq" BDecl<&*scope> (. sequence.blocks.push_back(&*scope); scope = root->add(new CodeScope(&*scope)); .) + { (. scope = root->add(new CodeScope(&*scope)); .) + BDecl<&*scope> (. sequence.blocks.push_back(&*scope); .) + }. /*============================ INTERFACES ===============================*/ Imprt<> = "import" "raw" lparen string (. root->__rawImports.push_back(Atom(t->val).get()); .) rparen '.'. InterfaceData<> = "interface" '(' ( "dfa" ')' InterfaceDFA | "extern-c" ')' InterfaceExternC | "cfa" ')' InterfaceCFA | "adhoc" ')' InterfaceAdhoc ). InterfaceAdhoc<> = '{' { PrefunctionSchemeDecl } '}'. PrefunctionSchemeDecl<> = (. TypeAnnotation typReturn; std::wstring prefName; Expression exprCases; .) pre function Ident tagcolon Type lcurbrack SwitchDecl rcurbrack (. Expression prefData(Operator::CALL, {Atom(prefName), exprCases}); prefData.bindType(typReturn); root->addInterfaceData(Adhoc, move(prefData)); .). InterfaceExternC<> = (. ExternData data; .) '{' {IncludeExternDecl | LibExternDecl } '}' (. root->addExternData(move(data)); .) . LibExternDecl = (. std::wstring pkgname, libname; .) Ident assign "library" tagcolon "pkgconfig" '(' string (. pkgname = t->val; .) ')' '.' (. data.addLibrary(Atom(libname), Atom(pkgname)); .) . IncludeExternDecl = (. Expression inc; .) "include" StructLiteral '.' (. data.addIncludeDecl(move(inc)); .) . InterfaceDFA<> = '{' { InstructDecl } '}' . InstructDecl = (.Operator op; Expression tag; Expression scheme; std::vector& tags = scheme.operands; tags.push_back(Expression()); /* return value */ .) "operator" InstructAlias tagcolon '(' (.scheme.setOp(op); .) [ MetaSimpExpr (. tags.push_back(tag); .) { ',' MetaSimpExpr (. tags.push_back(tag); .) } ] ')' [ implic MetaSimpExpr (. tags[0] = tag; .) ] (. root->addDFAData(move(scheme)); .) '.'. InstructAlias = ( "map" (. op = Operator::MAP; .) | "list_range" (. op = Operator::LIST_RANGE; .) | "list" (. op = Operator::LIST; .) | "fold" (. op = Operator::FOLD; .) | "index" (. op = Operator::INDEX; .) ). InterfaceCFA<> = '{' { InstructCFADecl } '}' . InstructCFADecl<> = (.Operator op; Expression tag; Expression scheme; std::vector& tags = scheme.operands; .) "operator" InstructAlias tagcolon (. scheme.setOp(op); .) [ MetaSimpExpr (. tags.push_back(tag); .) { ',' MetaSimpExpr (. tags.push_back(tag); .) } ] '.' (. root->addInterfaceData(CFA, move(scheme)); .). /*============================ METAPROGRAMMING ===============================*/ // TagsDecl = (. Expression tag; TagModifier mod = TagModifier::NONE; .) // ':' { MetaSimpExpr (. /*f.addTag(std::move(tag), mod); */ .) // }. FnTag = (. Expression tag; TagModifier mod = TagModifier::NONE; .) MetaSimpExpr ['-' TagMod] (. f->addTag(std::move(tag), mod); .). TagMod = ( "assert" (. mod = TagModifier::ASSERT; .) | "require" (. mod = TagModifier::REQUIRE; .) ). RuleDecl<> = "rule" tagcolon (. RuleArguments args; RuleGuards guards; DomainAnnotation typ; std::wstring arg; .) '(' Ident tagcolon Domain (. args.add(arg, typ); .) {',' Ident tagcolon Domain (. args.add(arg, typ); .) } ')' ["case" RGuard {',' RGuard}] '{' RBody '}' . /* - TODO use RGuard for guards-*/ RuleContextDecl = (.Expression eHead, eGuards, eBody; .) "rule" "context" tagcolon MetaSimpExpr "case" lparen MetaSimpExpr rparen '{' MetaSimpExpr '}' (.scope->contextRules.push_back(Expression(Operator::CONTEXT_RULE, {eHead, eGuards, eBody})); .). Domain = ( "function" (. dom = DomainAnnotation::FUNCTION; .) | "variable" (. dom = DomainAnnotation::VARIABLE; .) ). RGuard= (. Expression e; .) MetaExpr (. guards.add(std::move(e)); .). MetaExpr= (.Operator op; Expression e2; .) MetaExpr2 [MetaOp MetaExpr2 (. e = Expression(op, {e, e2}); .) ]. MetaExpr2= ( '(' MetaExpr ')' | MetaSimpExpr ). MetaSimpExpr= (. std::wstring i1, infix; Expression e2; .) ( '-' MetaSimpExpr (. e = Expression(Operator::NEG, {e2}); .) | IF(checkParametersList()) Ident (. e = Expression(Operator::CALL, {Expression(Atom(i1))}); .) '(' [ MetaCalleeParams ] ')' | IF(checkInfix()) Ident Ident MetaSimpExpr (. e = Expression(Operator::CALL, {Expression(Atom(infix))}); e.addArg(Expression(Atom(i1))); e.addArg(std::move(e2)); .) | Ident (. e = Expression(Operator::CALL, {Atom(i1)}); .) ). MetaCalleeParams = (. Expression e2; .) MetaSimpExpr (. e.addArg(Expression(e2)); .) {',' MetaSimpExpr (. e.addArg(Expression(e2)); .) }. RBody = (. Expression e; std::wstring msg; .) "warning" MetaExpr ["message" string (. msg = t->val; .) ] (. root->add(new RuleWarning(RuleArguments(args), RuleGuards(guards), std::move(e), Atom(msg))); .) . MetaOp< Operator& op> = implic (. op = Operator::IMPL; .) . /*============================ Expressions ===============================*/ ExprAnnotations = (. TypeAnnotation typ; std::list tags; Expression tag; e.tags.clear();.) Type (. e.bindType(move(typ)); .) {';' MetaSimpExpr (. tags.push_back(tag); .) } (. e.addTags(tags); .) . ExprTyped = Expr [tagcolon ExprAnnotations]. Expr< Expression& e> (. Operator op; Expression e2; .) = ExprArithmAdd [ RelOp ExprArithmAdd (. e = Expression(op, {e, e2}); .) ]. ExprArithmAdd< Expression& e>= (. Operator op; Expression e2; .) ExprArithmMul< e> [ AddOp< op> ExprArithmAdd< e2> (. e = Expression(op, {e, e2});.) ]. ExprArithmMul< Expression& e> (. Operator op; Expression e2; .) = ExprPostfix< e> [ MulOp< op> ExprArithmMul< e2> (. e = Expression(op, {e, e2}); .) ]. ExprPostfix = Term [ (. e = Expression(Operator::INDEX, {e}); .) {lbrack CalleeParams rbrack } ]. Term< Expression& e> (. std::wstring name; e = Expression(); .) = (IF (checkParametersList()) Ident< name> (. e = Expression(Operator::CALL, {Atom(name)}); root->recognizeVariantConstructor(e); .) '(' [CalleeParams] ')' | VarIdent (. recognizeIdentifier(e); .) | ListLiteral (. /* tuple */.) | StructLiteral (. /* struct */.) | LoopDecl | IfDecl | SwitchDecl | AdhocDecl | IntrinsicDecl + | SequenceDecl | number (. e = Expression(Atom(t->val)); .) | string (. e = Expression(Atom(t->val)); .) | "true" (. e = Expression(Atom(1)); e.bindType(TypePrimitive::Bool); .) | "false" (. e = Expression(Atom(0)); e.bindType(TypePrimitive::Bool); .) | '-' Term (. e = Expression(Operator::NEG, {e}); .) | '(' ExprTyped ')' ). StructLiteral = (. std::wstring key; Expression val; std::list> keys; size_t keyCounter=0; .) lcurbrack (IF(checkTokenAfterIdent(_assign)) Ident '=' Expr | Expr (. key = to_wstring(keyCounter++); .) ) (. keys.push_back(Atom(key)); e = Expression(Operator::LIST_NAMED, {val}); .) {',' (IF(checkTokenAfterIdent(_assign)) Ident '=' Expr | Expr (. key = to_wstring(keyCounter++); .) ) (. e.addArg(Expression(val)); keys.push_back(Atom(key)); .) } rcurbrack (. e.addBindings(keys.begin(), keys.end()); .) . ListLiteral = (. Expression eFrom, eTo; .) '[' [ Expr (. e.addArg(Expression(eFrom)); .) (".." Expr (. e.addArg(Expression(eTo)); e.setOp(Operator::LIST_RANGE); .) |{',' Expr (. e.addArg(Expression(eFrom)); .) } (. e.setOp(Operator::LIST); .) ) ] ']'. AdhocDecl = (. Expression command; .) "ad" "hoc" MetaSimpExpr (. adhoc::AdhocExpression exprAdhoc; exprAdhoc.setCommand(command); e = exprAdhoc; .). CalleeParams = (. Expression e2; .) ExprTyped (. e.addArg(Expression(e2)); .) {',' ExprTyped (. e.addArg(Expression(e2)); .) }. AddOp< Operator& op> = (. op = Operator::ADD; .) ( '+' | '-' (. op = Operator::SUB; .) ). MulOp< Operator& op> = (. op = Operator::MUL; .) ( '*' | '/' (. op = Operator::DIV; .) ). RelOp< Operator& op> = (. op = Operator::EQU; .) ( equal | (ne1 | ne2) (. op = Operator::NE; .) | lse (. op = Operator::LSE; .) | lss (. op = Operator::LSS; .) | gte (. op = Operator::GTE; .) | gtr (. op = Operator::GTR; .) ). SkipModulesSection = "module" '{' {ANY} '}'. END Xreate.