diff --git a/config/default.json b/config/default.json index 21b7af6..c274bb2 100644 --- a/config/default.json +++ b/config/default.json @@ -1,71 +1,71 @@ { "containers": { "id": { "implementations": "impl_fulfill_cluster", "clusters": "var_cluster", "prototypes": "proto_cluster", "linkedlist": "linkedlist" }, "impl": { "solid": "solid", "onthefly": "on_the_fly" } }, "logging": { "id": "logging" }, "function-entry": "entry", "clasp": { "bindings" : { "variable": "bind", "function": "bind_func", "scope": "bind_scope", "function_demand" : "bind_function_demand", "scope_decision": "bind_scope_decision" }, "context" : { "decisions":{ "dependent": "resolution_dependency" } }, "nonevalue": "nonevalue", "ret": { "symbol": "retv", "tag": "ret" } }, "tests": { - "template": "communication", + "template": "compilation", "templates": { "default": "*-Adhoc.*:Compilation.full_IFStatementWithVariantType:Types.full_VariantType_Switch1", "ast": "AST.*", "adhocs": "Adhoc.*", "effects": "Effects.*", "basic": "Attachments.*", "context": "Context.*", - "compilation": "Compilation.*", + "compilation": "Compilation.full_SwitchVariant1", "communication": "Communication.FullDirectAndGuarded1", "cfa": "CFA.*", "containers": "Containers.*", "dfa": "DFA.*", "diagnostic": "Diagnostic.*", "dsl": "Interpretation.SwitchVariantAlias-Association.*", "ExpressionSerializer": "ExpressionSerializer.*", "externc": "InterfaceExternC.*", "loops": "Loop.*", "modules": "Modules.*", "polymorphs": "Polymorphs.call1", "types": "Types.*", "vendorsAPI/clang": "ClangAPI.*", "vendorsAPI/xml2": "libxml2*" } } } diff --git a/cpp/src/CMakeLists.txt b/cpp/src/CMakeLists.txt index 3a19723..6c98f92 100644 --- a/cpp/src/CMakeLists.txt +++ b/cpp/src/CMakeLists.txt @@ -1,230 +1,230 @@ cmake_minimum_required(VERSION 2.8.11) project(xreate) cmake_policy(SET CMP0022 NEW) message("MODULES" ${CMAKE_MODULE_PATH}) # LLVM #====================== FIND_PACKAGE (LLVM REQUIRED) set(LLVM_VERSION ${LLVM_VERSION_MAJOR}.${LLVM_VERSION_MINOR}) message(STATUS "Found LLVM ${LLVM_PACKAGE_VERSION}") message("LLVM LIB PATH:" ${LLVM_LIBRARY_DIRS}) message(STATUS "Using LLVMConfig.cmake in: ${LLVM_DIR}") INCLUDE_DIRECTORIES(${LLVM_INCLUDE_DIRS}) message(STATUS "INCLUDE DIR: ${LLVM_INCLUDE_DIRS}") add_definitions(${LLVM_DEFINITIONS}) message("LLVM DEFS: " ${LLVM_DEFINITIONS}) llvm_map_components_to_libnames(LLVM_LIBS core nativecodegen native executionengine mcjit support option) message("LLVM LIBS: " ${LLVM_LIBS}) # CLANG #====================== set(CLANG_LIBS clangCodeGen clangASTMatchers clangQuery clangTooling clangFrontend clangSerialization clangDriver clangParse clangSema clangAnalysis clangAST clangEdit clangLex clangBasic ) # POTASSCO #====================== set(POTASSCO_PATH "/opt/potassco/clingo" CACHE PATH "Path to potassco sources") set(POTASSCO_INCLUDE_PATH ${POTASSCO_PATH}/libgringo ${POTASSCO_PATH}/libclasp ${POTASSCO_PATH}/libclingo ${POTASSCO_PATH}/libprogram_opts ${POTASSCO_PATH}/liblp ) INCLUDE_DIRECTORIES(${POTASSCO_INCLUDE_PATH}) set(LIBCLASP_LIBS clingo clasp gringo program_opts reify lp ) message("CLASP LIBS: " ${LIBCLASP_LIBS}) # OTHER DEPENDENCIES #=========================== set(JEAYESON_INCLUDE_PATH ${CMAKE_HOME_DIRECTORY}/../vendors/jeayeson/include/ ) INCLUDE_DIRECTORIES(${JEAYESON_INCLUDE_PATH}) # COCO #=========================== set(COCO_EXECUTABLE "" CACHE PATH "Path to coco executable") set(COCO_FRAMES_PATH "" CACHE PATH "Path to coco frames") set(COCO_GRAMMAR_PATH ${CMAKE_HOME_DIRECTORY}/../grammar/) set(COCO_SOURCE_FILES_MAIN ${COCO_GRAMMAR_PATH}/main/Parser.cpp ${COCO_GRAMMAR_PATH}/main/Scanner.cpp ) set(COCO_SOURCE_FILES_MODULES ${COCO_GRAMMAR_PATH}/modules/Parser.cpp ${COCO_GRAMMAR_PATH}/modules/Scanner.cpp ) set(COCO_SOURCE_FILES ${COCO_SOURCE_FILES_MODULES} ${COCO_SOURCE_FILES_MAIN}) INCLUDE_DIRECTORIES(${COCO_GRAMMAR_PATH}) add_custom_command(OUTPUT ${COCO_SOURCE_FILES_MAIN} COMMAND ${COCO_GRAMMAR_PATH}/gen-grammar main ${COCO_EXECUTABLE} ${COCO_FRAMES_PATH} WORKING_DIRECTORY ${COCO_GRAMMAR_PATH} MAIN_DEPENDENCY ${COCO_GRAMMAR_PATH}/xreate.ATG ) add_custom_command(OUTPUT ${COCO_SOURCE_FILES_MODULES} COMMAND ${COCO_GRAMMAR_PATH}/gen-grammar modules ${COCO_EXECUTABLE} ${COCO_FRAMES_PATH} WORKING_DIRECTORY ${COCO_GRAMMAR_PATH} MAIN_DEPENDENCY ${COCO_GRAMMAR_PATH}/modules.ATG ) message(STATUS "COCO GRAMMAR BUILD STATUS:" ${COCO_OUTPUT}) # XREATE #====================== set(SOURCE_FILES query/polymorph.cpp analysis/dfagraph.cpp pass/dfapass.cpp compilation/targetinterpretation.cpp pass/interpretationpass.cpp ast.cpp xreatemanager.cpp analysis/typeinference.cpp aux/xreatemanager-decorators.cpp compilation/operators.cpp compilation/transformations.cpp compilation/transformersaturation.cpp pass/compilepass.cpp pass/versionspass.cpp attachments.cpp ExternLayer.cpp analysis/cfagraph.cpp analysis/aux.cpp compilation/containers.cpp - compilation/advanced.cpp + compilation/advancedinstructions.cpp clasplayer.cpp compilation/latecontextcompiler2.cpp query/context.cpp llvmlayer.cpp utils.cpp pass/abstractpass.cpp pass/cfapass.cpp pass/adhocpass.cpp contextrule.cpp query/containers.cpp analysis/DominatorsTreeAnalysisProvider.cpp aux/serialization/expressionserializer.cpp modules.cpp ) set(XREATE_INCLUDE_DIRS ${CMAKE_CURRENT_SOURCE_DIR}/ ) INCLUDE_DIRECTORIES(${XREATE_INCLUDE_DIRS}) set(XREATE_PRIVATE_INCLUDE_DIRS ${XREATE_INCLUDE_DIRS} ${COCO_GRAMMAR_PATH} ${JEAYESON_INCLUDE_PATH} ${LLVM_INCLUDE_DIRS} ${POTASSCO_INCLUDE_PATH} ) add_library(${PROJECT_NAME} SHARED ${COCO_SOURCE_FILES} ${SOURCE_FILES}) target_link_libraries(${PROJECT_NAME}) target_include_directories(${PROJECT_NAME} INTERFACE ${XREATE_INCLUDE_DIRS} ${COCO_GRAMMAR_PATH} ${JEAYESON_INCLUDE_PATH} ${LLVM_INCLUDE_DIRS} ${POTASSCO_INCLUDE_PATH} ) get_directory_property(DEFINITIONS_ALL DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} COMPILE_DEFINITIONS) message("definitions all: " ${DEFINITIONS_ALL}) target_compile_definitions(${PROJECT_NAME} INTERFACE ${DEFINITIONS_ALL}) get_directory_property(COMPILATION_OPTIONS_ALL DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} COMPILE_OPTIONS) message("compilations all: " ${COMPILATION_OPTIONS_ALL}) target_compile_options(${PROJECT_NAME} INTERFACE ${COMPILATION_OPTIONS_ALL}) SET_PROPERTY(TARGET ${PROJECT_NAME} PROPERTY INTERFACE_LINK_LIBRARIES ${LIBCLASP_LIBS} ${CLANG_LIBS} ${LLVM_LIBS} tbb boost_system boost_filesystem ) #${CLANG_LIBS} #set (LINK_INTERFACE_LIBRARIES "") # FUNCTION(PREPEND var prefix) # SET(listVar "") # FOREACH(f ${ARGN}) # LIST(APPEND listVar "${prefix}/${f}") # ENDFOREACH(f) # SET(${var} "${listVar}" PARENT_SCOPE) # ENDFUNCTION(PREPEND) #set(COTIRE_UNITY_SOURCE_MAXIMUM_NUMBER_OF_INCLUDES "-j4") #cotire(xreate) # MACRO (ADD_PCH_RULE _header_filename _src_list) # SET(_gch_filename "${_header_filename}.gch") # LIST(APPEND ${_src_list} ${_gch_filename}) # SET (_args ${CMAKE_CXX_FLAGS}) # LIST(APPEND _args -c ${_header_filename} -o ${_gch_filename}) # GET_DIRECTORY_PROPERTY(DIRINC INCLUDE_DIRECTORIES) # foreach (_inc ${DIRINC}) # LIST(APPEND _args "-I" ${_inc}) # endforeach(_inc ${DIRINC}) # SEPARATE_ARGUMENTS(_args) # add_custom_command(OUTPUT ${_gch_filename} # COMMAND rm -f ${_gch_filename} # COMMAND ${CMAKE_CXX_COMPILER} ${CMAKE_CXX_COMPILER_ARG1} ${_args} # DEPENDS ${_header_filename}) # ENDMACRO(ADD_PCH_RULE _header_filename _src_list) # ADD_PCH_RULE (${CMAKE_HOME_DIRECTORY}/src/ast.h SOURCE_FILES) # ADD_PCH_RULE (${CMAKE_HOME_DIRECTORY}/src/llvmlayer.h SOURCE_FILES) # ADD_PCH_RULE (${CMAKE_HOME_DIRECTORY}/src/clasplayer.h SOURCE_FILES) # ADD_PCH_RULE (${CMAKE_HOME_DIRECTORY}/src/pass/abstractpass.h SOURCE_FILES) diff --git a/cpp/src/analysis/typeinference.cpp b/cpp/src/analysis/typeinference.cpp index ec38c58..17d2a1f 100644 --- a/cpp/src/analysis/typeinference.cpp +++ b/cpp/src/analysis/typeinference.cpp @@ -1,68 +1,72 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * typeinference.cpp * * Author: pgess * Created on April 16, 2017, 10:13 AM */ /** * \file typeinference.h * \brief Type inference analysis */ #include "typeinference.h" #include "llvmlayer.h" #include "llvm/IR/Function.h" #include "llvm/IR/DerivedTypes.h" namespace xreate {namespace typeinference { //TODO type conversion: //a) automatically expand types int -> bigger int; int -> floating //b) detect exact type of `num` based on max used numeral / function type //c) warning if need to truncate (allow/dissalow based on annotations) llvm::Value* doAutomaticTypeConversion(llvm::Value* source, llvm::Type* tyTarget, llvm::IRBuilder<>& builder){ if (tyTarget->isIntegerTy() && source->getType()->isIntegerTy()) { llvm::IntegerType* tyTargetInt = llvm::dyn_cast(tyTarget); llvm::IntegerType* tySourceInt = llvm::dyn_cast(source->getType()); if (tyTargetInt->getBitWidth() < tySourceInt->getBitWidth()){ return builder.CreateCast(llvm::Instruction::Trunc, source, tyTarget); } if (tyTargetInt->getBitWidth() > tySourceInt->getBitWidth()){ return builder.CreateCast(llvm::Instruction::SExt, source, tyTarget); } } if (source->getType()->isIntegerTy() && tyTarget->isFloatingPointTy()){ return builder.CreateCast(llvm::Instruction::SIToFP, source, tyTarget); } return source; } ExpandedType getType(const Expression& expression, const AST& ast){ if (expression.type.isValid()){ return ast.expandType(expression.type); } if (expression.__state == Expression::IDENT){ Symbol s = Attachments::get(expression); return getType(CodeScope::getDefinition(s), ast); } + if (Attachments::exists(expression)){ + return Attachments::get(expression); + } + assert(false && "Type can't be determined for an expression"); } } } //end of namespace xreate::typeinference diff --git a/cpp/src/ast.cpp b/cpp/src/ast.cpp index 70c3923..692db6a 100644 --- a/cpp/src/ast.cpp +++ b/cpp/src/ast.cpp @@ -1,976 +1,979 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * Author: pgess * File: ast.cpp */ /** * \file ast.h * \brief Syntax Tree and related code * * \sa xreate::AST */ #include "ast.h" #include "ExternLayer.h" #include "analysis/typeinference.h" #include #include //TODO BDecl. forbid multiple body declaration (ExprTyped) namespace std { std::size_t hash::operator()(xreate::ScopedSymbol const& s) const { return s.id ^ (s.version << 2); } bool equal_to::operator()(const xreate::ScopedSymbol& __x, const xreate::ScopedSymbol& __y) const { return __x.id == __y.id && __x.version == __y.version; } size_t hash::operator()(xreate::Symbol const& s) const { return hash()(s.identifier) ^ ((long int) s.scope << 1); } bool equal_to::operator()(const xreate::Symbol& __x, const xreate::Symbol& __y) const { return __x == __y; }; } using namespace std; namespace xreate { Atom::Atom(const std::wstring& value) { __value = wstring_to_utf8(value); } Atom::Atom(std::string && name) : __value(name) { } const std::string& Atom::get() const { return __value; } Atom::Atom(wchar_t* value) { //DEBT reconsider number literal recognition __value = wcstol(value, 0, 10); } Atom::Atom(int value) : __value(value) { } double Atom::get()const { return __value; } Atom::Atom(const std::wstring& value) { assert(value.size() >= 2); __value = wstring_to_utf8(value.substr(1, value.size() - 2)); } Atom::Atom(std::string && name) : __value(name) {} const std::string& Atom::get() const { return __value; } class ExpressionHints { public: static bool isStringValueValid(const Expression& e) { switch (e.__state) { case Expression::INVALID: assert(false); case Expression::IDENT: case Expression::STRING: return true; case Expression::NUMBER: case Expression::BINDING: return false; case Expression::COMPOUND: { switch (e.op) { case Operator::CALL: return true; default: return false; } } } return false; } static bool isDoubleValueValid(const Expression& e) { switch (e.__state) { case Expression::NUMBER: return true; case Expression::INVALID: assert(false); case Expression::IDENT: case Expression::STRING: case Expression::BINDING: return false; case Expression::COMPOUND: { switch (e.op) { case Operator::VARIANT: return true; default: return false; } } } return false; } }; class TypesResolver { private: const AST* ast; std::map scope; std::map signatures; ExpandedType expandType(const TypeAnnotation &t, const std::vector &args = std::vector()) { return TypesResolver(ast, scope, signatures)(t, args); } std::vector expandOperands(const std::vector& operands) { std::vector pack; pack.reserve(operands.size()); std::transform(operands.begin(), operands.end(), std::inserter(pack, pack.end()), [this](const TypeAnnotation & t) { return expandType(t); }); return pack; } public: TypesResolver(const AST* root, const std::map& scopeOuter = std::map(), std::map signaturesOuter = std::map()) : ast(root), scope(scopeOuter), signatures(signaturesOuter) { } ExpandedType operator()(const TypeAnnotation &t, const std::vector &args = std::vector()) { //assert(args.size() == t.bindings.size()); // invalid number of arguments for (size_t i = 0; i < args.size(); ++i) { scope[t.bindings.at(i)] = args.at(i); } switch (t.__operator) { case TypeOperator::ARRAY: { assert(t.__operands.size() == 1); Expanded elTy = expandType(t.__operands.at(0)); return ExpandedType(TypeAnnotation(tag_array, elTy, 0)); } case TypeOperator::STRUCT: { - assert(t.__operands.size()); - std::vector&& packOperands = expandOperands(t.__operands); auto typNew = TypeAnnotation(TypeOperator::STRUCT, move(packOperands)); typNew.fields = t.fields; return ExpandedType(move(typNew)); }; + case TypeOperator::VARIANT: + { + std::vector&& packOperands = expandOperands(t.__operands); + auto typNew = TypeAnnotation(TypeOperator::VARIANT, move(packOperands)); + typNew.fields = t.fields; + + return ExpandedType(move(typNew)); + }; + case TypeOperator::CALL: { std::string alias = t.__valueCustom; //find in local scope: TypeAnnotation ty; if (scope.count(alias)) { ty = scope.at(alias); } else if (ast->__indexTypeAliases.count(alias)) { ty = ast->__indexTypeAliases.at(alias); } else { assert(false && "Undefined or external type"); } std::vector&& operands = expandOperands(t.__operands); TypeAnnotation signature(TypeOperator::CALL, move(operands)); signature.__valueCustom = alias; if (signatures.count(signature)) { auto link = TypeAnnotation(TypeOperator::LINK,{}); link.conjuctionId = signatures.at(signature); return ExpandedType(move(link)); } int cid = signatures.size(); signatures[signature] = cid; TypeAnnotation tyResult = expandType(ty, operands); tyResult.conjuctionId = cid; return ExpandedType(move(tyResult)); }; case TypeOperator::CUSTOM: { std::string alias = t.__valueCustom; /* if (signatures.count(alias)) { return ExpandedType(TypeAnnotation(TypeOperator::LINK, {t})); } signatures[alias].emplace(t); */ //find in local scope: if (scope.count(alias)) { return expandType(scope.at(alias)); } // find in general scope: if (ast->__indexTypeAliases.count(alias)) { return expandType(ast->__indexTypeAliases.at(t.__valueCustom)); } //if type is unknown keep it as is. return ExpandedType(TypeAnnotation(t)); }; case TypeOperator::ACCESS: { std::string alias = t.__valueCustom; ExpandedType tyAlias = ExpandedType(TypeAnnotation()); //find in local scope: if (scope.count(alias)) { tyAlias = expandType(scope.at(alias)); //find in global scope: } else if ((ast->__indexTypeAliases.count(alias))) { tyAlias = expandType(ast->__indexTypeAliases.at(alias)); } else { assert(false && "Undefined or external type"); } assert(tyAlias->__operator == TypeOperator::STRUCT); for (const string& field : t.fields) { auto fieldIt = std::find(tyAlias->fields.begin(), tyAlias->fields.end(), field); assert(fieldIt != tyAlias->fields.end() && "unknown field"); int fieldId = fieldIt - tyAlias->fields.begin(); tyAlias = expandType(tyAlias->__operands.at(fieldId)); } return tyAlias; } - case TypeOperator::VARIANT: - { - return ExpandedType(TypeAnnotation(t)); - } - case TypeOperator::NONE: { return ExpandedType(TypeAnnotation(t)); } default: assert(false); } assert(false); return ExpandedType(TypeAnnotation()); } }; TypeAnnotation::TypeAnnotation() : __operator(TypeOperator::NONE), __value(TypePrimitive::Invalid) { } TypeAnnotation::TypeAnnotation(TypePrimitive typ) : __value(typ) { } TypeAnnotation::TypeAnnotation(TypeOperator op, std::initializer_list operands) : __operator(op), __operands(operands) { } TypeAnnotation::TypeAnnotation(TypeOperator op, std::vector&& operands) : __operator(op), __operands(operands) { } TypeAnnotation::TypeAnnotation(llvm_array_tag, TypeAnnotation typ, int size) : TypeAnnotation(TypeOperator::ARRAY,{typ}) { __size = size; } bool TypeAnnotation::isValid() const { return !(__value == TypePrimitive::Invalid && __operator == TypeOperator::NONE); } bool TypeAnnotation::operator<(const TypeAnnotation& t) const { if (__operator != t.__operator) return __operator < t.__operator; if (__operator == TypeOperator::NONE) return __value < t.__value; if (__operator == TypeOperator::CALL || __operator == TypeOperator::CUSTOM || __operator == TypeOperator::ACCESS) { if (__valueCustom != t.__valueCustom) return __valueCustom < t.__valueCustom; } return __operands < t.__operands; } /* TypeAnnotation (struct_tag, std::initializer_list) {} */ void TypeAnnotation::addBindings(std::vector>&& params) { bindings.reserve(bindings.size() + params.size()); std::transform(params.begin(), params.end(), std::inserter(bindings, bindings.end()), [](const Atom& ident) { return ident.get(); }); } void TypeAnnotation::addFields(std::vector>&& listFields) { fields.reserve(fields.size() + listFields.size()); std::transform(listFields.begin(), listFields.end(), std::inserter(fields, fields.end()), [](const Atom& ident) { return ident.get(); }); } unsigned int Expression::nextVacantId = 0; Expression::Expression(const Atom& number) : Expression() { __state = NUMBER; op = Operator::NONE; __valueD = number.get(); } Expression::Expression(const Atom& a) : Expression() { __state = STRING; op = Operator::NONE; __valueS = a.get(); } Expression::Expression(const Atom &ident) : Expression() { __state = IDENT; op = Operator::NONE; __valueS = ident.get(); } Expression::Expression(const Operator &oprt, std::initializer_list params) : Expression() { __state = COMPOUND; op = oprt; if (op == Operator::CALL) { assert(params.size() > 0); Expression arg = *params.begin(); assert(arg.__state == Expression::IDENT); __valueS = std::move(arg.__valueS); operands.insert(operands.end(), params.begin() + 1, params.end()); return; } operands.insert(operands.end(), params.begin(), params.end()); } void Expression::setOp(Operator oprt) { op = oprt; switch (op) { case Operator::NONE: __state = INVALID; break; default: __state = COMPOUND; break; } } void Expression::addArg(Expression &&arg) { operands.push_back(arg); } void Expression::addTags(const std::list tags) const { std::transform(tags.begin(), tags.end(), std::inserter(this->tags, this->tags.end()), [](const Expression & tag) { return make_pair(tag.getValueString(), tag); }); } void Expression::addBindings(std::initializer_list> params) { addBindings(params.begin(), params.end()); } void Expression::bindType(TypeAnnotation t) { type = move(t); } void Expression::addBlock(ManagedScpPtr scope) { blocks.push_back(scope.operator->()); } const std::vector& Expression::getOperands() const { return operands; } double Expression::getValueDouble() const { return __valueD; } const std::string& Expression::getValueString() const { return __valueS; } void Expression::setValue(const Atom&& v) { __valueS = v.get(); } void Expression::setValueDouble(double value) { __valueD = value; } bool Expression::isValid() const { return (__state != INVALID); } bool Expression::isDefined() const { return (__state != BINDING && __state != INVALID); } Expression::Expression() : __state(INVALID), op(Operator::NONE), id(nextVacantId++) { } namespace details { namespace inconsistent { AST::AST() { Attachments::init(); Attachments::init(); Attachments::init(); + Attachments::init(); } void AST::addInterfaceData(const ASTInterface& interface, Expression&& data) { __interfacesData.emplace(interface, move(data)); } void AST::addDFAData(Expression &&data) { __dfadata.push_back(data); } void AST::addExternData(ExternData &&data) { __externdata.insert(__externdata.end(), data.entries.begin(), data.entries.end()); } void AST::add(Function* f) { __functions.push_back(f); __indexFunctions.emplace(f->getName(), __functions.size() - 1); } void AST::add(MetaRuleAbstract *r) { __rules.push_back(r); } void AST::add(TypeAnnotation t, Atom alias) { if (t.__operator == TypeOperator::VARIANT) { for (int i = 0, size = t.fields.size(); i < size; ++i) { __dictVariants.emplace(t.fields[i], make_pair(t, i)); } } __indexTypeAliases.emplace(alias.get(), move(t)); } ManagedScpPtr AST::add(CodeScope* scope) { this->__scopes.push_back(scope); return ManagedScpPtr(this->__scopes.size() - 1, &this->__scopes); } std::string AST::getModuleName() { const std::string name = "moduleTest"; return name; } ManagedPtr AST::findFunction(const std::string& name) { int count = __indexFunctions.count(name); if (!count) { return ManagedFnPtr::Invalid(); } assert(count == 1); auto range = __indexFunctions.equal_range(name); return ManagedPtr(range.first->second, &this->__functions); } std::list AST::getAllFunctions() const { const size_t size = __functions.size(); std::list result; for (size_t i = 0; i < size; ++i) { result.push_back(ManagedFnPtr(i, &this->__functions)); } return result; } //TASK select default specializations std::list AST::getFunctionSpecializations(const std::string& fnName) const { auto functions = __indexFunctions.equal_range(fnName); std::list result; std::transform(functions.first, functions.second, inserter(result, result.end()), [this](auto f) { return ManagedFnPtr(f.second, &this->__functions); }); return result; } template<> ManagedPtr AST::begin() { return ManagedPtr(0, &this->__functions); } template<> ManagedPtr AST::begin() { return ManagedPtr(0, &this->__scopes); } template<> ManagedPtr AST::begin() { return ManagedPtr(0, &this->__rules); } void AST::recognizeVariantConstructor(Expression& function) { assert(function.op == Operator::CALL); std::string variant = function.getValueString(); if (!__dictVariants.count(variant)) { return; } auto record = __dictVariants.at(variant); const TypeAnnotation& typ = record.first; function.op = Operator::VARIANT; function.setValueDouble(record.second); function.type = typ; } Atom AST::recognizeVariantConstructor(Atom ident) { std::string variant = ident.get(); assert(__dictVariants.count(variant) && "Can't recognize variant constructor"); auto record = __dictVariants.at(variant); return Atom(record.second); } void AST::postponeIdentifier(CodeScope* scope, const Expression& id) { bucketUnrecognizedIdentifiers.emplace(scope, id); } void AST::recognizePostponedIdentifiers() { for (const auto& identifier : bucketUnrecognizedIdentifiers) { if (!identifier.first->recognizeIdentifier(identifier.second)) { //exception: Ident not found std::cout << "Unknown symbol: " << identifier.second.getValueString() << std::endl; assert(false && "Symbol not found"); } } } xreate::AST* AST::finalize() { //all finalization steps: recognizePostponedIdentifiers(); return reinterpret_cast (this); } } } //namespace details::incomplete Expanded AST::findType(const std::string& name) { // find in general scope: if (__indexTypeAliases.count(name)) return expandType(__indexTypeAliases.at(name)); //if type is unknown keep it as is. TypeAnnotation t(TypeOperator::CUSTOM,{}); t.__valueCustom = name; return ExpandedType(move(t)); } Expanded AST::expandType(const TypeAnnotation &t) const { return TypesResolver(this)(t); } ExpandedType AST::getType(const Expression& expression) { return typeinference::getType(expression, *this); } Function::Function(const Atom& name) : __entry(new CodeScope(0)) { __name = name.get(); } void Function::addTag(Expression&& tag, const TagModifier mod) { string name = tag.getValueString(); __tags.emplace(move(name), move(tag)); } const std::map& Function::getTags() const { return __tags; } CodeScope* Function::getEntryScope() const { return __entry; } void Function::addBinding(Atom && name, Expression&& argument) { __entry->addBinding(move(name), move(argument)); } const std::string& Function::getName() const { return __name; } ScopedSymbol CodeScope::registerIdentifier(const Expression& identifier) { versions::VariableVersion version = Attachments::get(identifier, versions::VERSION_NONE); auto result = __identifiers.emplace(identifier.getValueString(), __vCounter); if (result.second) { ++__vCounter; return { __vCounter - 1, version }; } return { result.first->second, version }; } bool CodeScope::recognizeIdentifier(const Expression& identifier) const { versions::VariableVersion version = Attachments::get(identifier, versions::VERSION_NONE); const std::string& name = identifier.getValueString(); //search identifier in the current block if (__identifiers.count(name)) { VNameId id = __identifiers.at(name); Symbol s; s.identifier = ScopedSymbol{id, version}; s.scope = const_cast (this); Attachments::put(identifier, s); return true; } //search in the parent scope if (__parent) { return __parent->recognizeIdentifier(identifier); } return false; } ScopedSymbol CodeScope::getSymbol(const std::string& alias) { assert(__identifiers.count(alias)); VNameId id = __identifiers.at(alias); return {id, versions::VERSION_NONE }; } void CodeScope::addBinding(Expression&& var, Expression&& argument) { argument.__state = Expression::BINDING; __bindings.push_back(var.getValueString()); ScopedSymbol binding = registerIdentifier(var); __declarations[binding] = move(argument); } Symbol CodeScope::addDefinition(Expression&& var, Expression&& body) { ScopedSymbol s = registerIdentifier(var); __declarations[s] = move(body); return Symbol{s, this}; } CodeScope::CodeScope(CodeScope* parent) : __parent(parent) { } CodeScope::~CodeScope() { } void CodeScope::setBody(const Expression &body) { assert(__declarations.count(ScopedSymbol::RetSymbol)==0 && "Attempt to reassign scope body"); __declarations[ScopedSymbol::RetSymbol] = body; } -Expression& -CodeScope::getBody() { - return __declarations[ScopedSymbol::RetSymbol]; +const Expression& +CodeScope::getBody() const{ + return __declarations.at(ScopedSymbol::RetSymbol); } const Expression& CodeScope::getDefinition(const Symbol& symbol, bool flagAllowUndefined){ - CodeScope* self = symbol.scope; + const CodeScope* self = symbol.scope; return self->getDefinition(symbol.identifier, flagAllowUndefined); } const Expression& CodeScope::getDefinition(const ScopedSymbol& symbol, bool flagAllowUndefined) const{ static Expression expressionInvalid; if (!__declarations.count(symbol)){ if (flagAllowUndefined) return expressionInvalid; assert(false && "Symbol's declaration not found"); } return __declarations.at(symbol); } void RuleArguments::add(const Atom &arg, DomainAnnotation typ) { emplace_back(arg.get(), typ); } void RuleGuards::add(Expression&& e) { push_back(e); } MetaRuleAbstract:: MetaRuleAbstract(RuleArguments&& args, RuleGuards&& guards) : __args(std::move(args)), __guards(std::move(guards)) { } MetaRuleAbstract::~MetaRuleAbstract() { } RuleWarning:: RuleWarning(RuleArguments&& args, RuleGuards&& guards, Expression&& condition, Atom&& message) : MetaRuleAbstract(std::move(args), std::move(guards)), __message(message.get()), __condition(condition) { } RuleWarning::~RuleWarning() { } void RuleWarning::compile(ClaspLayer& layer) { //TODO restore addRuleWarning //layer.addRuleWarning(*this); } bool operator<(const ScopedSymbol& s1, const ScopedSymbol& s2) { return (s1.id < s2.id) || (s1.id == s2.id && s1.version < s2.version); } bool operator==(const ScopedSymbol& s1, const ScopedSymbol& s2) { return (s1.id == s2.id) && (s1.version == s2.version); } bool operator<(const Symbol& s1, const Symbol& s2) { return (s1.scope < s2.scope) || (s1.scope == s2.scope && s1.identifier < s2.identifier); } bool operator==(const Symbol& s1, const Symbol& s2) { return (s1.scope == s2.scope) && (s1.identifier == s2.identifier); } bool operator<(const Expression&a, const Expression&b) { if (a.__state != b.__state) return a.__state < b.__state; assert(a.__state != Expression::INVALID); switch (a.__state) { case Expression::IDENT: case Expression::STRING: return a.getValueString() < b.getValueString(); case Expression::NUMBER: return a.getValueDouble() < b.getValueDouble(); case Expression::COMPOUND: { assert(a.blocks.size() == 0); assert(b.blocks.size() == 0); if (a.op != b.op) { return a.op < b.op; } bool flagAValid = ExpressionHints::isStringValueValid(a); bool flagBValid = ExpressionHints::isStringValueValid(b); if (flagAValid != flagBValid) { return flagAValid < flagBValid; } if (flagAValid) { if (a.getValueString() != b.getValueString()) { return a.getValueString() < b.getValueString(); } } flagAValid = ExpressionHints::isDoubleValueValid(a); flagBValid = ExpressionHints::isDoubleValueValid(b); if (flagAValid != flagBValid) { return flagAValid < flagBValid; } if (flagAValid) { if (a.getValueDouble() != b.getValueDouble()) { return a.getValueDouble() < b.getValueDouble(); } } if (a.operands.size() != b.operands.size()) { return (a.operands.size() < b.operands.size()); } for (size_t i = 0; i < a.operands.size(); ++i) { bool result = a.operands[i] < b.operands[i]; if (result) return true; } return false; } case Expression::BINDING: case Expression::INVALID: assert(false); } return false; } bool Expression::operator==(const Expression& other) const { if (this->__state != other.__state) return false; if (ExpressionHints::isStringValueValid(*this)) { if (this->__valueS != other.__valueS) return false; } if (ExpressionHints::isDoubleValueValid(*this)) { if (this->__valueD != other.__valueD) return false; } if (this->__state != Expression::COMPOUND) { return true; } if (this->op != other.op) { return false; } if (this->operands.size() != other.operands.size()) { return false; } for (size_t i = 0; ioperands.size(); ++i) { if (!(this->operands[i] == other.operands[i])) return false; } assert(!this->blocks.size()); assert(!other.blocks.size()); return true; } const ScopedSymbol ScopedSymbol::RetSymbol = ScopedSymbol{0, versions::VERSION_NONE}; } //end of namespace xreate diff --git a/cpp/src/ast.h b/cpp/src/ast.h index cea76a7..d52d052 100644 --- a/cpp/src/ast.h +++ b/cpp/src/ast.h @@ -1,727 +1,734 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * Author: pgess * File: ast.h */ #ifndef AST_H #define AST_H #include "attachments.h" #include #include #include #include #include #include #include #include "utils.h" #include namespace llvm { class Value; } namespace xreate { struct ScopedSymbol; struct Symbol; } namespace std { template<> struct hash { std::size_t operator()(xreate::ScopedSymbol const& s) const; }; template<> struct equal_to { bool operator()(const xreate::ScopedSymbol& __x, const xreate::ScopedSymbol& __y) const; }; template<> struct hash { size_t operator()(xreate::Symbol const& s) const; }; template<> struct equal_to { bool operator()(const xreate::Symbol& __x, const xreate::Symbol& __y) const; }; } namespace xreate { struct String_t { }; struct Identifier_t { }; struct Number_t { }; struct Type_t { }; template class Atom { }; //DEBT store line:col for all atoms/identifiers template<> class Atom { public: Atom(const std::wstring& value); Atom(std::string && name); const std::string& get() const; private: std::string __value; }; template<> class Atom { public: Atom(wchar_t* value); Atom(int value); double get()const; private: double __value; }; template<> class Atom { public: Atom(const std::wstring& value); Atom(std::string && name); const std::string& get() const; private: std::string __value; }; enum class TypePrimitive { Invalid, Bool, I8, I32, I64, Num, Int, Float, String }; enum class TypeOperator { NONE, CALL, CUSTOM, VARIANT, ARRAY, STRUCT, ACCESS, LINK }; struct llvm_array_tag { }; struct struct_tag { }; const llvm_array_tag tag_array = llvm_array_tag(); const struct_tag tag_struct = struct_tag(); /** * \brief Represents type to support type system * * This class represents type in denormalized form, i.e. without arguments and aliases substitution * \sa AST::expandType() */ class TypeAnnotation { public: TypeAnnotation(); TypeAnnotation(const Atom& typ); TypeAnnotation(TypePrimitive typ); TypeAnnotation(llvm_array_tag, TypeAnnotation typ, int size); TypeAnnotation(TypeOperator op, std::initializer_list operands); TypeAnnotation(TypeOperator op, std::vector&& operands); void addBindings(std::vector>&& params); void addFields(std::vector>&& listFields); bool operator<(const TypeAnnotation& t) const; // TypeAnnotation (struct_tag, std::initializer_list); bool isValid() const; TypeOperator __operator = TypeOperator::NONE; std::vector __operands; TypePrimitive __value; std::string __valueCustom; int conjuctionId = -1; //conjunction point id (relevant for recursive types) uint64_t __size = 0; std::vector fields; std::vector bindings; private: }; enum class Operator { ADD, SUB, MUL, DIV, EQU, NE, NEG, LSS, LSE, GTR, GTE, LIST, LIST_RANGE, LIST_NAMED, CALL, CALL_INTRINSIC, NONE, IMPL/* implication */, MAP, FOLD, FOLD_INF, LOOP_CONTEXT, INDEX, IF, SWITCH, SWITCH_ADHOC, SWITCH_VARIANT, CASE, CASE_DEFAULT, LOGIC_AND, ADHOC, CONTEXT_RULE, VARIANT }; class Function; class AST; class CodeScope; class MetaRuleAbstract; typedef ManagedPtr ManagedFnPtr; typedef ManagedPtr ManagedScpPtr; typedef ManagedPtr ManagedRulePtr; const ManagedScpPtr NO_SCOPE = ManagedScpPtr(UINT_MAX, 0); /** * \brief Represents every instruction in Xreate's syntax tree * \attention In case of any changes update xreate::ExpressionHints auxiliary helper as well * * Expression is generic building block of syntax tree able to hold node data * as well as child nodes as operands. Not only instructions use expression for representation in syntax tree * but annotation as well. * * Additionally, `types` as a special kind of annotations use Expression-like data structure TypeAnnotation * \sa xreate::AST, xreate::TypeAnnotation */ // struct Expression { friend class CodeScope; friend class ClaspLayer; friend class CFAPass; friend class ExpressionHints; Expression(const Operator &oprt, std::initializer_list params); Expression(const Atom& ident); Expression(const Atom& number); Expression(const Atom& a); Expression(); void setOp(Operator oprt); void addArg(Expression&& arg); void addBindings(std::initializer_list> params); void bindType(TypeAnnotation t); template void addBindings(InputIt paramsBegin, InputIt paramsEnd); void addTags(const std::list tags) const; void addBlock(ManagedScpPtr scope); const std::vector& getOperands() const; double getValueDouble() const; void setValueDouble(double value); const std::string& getValueString() const; void setValue(const Atom&& v); bool isValid() const; bool isDefined() const; bool operator==(const Expression& other) const; /** * \brief is it string, number, compound operation and so on */ enum { INVALID, COMPOUND, IDENT, NUMBER, STRING, BINDING } __state = INVALID; /** * \brief Valid for compound State. Holds type of compound operator */ Operator op; /** * \brief Unique id to identify expression within syntax tree */ unsigned int id; /** * \brief Exact meaning depends on particular instruction * \details As an example, named lists/structs hold field names in bindings */ std::vector bindings; std::map __indexBindings; /** * \brief Holds child instructions as arguments */ std::vector operands; /** * \brief Holds type of instruction's result */ TypeAnnotation type; /** * \brief Holds additional annotations */ mutable std::map tags; /** * \brief Child code blocks * \details For example, If statement holds TRUE-branch as first and FALSE-branch as second block here */ std::list blocks; private: std::string __valueS; double __valueD; static unsigned int nextVacantId; }; bool operator<(const Expression&, const Expression&); template void Expression::addBindings(InputIt paramsBegin, InputIt paramsEnd) { size_t index = bindings.size(); std::transform(paramsBegin, paramsEnd, std::inserter(bindings, bindings.end()), [&index, this] (const Atom atom) { std::string key = atom.get(); this->__indexBindings[key] = index++; return key; }); } typedef std::list ExpressionList; enum class TagModifier { NONE, ASSERT, REQUIRE }; enum class DomainAnnotation { FUNCTION, VARIABLE }; class RuleArguments : public std::vector> { public: void add(const Atom& name, DomainAnnotation typ); }; class RuleGuards : public std::vector { public: void add(Expression&& e); }; class ClaspLayer; class LLVMLayer; class MetaRuleAbstract { public: MetaRuleAbstract(RuleArguments&& args, RuleGuards&& guards); virtual ~MetaRuleAbstract(); virtual void compile(ClaspLayer& layer) = 0; protected: RuleArguments __args; RuleGuards __guards; }; class RuleWarning : public MetaRuleAbstract { friend class ClaspLayer; public: RuleWarning(RuleArguments&& args, RuleGuards&& guards, Expression&& condition, Atom&& message); virtual void compile(ClaspLayer& layer); ~RuleWarning(); private: std::string __message; Expression __condition; }; typedef unsigned int VNameId; namespace versions { typedef int VariableVersion; const VariableVersion VERSION_NONE = -2; const VariableVersion VERSION_INIT = 0; } template<> struct AttachmentsDict { typedef versions::VariableVersion Data; static const unsigned int key = 6; }; struct ScopedSymbol { VNameId id; versions::VariableVersion version; static const ScopedSymbol RetSymbol; }; struct Symbol { ScopedSymbol identifier; - CodeScope * scope; + const CodeScope * scope; }; struct IdentifierSymbol{}; struct SymbolAlias{}; template<> struct AttachmentsDict { typedef Symbol Data; static const unsigned int key = 7; }; template<> struct AttachmentsDict { typedef Symbol Data; static const unsigned int key = 9; }; typedef std::pair Tag; bool operator<(const ScopedSymbol& s1, const ScopedSymbol& s2); bool operator==(const ScopedSymbol& s1, const ScopedSymbol& s2); bool operator<(const Symbol& s1, const Symbol& s2); bool operator==(const Symbol& s1, const Symbol& s2); /** * \brief Represents code block and single scope of visibility * * Holds single expression as a *body* and set of variable assignments(declarations) used in body's expression * \sa xreate::AST */ class CodeScope { friend class Function; friend class PassManager; public: CodeScope(CodeScope* parent = 0); ~CodeScope(); /** \brief Set expression as a body */ void setBody(const Expression& body); /** \brief Returns current code scope body */ - Expression& getBody(); + const Expression& getBody() const; /** \brief Adds variable definition to be used in body as well as in other declarations */ Symbol addDefinition(Expression&& var, Expression&& body); /** \brief Returns symbols' definition */ static const Expression& getDefinition(const Symbol& symbol, bool flagAllowUndefined = false); const Expression& getDefinition(const ScopedSymbol& symbol, bool flagAllowUndefined = false) const; /** \brief Adds variable defined elsewhere */ void addBinding(Expression&& var, Expression&& argument); std::vector __bindings; std::map __identifiers; CodeScope* __parent; //TODO move __definitions to SymbolsAttachments data //NOTE: definition of return type has index 0 std::unordered_map __declarations; std::vector tags; std::vector contextRules; private: VNameId __vCounter = 1; ScopedSymbol registerIdentifier(const Expression& identifier); public: bool recognizeIdentifier(const Expression& identifier) const; ScopedSymbol getSymbol(const std::string& alias); }; /** * \brief Represents single function in Xreate's syntax tree * * Holds an entry code scope and `guardContext` required for function to operate * \sa xreate::AST */ class Function { friend class Expression; friend class CodeScope; friend class AST; public: Function(const Atom& name); /** * \brief Adds function arguments */ void addBinding(Atom && name, Expression&& argument); /** * \brief Adds additional function annotations */ void addTag(Expression&& tag, const TagModifier mod); const std::string& getName() const; const std::map& getTags() const; CodeScope* getEntryScope() const; CodeScope* __entry; std::string __name; bool isPrefunction = false; //SECTIONTAG adhoc Function::isPrefunction flag Expression guardContext; Expression guard; private: std::map __tags; }; class ExternData; struct ExternEntry { std::string package; std::vector headers; }; typedef Expanded ExpandedType; +struct TypeInferred{}; +template<> +struct AttachmentsDict { + typedef ExpandedType Data; + static const unsigned int key = 11; +}; + enum ASTInterface { CFA, DFA, Extern, Adhoc }; struct FunctionSpecialization { std::string guard; size_t id; }; struct FunctionSpecializationQuery { std::unordered_set context; }; template<> struct AttachmentsId{ static unsigned int getId(const Expression& expression){ return expression.id; } }; template<> struct AttachmentsId{ static unsigned int getId(const Symbol& s){ return s.scope->__declarations.at(s.identifier).id; } }; template<> struct AttachmentsId{ static unsigned int getId(const ManagedFnPtr& f){ const Symbol symbolFunction{ScopedSymbol::RetSymbol, f->getEntryScope()}; return AttachmentsId::getId(symbolFunction); } }; template<> struct AttachmentsId{ static unsigned int getId(const unsigned int id){ return id; } }; class TypesResolver; namespace details { namespace inconsistent { /** * \brief Syntax tree under construction in inconsistent form * * Represents Syntax Tree under construction(**inconsistent state**). * \attention Clients should use rather xreate::AST unless client's code explicitly works with Syntax Tree during construction. * * Typically instance only created by xreate::XreateManager and filled in by Parser * \sa xreate::XreateManager::prepare(std::string&&) */ class AST { friend class xreate::TypesResolver; public: AST(); /** * \brief Adds new function to AST * \param f Function to register */ void add(Function* f); /** * \brief Adds new declarative rule to AST * \param r Declarative Rule */ void add(MetaRuleAbstract* r); /** \brief Registers new code block */ ManagedScpPtr add(CodeScope* scope); /** * \brief Add new type to AST * @param t Type definition * @param alias Typer name */ void add(TypeAnnotation t, Atom alias); /** \brief Current module's name */ std::string getModuleName(); /** * \brief Looks for function with given name * \param name Function name to find * \note Requires that only one function exists under given name * \return Found function */ ManagedPtr findFunction(const std::string& name); /** \brief Returns all function in AST */ std::list getAllFunctions() const; /** * \brief Returns all specializations of a function with a given name * \param fnName function to find * \return list of found function specializations */ std::list getFunctionSpecializations(const std::string& fnName) const; /** * \return First element in Functions/Scopes/Rules list depending on template parameter * \tparam Target either Function or CodeScope or MetaRuleAbstract */ template ManagedPtr begin(); /** * \brief Performs all necessary steps after AST is built * * Performs all finzalisation steps and move AST into consistent state represented by xreate::AST * \sa xreate::AST * \return AST in consistent state */ xreate::AST* finalize(); typedef std::multimap FUNCTIONS_REGISTRY; std::vector __externdata; std::list __dfadata; //TODO move to more appropriate place std::list __rawImports; //TODO move to more appropriate place std::multimap __interfacesData; //TODO CFA data here. private: std::vector __rules; std::vector __functions; std::vector __scopes; FUNCTIONS_REGISTRY __indexFunctions; protected: std::map __indexTypeAliases; public: /** * \brief Stores DFA scheme for later use by DFA Pass * * Treats expression as a DFA scheme and feeds to a DFA Pass later * \paramn Expression DFA Scheme * \sa xreate::DFAPass */ void addDFAData(Expression&& data); /** \brief Stores data for later use by xreate::ExternLayer */ void addExternData(ExternData&& data); /** * \brief Generalized function to store particular data for later use by particular pass * \param interface Particular Interface * \param data Particular data */ void addInterfaceData(const ASTInterface& interface, Expression&& data); /**\name Symbols Recognition */ ///@{ public: //TODO revisit enums/variants, move to codescope /** * \brief Tries to find out whether expression is Variant constructor */ void recognizeVariantConstructor(Expression& function); Atom recognizeVariantConstructor(Atom ident); private: std::map> __dictVariants; public: std::set> bucketUnrecognizedIdentifiers; public: /** * \brief Postpones unrecognized identifier for future second round of recognition * \param scope Code block identifier is encountered * \param id Identifier */ void postponeIdentifier(CodeScope* scope, const Expression& id); /** \brief Second round of identifiers recognition done right after AST is fully constructed */ void recognizePostponedIdentifiers(); ///@} }; template<> ManagedPtr AST::begin(); template<> ManagedPtr AST::begin(); template<> ManagedPtr AST::begin(); } } // namespace details::incomplete /** * \brief Xreate's Syntax Tree in consistent state * * Syntax Tree has two mutually exclusive possible states: * - inconsistent state while AST is under construction. Represented by xreate::details::inconsistent::AST * - consistent state when AST is built and finalize() is done. * * This class represents consistent state and should be used everywhere unless client's code explicitly works with AST under construction. * Consistent AST enables access to additional functions(currently related to type management). * \sa xreate::details::inconsistent::AST */ class AST : public details::inconsistent::AST { public: AST() : details::inconsistent::AST() {} /** * \brief Computes fully expanded form of type by substituting all arguments and aliases * \param t Type to expand * \return Expdanded or normal form of type * \sa TypeAnnotation */ ExpandedType expandType(const TypeAnnotation &t) const; /** * Searches type by given name * \param name Typename to search * \return Expanded or normal form of desired type * \note if type name is not found returns new undefined type with this name */ ExpandedType findType(const std::string& name); /** * Invokes Type Inference Analysis to find out expanded(normal) form expressions's type * \sa typeinference.h * \param expression * \return Type of expression */ ExpandedType getType(const Expression& expression); }; } #endif // AST_H diff --git a/cpp/src/attachments.h b/cpp/src/attachments.h index 40a6db7..2cbaf47 100644 --- a/cpp/src/attachments.h +++ b/cpp/src/attachments.h @@ -1,177 +1,178 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * Author: pgess * File: attachments.h * Date: 3/15/15 */ #ifndef _XREATE_ATTACHMENTS_H_ #define _XREATE_ATTACHMENTS_H_ #include #include #include #include namespace xreate { //Attachments dictionary template struct AttachmentsDict { // typedef void Data; - // static const unsigned int key (current unreserved - 11); + // static const unsigned int key (current unreserved - 12); //reserved attachments: // 1 containers::Implementation // 3 interpretation::InterpretationData // 5 interpretation::FunctionInterpretationData // 6 VariableVersion // 7 IdentifierSymbol // 8 versions::VersionImposedDependency // 9 SymbolAlias // 10 CallGuard Expression +// 11 TypeInferred }; template struct AttachmentsId{ //static unsigned int getId(const Object& object); }; template class IAttachmentsContainer{ protected: virtual bool __exists(const unsigned int object)=0; virtual Data& __get(const unsigned int object)=0; virtual void __put(const unsigned int object, Data data)=0; public: template bool exists(const Id& object){ unsigned int id = AttachmentsId::getId(object); return __exists(id); } template Data& get(const Id& object){ unsigned int id = AttachmentsId::getId(object); return __get(id); } template Data get(const Id& object, const Data& dataDefault){ unsigned int id = AttachmentsId::getId(object); if (! __exists(id)){ return dataDefault; } return __get(id); } template void put(const Id& object, Data data){ unsigned int id = AttachmentsId::getId(object); __put(id, data); } virtual ~IAttachmentsContainer(){}; }; template class AttachmentsContainerDefault: public IAttachmentsContainer{ private: std::unordered_map __data; virtual bool __exists(const unsigned int id){ return __data.count(id); } virtual Data& __get(const unsigned int id){ return __data.at(id); } virtual void __put(const unsigned int id, Data data){ auto result = __data.emplace(id, data); assert(result.second); } public: std::unordered_map& getRawStorage() { return __data; } }; class Attachments{ private: static std::vector __storage; template using Data = typename AttachmentsDict::Data; public: template static bool exists(const Id& object) { assert(AttachmentsDict::key < __storage.size()); assert(__storage.at(AttachmentsDict::key)); IAttachmentsContainer>* self = reinterpret_cast>*>(__storage.at(AttachmentsDict::key)); return self->exists(object); } template static Data& get(const Id& object){ assert(AttachmentsDict::key < __storage.size()); assert(__storage.at(AttachmentsDict::key)); IAttachmentsContainer>* self = reinterpret_cast>*>(__storage.at(AttachmentsDict::key)); return self->get(object); } template static Data get(const Id& object, const Data& dataDefault){ assert(AttachmentsDict::key < __storage.size()); assert(__storage.at(AttachmentsDict::key)); IAttachmentsContainer>* self = reinterpret_cast>*>(__storage.at(AttachmentsDict::key)); return self->get(object, dataDefault); } template static void put(const Id& object, Data data){ assert(AttachmentsDict::key < __storage.size()); assert(__storage.at(AttachmentsDict::key)); IAttachmentsContainer>* self = reinterpret_cast>*>(__storage.at(AttachmentsDict::key)); self->put(object, data); } template static void init(){ unsigned int keyStorage = AttachmentsDict::key; if (keyStorage+1 > __storage.size()){ __storage.resize(keyStorage + 1, nullptr); } __storage[keyStorage] = new AttachmentsContainerDefault>(); } template static void init(IAttachmentsContainer>* container){ unsigned int keyStorage = AttachmentsDict::key; if (keyStorage+1 > __storage.size()){ __storage.resize(keyStorage + 1, nullptr); } __storage[keyStorage] = container; } }; } #endif //_XREATE_ATTACHMENTS_H_ diff --git a/cpp/src/clasplayer.cpp b/cpp/src/clasplayer.cpp index 5dc47e5..9cd4de8 100644 --- a/cpp/src/clasplayer.cpp +++ b/cpp/src/clasplayer.cpp @@ -1,382 +1,382 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * Author: pgess * File: clasplayer.cpp */ /** * \file clasplayer.h * \brief Resoner. Wrapper over Clasp reasoner library */ #include "clasplayer.h" #include "analysis/aux.h" #include "utils.h" #include #include #include #include using namespace std; //TODO escape identifiers started with upper case symbol namespace xreate { void ClaspLayer::printWarnings(std::ostream& out) { const std::string warningTag = "warning"; auto warningsRange = __model.equal_range(warningTag); for (auto warning=warningsRange.first; warning!= warningsRange.second; ++warning) { unsigned int warningId; Gringo::Symbol params; std::tie(warningId, params) = parse(warning->second); cout << "Warning: " << __warnings.at(warningId) << " "; params.print(out); out< warnings; cout << "Model: " << endl; const string& atomBindVar = Config::get("clasp.bindings.variable"); const string& atomBindFunc = Config::get("clasp.bindings.function"); const string& atomBindScope = Config::get("clasp.bindings.scope"); for (Gringo::Symbol atom : model.atoms(clingo_show_type_atoms)) { atom.print(cout); cout <<" | "<< endl; string atomName(atom.name().c_str()); if (atomName == atomBindVar || atomName == atomBindFunc || atomName == atomBindScope){ string name = std::get<1>(parse(atom)).name().c_str(); __model.emplace(move(name), move(atom)); } __model.emplace(atomName, move(atom)); } return true; } void ClaspLayer::registerReport(IAnalysisReport* report){ __reports.push_back(report); } void ClaspLayer::runReports(){ for(IAnalysisReport* report: __reports){ report->print(__partGeneral); delete report; } __reports.clear(); } void ClaspLayer::addRuleWarning(const RuleWarning &rule) { //__partGeneral << rule << endl; list domains; boost::format formatDef("%1%(%2%)"); std::transform(rule.__args.begin(), rule.__args.end(), std::inserter(domains, domains.begin()), [&formatDef](const std::pair &argument) { string domain; switch (argument.second) { case DomainAnnotation::FUNCTION: domain = "function"; break; case DomainAnnotation::VARIABLE: domain = "variable"; break; } return boost::str(formatDef % domain % argument.first); }); list vars; std::transform(rule.__args.begin(), rule.__args.end(), std::inserter(vars, vars.begin()), [](const std::pair &argument) { return argument.first.c_str(); }); list> guardsRaw; std::transform(rule.__guards.begin(), rule.__guards.end(), std::inserter(guardsRaw, guardsRaw.begin()), [this](const Expression &guard) { return xreate::analysis::compile(guard); }); const list& guards = xreate::analysis::multiplyLists(std::move(guardsRaw)); list &&branches = xreate::analysis::compileNeg(rule.__condition); boost::format formatWarning("warning(%1%, (%2%)):- %3%, %4%, %5%."); for (const string &guardsJoined: guards) for (const string &branch: branches) { unsigned int hook = registerWarning(string(rule.__message)); __partGeneral << formatWarning %(hook) %(boost::algorithm::join(vars, ", ")) %(branch) %(guardsJoined) %(boost::algorithm::join(domains, ", ")) <__rawImports) { std::ifstream file(fn); if (!file) continue; while(!file.eof()){ string line; std::getline(file, line); out << line << endl; } } } void ClaspLayer::addRawScript(std::string&& script){ __partGeneral << script; } void ClaspLayer::run() { involveImports(); runReports(); ostringstream program; program << __partTags.str() << __partGeneral.str(); cout << FYEL(program.str()) << endl; std::vector args{"clingo", nullptr}; DefaultGringoModule moduleDefault; Gringo::Scripts scriptsDefault(moduleDefault); ClingoLib ctl(scriptsDefault, 0, args.data(), {}, 0); ctl.add("base", {}, program.str()); ctl.ground({{"base", {}}}, nullptr); // solve Gringo::SolveResult result = ctl.solve([this](Gringo::Model const &model) { this->handleSolution(model); return true; }, {}); if (result.satisfiable() == Gringo::SolveResult::Satisfiable) { cout << FGRN("SUCCESSFULLY") << endl; } else { cout << FRED("UNSUCCESSFULLY") << endl; } // invoke all query plugins to process clasp data for (auto q: __queries) { q.second->init(this); } } ClaspLayer::ClaspLayer() { } ClaspLayer::ModelFragment ClaspLayer::query(const std::string& atom) { if (! __model.count(atom)){ return boost::none; } return ModelFragment(__model.equal_range(atom)); } ScopePacked -ClaspLayer::pack(CodeScope* const scope) { +ClaspLayer::pack(const CodeScope* const scope) { auto pos = __indexScopes.emplace(scope, __indexScopes.size()); if (pos.second) - __registryScopes.push_back(scope); + __registryScopes.push_back(scope); return pos.first->second; } size_t ClaspLayer::getScopesCount() const{ return __registryScopes.size(); } SymbolPacked ClaspLayer::pack(const Symbol& symbol, std::string hintSymbolName) { SymbolPacked result(symbol.identifier.id, symbol.identifier.version, pack(symbol.scope)); __indexSymbolNameHints.emplace(result, hintSymbolName); return result; } Symbol ClaspLayer::unpack(const SymbolPacked& symbol) { return Symbol{ScopedSymbol{symbol.identifier, symbol.version}, __registryScopes[symbol.scope]}; }; std::string ClaspLayer::getHintForPackedSymbol(const SymbolPacked& symbol){ auto result = __indexSymbolNameHints.find(symbol); return (result == __indexSymbolNameHints.end())? "" : result->second; } bool operator==(const SymbolPacked& s1, const SymbolPacked& s2) { return s1.identifier == s2.identifier && s1.scope == s2.scope; } bool operator<(const SymbolPacked& s1, const SymbolPacked& s2) { return s1.scope < s2.scope || (s1.scope == s2.scope && s1.identifier < s2.identifier); } IQuery* ClaspLayer::registerQuery(IQuery *query, const QueryId& id) { return __queries.emplace(id, query).first->second; } IQuery* ClaspLayer::getQuery(const QueryId& id){ assert(__queries.count(id) && "Undefined query"); return __queries.at(id); } Expression ParseImplAtom::get(const Gringo::Symbol& atom) { switch (atom.type()) { case Gringo::SymbolType::Num: return Expression(atom.num()); case Gringo::SymbolType::Str: return Expression(Atom(std::string(atom.string().c_str()))); case Gringo::SymbolType::Fun: { //FUNC Expression result(Operator::CALL,{Expression(Atom(std::string(atom.name().c_str())))}); for (const Gringo::Symbol& arg : atom.args()) { result.addArg(ParseImplAtom::get(arg)); } return result; } default: { assert(false); } } } int ParseImplAtom::get(const Gringo::Symbol& atom) { switch (atom.type()){ case Gringo::SymbolType::Num: return atom.num(); default: break; } assert(false && "Inappropriate symbol type"); } std::string ParseImplAtom::get(const Gringo::Symbol& atom) { switch (atom.type()) { case Gringo::SymbolType::Str: return atom.string().c_str(); case Gringo::SymbolType::Fun: return atom.name().c_str(); default: break; } assert(false && "Inappropriate symbol type"); } SymbolPacked ParseImplAtom::get(const Gringo::Symbol& atom) { auto result = ClaspLayer::parse(atom); return SymbolPacked(std::get<0>(result), std::get<1>(result), std::get<2>(result)); }; Gringo::Symbol ParseImplAtom::get(const Gringo::Symbol& atom) { return atom; } std::list ParseImplAtom>::get(const Gringo::Symbol& atom){ assert (atom.type() == Gringo::SymbolType::Fun); std::list result; for (const Gringo::Symbol& arg: atom.args()) { result.push_back(ParseImplAtom::get(arg)); } return result; } } //end of xreate namespace /** * \class xreate::ClaspLayer * \brief Reasoning and logic Solver. * * Wraps external brilliant fantastic tool [Clasp solver](https://potassco.org/clasp/) * * For building *logic program* for reasoning ClaspLayer takes input from: * - Raw scripts. Client could append arbitrary ASP script to _logic program_. \ref addRawScript() * - Includes. There is possibility to specify external files with ASP scripts * to append to _logic program_. \ref involveImports() (private member) * - Diagnostic rules. Rules that produce diagnostic messages during * compilation(warnings) or even able to halt compilation with errors. * addRuleWarning(), \ref registerWarning() * - DFA data. \ref setDFAData() * - CFA data. \ref setCFAData() * - Dominators Analysis. See xreate::dominators::DominatorsTreeAnalysisProvider. * Executed by \ref run() * - Context rules. See xreate::ContextRule and general [Context Explanation](/w/concepts/context) * * Data sources implement xreate::IAnalysisReport. Generally, input could be loosely divided into three categories: * - *Internally derived* data. CFA, DFA, Dominators analyses *automatically* feed reasoner by * useful insights about data, structure and algorithms of a program * - *User provided* data. CFA, DFA, Diagnostic/Context rules feed reasoner by * annotations Developer specifically provides manually * - *External* data. Raw scripts and includes feed reasoner with third-party data * related to a different aspects of a program possibly produced by external analyzers * * Once ClaspLayer got input from all providers and logic program is fully constructed * it runs external Clasp solver and receives back desired solutions. * * Output of Clasp reasoner is recognized and accessed via *queries*. * IQuery represents an interface between reasoner's output and rest of Xreate. * Each query inherits xreate::IQuery interface. Currently there are queries as follows: * - xreate::containers::Query to catch solutions regarding Containers implementation. See [Containers Explanation](/w/concepts/containers) * - xreate::context::ContextQuery to catch solution regarding Context. See [Context Explanation](/w/concepts/context) * * \sa See xreate::dfa::DFAPass, xreate::cfa::CFAPass, xreate::IQuery, xreate::IAnalysisReport, xreate::dominators::DominatorsTreeAnalysisProvider */ \ No newline at end of file diff --git a/cpp/src/clasplayer.h b/cpp/src/clasplayer.h index f2c097f..2e4157a 100644 --- a/cpp/src/clasplayer.h +++ b/cpp/src/clasplayer.h @@ -1,229 +1,229 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * Author: pgess * File: clasplayer.h */ #ifndef CLASPLAYER_H #define CLASPLAYER_H #include "ast.h" #include "contextrule.h" #include #include #include #include #include #include #include #include namespace xreate { typedef unsigned int ScopePacked; struct SymbolPacked { SymbolPacked(){} SymbolPacked(ScopedSymbol i, ScopePacked s): identifier(i.id), version(i.version), scope(s){} SymbolPacked(VNameId symbolId, versions::VariableVersion symbolVersion, ScopePacked symbolScope) : identifier(symbolId), version(symbolVersion), scope(symbolScope){} VNameId identifier; versions::VariableVersion version; ScopePacked scope; }; bool operator==(const SymbolPacked& s1, const SymbolPacked& s2); bool operator<(const SymbolPacked& s1, const SymbolPacked& s2); enum class DFGConnection { STRONG, WEAK, PROTOTYPE }; /** \brief Designated to mark analysis results that can be composed as *logic program* */ class IAnalysisReport { public: /** \brief Composes *logic program* based on analysis data into ASP format and appends to a stream*/ virtual void print(std::ostringstream& output) const = 0; virtual ~IAnalysisReport(){}; }; /** \brief Logic program query interface */ class IQuery { public: virtual void init(ClaspLayer* clasp) = 0; virtual ~IQuery() {} }; enum class QueryId { ContainersQuery, ContextQuery, PtrvalidQuery, PolymorphQuery }; namespace dfa{ class DFAGraph; } namespace cfa { class CFAGraph; } class ClaspLayer { friend class ContextRule; /**\name Data Providers Management */ ///@{ public: void registerReport(IAnalysisReport* report); void runReports(); /** \brief Appends arbitrary string to *logic program* */ void addRawScript(std::string&& script); private: std::list __reports; /** Includes external text files to a *logic program* */ void involveImports(); ///@} /**\name Queries Management */ ///@{ public: /** \brief Adds query. See xreate::IQuery */ IQuery* registerQuery(IQuery* query, const QueryId& id); /** \brief Returns particular query. See xreate::IQuery */ IQuery* getQuery(const QueryId& id); template static std::tuple parse(const Gringo::Symbol& atom); typedef std::multimap::const_iterator ModelIterator; typedef boost::optional> ModelFragment; ModelFragment query(const std::string& atom); size_t getScopesCount() const; SymbolPacked pack(const Symbol& symbol, std::string hintSymbolName = ""); - ScopePacked pack(CodeScope * const scope); + ScopePacked pack(const CodeScope * const scope); Symbol unpack(const SymbolPacked& symbol); std::string getHintForPackedSymbol(const SymbolPacked& symbol); ///@} private: std::map __queries; std::multimap __model; std::map __indexSymbolNameHints; std::unordered_map __indexScopes; - std::vector __registryScopes; + std::vector __registryScopes; /**\name Diagnostic */ ///@{ //TODO diagnostic move over to separate provider/query public: /** \brief Adds diagnostic rule */ void addRuleWarning(const RuleWarning &rule); /** \brief Registers diagnostic messages */ unsigned int registerWarning(std::string &&message); private: std::map __warnings; void printWarnings(std::ostream& out); ///@} ///@{ public: ClaspLayer(); /** \brief Executes reasoning */ void run(); ///@} AST *ast; private: std::ostringstream __partTags; std::ostringstream __partGeneral; bool handleSolution(Gringo::Model const &model); }; template struct ParseImplAtom { static typ get(const Gringo::Symbol& atom) { return atom.num(); } }; template<> struct ParseImplAtom { static int get(const Gringo::Symbol& atom); }; template<> struct ParseImplAtom { static std::string get(const Gringo::Symbol& atom); }; template<> struct ParseImplAtom { static SymbolPacked get(const Gringo::Symbol& atom); }; template<> struct ParseImplAtom { static Gringo::Symbol get(const Gringo::Symbol& atom); }; template<> struct ParseImplAtom>{ static std::list get(const Gringo::Symbol& atom); }; template<> struct ParseImplAtom { static Expression get(const Gringo::Symbol& atom); }; template struct Parse_Impl { static void parse(Tuple& tup, Gringo::SymSpan::iterator arg) { const size_t tupleSize = std::tuple_size::value; typedef typename std::tuple_element < tupleSize - index, Tuple>::type ElType; ElType& el = std::get < tupleSize - index > (tup); Gringo::Symbol atom = *arg; el = ParseImplAtom::get(atom); Parse_Impl ::parse(tup, ++arg); } }; template struct Parse_Impl { static void parse(Tuple& tup, Gringo::SymSpan::iterator arg) { } }; template std::tuple ClaspLayer::parse(const Gringo::Symbol& atom) { typedef std::tuple < Types...> Tuple; Tuple tup; Parse_Impl::value>::parse(tup, atom.args().first); return tup; } } //end of xreate namespace #endif diff --git a/cpp/src/compilation/advanced.cpp b/cpp/src/compilation/advancedinstructions.cpp similarity index 78% rename from cpp/src/compilation/advanced.cpp rename to cpp/src/compilation/advancedinstructions.cpp index 04db2cf..8c51228 100644 --- a/cpp/src/compilation/advanced.cpp +++ b/cpp/src/compilation/advancedinstructions.cpp @@ -1,390 +1,445 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * File: InstructionsAdvanced.cpp * Author: pgess * * Created on June 26, 2016, 6:00 PM */ /** * \file advanced.h * \brief Compilation of statements that require more than one LLVM instruction */ -#include "compilation/advanced.h" +#include "compilation/advancedinstructions.h" #include "compilation/containers.h" #include "compilation/transformersaturation.h" #include "query/context.h" #include "query/containers.h" #include "llvmlayer.h" #include "ast.h" using namespace std; using namespace llvm; using namespace xreate; using namespace xreate::containers; using namespace xreate::compilation; #define NAME(x) (hintRetVar.empty()? x : hintRetVar) #define UNUSED(x) (void)(x) #define EXPAND_CONTEXT \ LLVMLayer* llvm = context.pass->man->llvm; \ compilation::ICodeScopeUnit* scope = context.scope; \ compilation::IFunctionUnit* function = context.function; -Advanced::Advanced(compilation::Context ctx) +AdvancedInstructions::AdvancedInstructions(compilation::Context ctx) : context(ctx), tyNum(static_cast (ctx.pass->man->llvm->toLLVMType(ExpandedType(TypeAnnotation(TypePrimitive::Num))))) { } llvm::Value* -Advanced::compileMapSolidOutput(const Expression &expr, const std::string hintRetVar) { +AdvancedInstructions::compileMapSolidOutput(const Expression &expr, const std::string hintRetVar) { EXPAND_CONTEXT UNUSED(scope); //initialization Symbol symbolIn = Attachments::get(expr.getOperands()[0]); ImplementationRec implIn = containers::Query::queryImplementation(symbolIn).extract(); // impl of input list size_t size = implIn.size; CodeScope* scopeLoop = expr.blocks.front(); std::string varEl = scopeLoop->__bindings[0]; Iterator* it = Iterator::create(context, symbolIn); llvm::Value *rangeFrom = it->begin(); llvm::Value *rangeTo = it->end(); //definitions ArrayType* tyNumArray = (ArrayType*) (llvm->toLLVMType(ExpandedType(TypeAnnotation(tag_array, TypePrimitive::Num, size)))); llvm::IRBuilder<> &builder = llvm->builder; llvm::BasicBlock *blockLoop = llvm::BasicBlock::Create(llvm::getGlobalContext(), "loop", function->raw); llvm::BasicBlock *blockBeforeLoop = builder.GetInsertBlock(); llvm::BasicBlock *blockAfterLoop = llvm::BasicBlock::Create(llvm::getGlobalContext(), "postloop", function->raw); Value* dataOut = llvm->builder.CreateAlloca(tyNumArray, ConstantInt::get(tyNum, size), NAME("map")); // * initial check Value* condBefore = builder.CreateICmpSLE(rangeFrom, rangeTo); builder.CreateCondBr(condBefore, blockLoop, blockAfterLoop); // create PHI: builder.SetInsertPoint(blockLoop); llvm::PHINode *stateLoop = builder.CreatePHI(tyNum, 2, "mapIt"); stateLoop->addIncoming(rangeFrom, blockBeforeLoop); // loop body: Value* elIn = it->get(stateLoop, varEl); compilation::ICodeScopeUnit* scopeLoopUnit = function->getScopeUnit(scopeLoop); scopeLoopUnit->bindArg(elIn, move(varEl)); Value* elOut = scopeLoopUnit->compile(); Value *pElOut = builder.CreateGEP(dataOut, ArrayRef(std::vector{ConstantInt::get(tyNum, 0), stateLoop})); builder.CreateStore(elOut, pElOut); //next iteration preparing Value *stateLoopNext = builder.CreateAdd(stateLoop, llvm::ConstantInt::get(tyNum, 1)); stateLoop->addIncoming(stateLoopNext, builder.GetInsertBlock()); //next iteration checks: Value* condAfter = builder.CreateICmpSLE(stateLoopNext, rangeTo); builder.CreateCondBr(condAfter, blockLoop, blockAfterLoop); //finalization: builder.SetInsertPoint(blockAfterLoop); return dataOut; } Value* -Advanced::compileArrayIndex(llvm::Value* aggregate, std::vector indexes, std::string hintRetVar) { +AdvancedInstructions::compileArrayIndex(llvm::Value* aggregate, std::vector indexes, std::string hintRetVar) { EXPAND_CONTEXT UNUSED(function); UNUSED(scope); indexes.insert(indexes.begin(), llvm::ConstantInt::get(tyNum, 0)); llvm::Value *pEl = llvm->builder.CreateGEP(aggregate, llvm::ArrayRef(indexes)); return llvm->builder.CreateLoad(pEl, NAME("el")); } Value* -Advanced::compileStructIndex(llvm::Value* aggregate, const ExpandedType& t, const std::string& idx) { +AdvancedInstructions::compileStructIndex(llvm::Value* aggregate, const ExpandedType& t, const std::string& idx) { EXPAND_CONTEXT UNUSED(scope); UNUSED(function); TypeUtils types(llvm); std::vector&& fields = types.getStructFields(t); for (unsigned i = 0, size = fields.size(); i < size; ++i) { if (fields.at(i) == idx) { //dereference pointer if (types.isPointer(t)) { llvm::Value* addr = llvm->builder.CreateConstGEP2_32(nullptr, aggregate, 0, i); return llvm->builder.CreateLoad(addr); } return llvm->builder.CreateExtractValue(aggregate, llvm::ArrayRef{i}); } } assert(false && "not found required struct field"); return nullptr; } llvm::Value* -Advanced::compileFold(const Expression& fold, const std::string& hintRetVar) { +AdvancedInstructions::compileFold(const Expression& fold, const std::string& hintRetVar) { EXPAND_CONTEXT assert(fold.op == Operator::FOLD); //initialization: Symbol varInSymbol = Attachments::get(fold.getOperands()[0]); Implementation info = Query::queryImplementation(varInSymbol); Iterator* it = Iterator::create(context, varInSymbol); llvm::Value* rangeBegin = it->begin(); llvm::Value* rangeEnd = it->end(); llvm::Value* accumInit = scope->process(fold.getOperands()[1]); std::string varIn = fold.getOperands()[0].getValueString(); std::string varAccum = fold.bindings[1]; std::string varEl = fold.bindings[0]; llvm::BasicBlock *blockBeforeLoop = llvm->builder.GetInsertBlock(); std::unique_ptr transformerSaturation(new TransformerSaturation(blockBeforeLoop, context.pass->managerTransformations)); llvm::BasicBlock *blockLoop = llvm::BasicBlock::Create(llvm::getGlobalContext(), "fold", function->raw); llvm::BasicBlock *blockLoopBody = llvm::BasicBlock::Create(llvm::getGlobalContext(), "fold_body", function->raw); llvm::BasicBlock *blockAfterLoop = llvm::BasicBlock::Create(llvm::getGlobalContext(), "fold_after", function->raw); llvm::BasicBlock *blockNext = llvm::BasicBlock::Create(llvm::getGlobalContext(), "fold_next", function->raw); llvm->builder.CreateBr(blockLoop); // * create phi llvm->builder.SetInsertPoint(blockLoop); llvm::PHINode *accum = llvm->builder.CreatePHI(accumInit->getType(), 2, varAccum); accum->addIncoming(accumInit, blockBeforeLoop); llvm::PHINode *itLoop = llvm->builder.CreatePHI(rangeBegin->getType(), 2, "foldIt"); itLoop->addIncoming(rangeBegin, blockBeforeLoop); // * loop checks Value* condRange = llvm->builder.CreateICmpNE(itLoop, rangeEnd); llvm->builder.CreateCondBr(condRange, blockLoopBody, blockAfterLoop); // * loop body llvm->builder.SetInsertPoint(blockLoopBody); CodeScope* scopeLoop = fold.blocks.front(); compilation::ICodeScopeUnit* loopUnit = function->getScopeUnit(scopeLoop); Value* elIn = it->get(itLoop); loopUnit->bindArg(accum, move(varAccum)); loopUnit->bindArg(elIn, move(varEl)); Value* accumNext = loopUnit->compile(); // * Loop saturation checks bool flagSaturationTriggered = transformerSaturation->insertSaturationChecks(blockNext, blockAfterLoop, context); llvm::BasicBlock* blockSaturation = llvm->builder.GetInsertBlock(); if (!flagSaturationTriggered){ llvm->builder.CreateBr(blockNext); } // * computing next iteration state llvm->builder.SetInsertPoint(blockNext); Value *itLoopNext = it->advance(itLoop); accum->addIncoming(accumNext, llvm->builder.GetInsertBlock()); itLoop->addIncoming(itLoopNext, llvm->builder.GetInsertBlock()); llvm->builder.CreateBr(blockLoop); // * finalization: llvm->builder.SetInsertPoint(blockAfterLoop); if (!flagSaturationTriggered){ return accum; } llvm::PHINode* result = llvm->builder.CreatePHI(accumInit->getType(), 2); result->addIncoming(accum, blockLoop); result->addIncoming(accumNext, blockSaturation); return result; } llvm::Value* -Advanced::compileFoldInf(const Expression& fold, const std::string& hintRetVar) { +AdvancedInstructions::compileFoldInf(const Expression& fold, const std::string& hintRetVar) { EXPAND_CONTEXT assert(fold.op == Operator::FOLD_INF); std::string accumName = fold.bindings[0]; llvm::Value* accumInit = scope->process(fold.getOperands()[0]); llvm::BasicBlock *blockBeforeLoop = llvm->builder.GetInsertBlock(); llvm::BasicBlock *blockLoop = llvm::BasicBlock::Create(llvm::getGlobalContext(), "foldinf", function->raw); llvm::BasicBlock *blockNext = llvm::BasicBlock::Create(llvm::getGlobalContext(), "foldinf_next", function->raw); llvm::BasicBlock *blockAfterLoop = llvm::BasicBlock::Create(llvm::getGlobalContext(), "foldinf_post", function->raw); std::unique_ptr transformerSaturation(new TransformerSaturation(blockBeforeLoop, context.pass->managerTransformations)); llvm->builder.CreateBr(blockLoop); // * create phi llvm->builder.SetInsertPoint(blockLoop); llvm::PHINode *accum = llvm->builder.CreatePHI(accumInit->getType(), 2, accumName); accum->addIncoming(accumInit, blockBeforeLoop); // * loop body CodeScope* scopeLoop = fold.blocks.front(); compilation::ICodeScopeUnit* unitLoop = function->getScopeUnit(scopeLoop); unitLoop->bindArg(accum, move(accumName)); Value* accumNext = unitLoop->compile(); // * Loop saturation checks bool flagSaturationTriggered = transformerSaturation->insertSaturationChecks(blockNext, blockAfterLoop, context); assert(flagSaturationTriggered); // * computing next iteration state llvm->builder.SetInsertPoint(blockNext); accum->addIncoming(accumNext, llvm->builder.GetInsertBlock()); llvm->builder.CreateBr(blockLoop); // finalization: llvm->builder.SetInsertPoint(blockAfterLoop); return accumNext; } llvm::Value* -Advanced::compileIf(const Expression& exprIf, const std::string& hintRetVar) { +AdvancedInstructions::compileIf(const Expression& exprIf, const std::string& hintRetVar) { EXPAND_CONTEXT //initialization: const Expression& condExpr = exprIf.getOperands()[0]; llvm::IRBuilder<>& builder = llvm->builder; //llvm::Type* tyResultType = llvm->toLLVMType(llvm->ast->expandType(exprIf.type)); llvm::BasicBlock *blockAfter = llvm::BasicBlock::Create(llvm::getGlobalContext(), "ifAfter", function->raw); llvm::BasicBlock *blockTrue = llvm::BasicBlock::Create(llvm::getGlobalContext(), "ifTrue", function->raw); llvm::BasicBlock *blockFalse = llvm::BasicBlock::Create(llvm::getGlobalContext(), "ifFalse", function->raw); llvm::Value* cond = scope->process(condExpr); llvm->builder.CreateCondBr(cond, blockTrue, blockFalse); builder.SetInsertPoint(blockTrue); CodeScope* scopeTrue = exprIf.blocks.front(); llvm::Value* resultTrue = function->getScopeUnit(scopeTrue)->compile(); blockTrue = builder.GetInsertBlock(); builder.CreateBr(blockAfter); builder.SetInsertPoint(blockFalse); CodeScope* scopeFalse = exprIf.blocks.back(); llvm::Value* resultFalse = function->getScopeUnit(scopeFalse)->compile(); blockFalse = builder.GetInsertBlock(); builder.CreateBr(blockAfter); builder.SetInsertPoint(blockAfter); llvm::PHINode *ret = builder.CreatePHI(resultTrue->getType(), 2, NAME("if")); ret->addIncoming(resultTrue, blockTrue); ret->addIncoming(resultFalse, blockFalse); return ret; } //TODO Switch: default variant no needed when all possible conditions are considered - llvm::Value* -Advanced::compileSwitch(const Expression& exprSwitch, const std::string& hintRetVar) { +AdvancedInstructions::compileSwitch(const Expression& exprSwitch, const std::string& hintRetVar) { EXPAND_CONTEXT - AST* root = context.pass->man->root; UNUSED(function); - - + AST* root = context.pass->man->root; + llvm::IRBuilder<>& builder = llvm->builder; assert(exprSwitch.operands.size() >= 2); assert(exprSwitch.operands[1].op == Operator::CASE_DEFAULT && "No default case in Switch Statement"); - int countCases = exprSwitch.operands.size() - 1; - llvm::IRBuilder<>& builder = llvm->builder; + int countCases = exprSwitch.operands.size() - 1; llvm::BasicBlock* blockProlog = builder.GetInsertBlock(); llvm::BasicBlock *blockEpilog = llvm::BasicBlock::Create(llvm::getGlobalContext(), "switchAfter", function->raw); builder.SetInsertPoint(blockEpilog); llvm::Type* exprSwitchType = llvm->toLLVMType(root->getType(exprSwitch)); llvm::PHINode *ret = builder.CreatePHI(exprSwitchType, countCases, NAME("switch")); builder.SetInsertPoint(blockProlog); llvm::Value * conditionSwitch = scope->process(exprSwitch.operands[0]); llvm::BasicBlock *blockDefault = llvm::BasicBlock::Create(llvm::getGlobalContext(), "caseDefault", function->raw); llvm::SwitchInst * instructionSwitch = builder.CreateSwitch(conditionSwitch, blockDefault, countCases); for (int size = exprSwitch.operands.size(), i = 2; i < size; ++i) { llvm::BasicBlock *blockCase = llvm::BasicBlock::Create(llvm::getGlobalContext(), "case" + std::to_string(i), function->raw); llvm::Value* condCase = function->getScopeUnit(exprSwitch.operands[i].blocks.front())->compile(); builder.SetInsertPoint(blockCase); llvm::Value* resultCase = function->getScopeUnit(exprSwitch.operands[i].blocks.back())->compile(); builder.CreateBr(blockEpilog); ret->addIncoming(resultCase, builder.GetInsertBlock()); builder.SetInsertPoint(blockProlog); instructionSwitch->addCase(dyn_cast(condCase), blockCase); } //compile default block: builder.SetInsertPoint(blockDefault); CodeScope* scopeDefault = exprSwitch.operands[1].blocks.front(); llvm::Value* resultDefault = function->getScopeUnit(scopeDefault)->compile(); builder.CreateBr(blockEpilog); ret->addIncoming(resultDefault, builder.GetInsertBlock()); builder.SetInsertPoint(blockEpilog); return ret; } +llvm::Value* +AdvancedInstructions::compileSwitchVariant(const Expression& exprSwitch, const std::string& hintRetVar) { + EXPAND_CONTEXT + UNUSED(function); + AST* root = context.pass->man->root; + llvm::IRBuilder<>& builder = llvm->builder; + llvm::Type* typI8= llvm::Type::getInt8Ty(llvm::getGlobalContext()); + const ExpandedType& typVariant = root->getType(exprSwitch.operands.at(0)); + llvm::Type* typVariantRaw = llvm->toLLVMType(typVariant); + llvm::Type* typStorageRaw = llvm::cast(typVariantRaw)->getElementType(1); + assert(typVariant->__operands.size() == exprSwitch.operands.size() - 1 && "Ill-formed Switch Variant"); + + int casesCount = exprSwitch.operands.size(); + llvm::BasicBlock* blockProlog = builder.GetInsertBlock(); + llvm::BasicBlock *blockEpilog = llvm::BasicBlock::Create(llvm::getGlobalContext(), "switchAfter", function->raw); + builder.SetInsertPoint(blockEpilog); + llvm::Type* resultType = llvm->toLLVMType(root->getType(exprSwitch)); + llvm::PHINode *ret = builder.CreatePHI(resultType, casesCount, NAME("switch")); + + builder.SetInsertPoint(blockProlog); + llvm::Value * conditionSwitchRaw = scope->process(exprSwitch.operands.at(0)); + llvm::Value* idRaw = builder.CreateExtractValue(conditionSwitchRaw, llvm::ArrayRef({0})); + llvm::Value* storageRaw = builder.CreateExtractValue(conditionSwitchRaw, llvm::ArrayRef({1})); + llvm::Value* addrAsStorage = llvm->builder.CreateAlloca(typStorageRaw); + llvm->builder.CreateStore(storageRaw, addrAsStorage); + + string identCondition = exprSwitch.bindings.front(); + llvm::SwitchInst * instructionSwitch = builder.CreateSwitch(idRaw, nullptr, casesCount); + llvm::BasicBlock* blockDefaultAmbiguous; + + std::list::const_iterator scopeCaseIt = exprSwitch.blocks.begin(); + for (int instancesSize = exprSwitch.operands.size()-1, instId = 0; instId < instancesSize; ++instId) { + llvm::BasicBlock *blockCase = llvm::BasicBlock::Create(llvm::getGlobalContext(), "case" + std::to_string(instId), function->raw); + builder.SetInsertPoint(blockCase); + ICodeScopeUnit* unitCase = function->getScopeUnit(*scopeCaseIt); + + //derefence variant + const ExpandedType& instType = ExpandedType(typVariant->__operands.at(instId)); + llvm::Type* instTypeRaw = llvm->toLLVMType(instType); + llvm::Value* addrAsInst = llvm->builder.CreateBitOrPointerCast(addrAsStorage, instTypeRaw->getPointerTo()); + llvm::Value* instRaw = llvm->builder.CreateLoad(instTypeRaw, addrAsInst); + const Symbol& identSymb = unitCase->bindArg(instRaw, move(identCondition)); + Attachments::put(identSymb, instType); + + llvm::Value* resultCase = function->getScopeUnit(*scopeCaseIt)->compile(); + builder.CreateBr(blockEpilog); + + ret->addIncoming(resultCase, blockDefaultAmbiguous = builder.GetInsertBlock()); + builder.SetInsertPoint(blockProlog); + instructionSwitch->addCase(dyn_cast(llvm::ConstantInt::get(typI8, exprSwitch.operands.at(instId+1).getValueDouble())), blockCase); + ++scopeCaseIt; + } + + instructionSwitch->setDefaultDest(blockDefaultAmbiguous); + builder.SetInsertPoint(blockEpilog); + return ret; +} + //TODO recognize cases to make const arrays/stored in global mem/stack alloced. llvm::Value* -Advanced::compileListAsSolidArray(const Expression &expr, const std::string& hintRetVar) { +AdvancedInstructions::compileListAsSolidArray(const Expression &expr, const std::string& hintRetVar) { EXPAND_CONTEXT UNUSED(scope); UNUSED(function); AST* root = context.pass->man->root; const size_t& length = expr.getOperands().size(); const Expression& expression = expr; llvm::Value* zero = ConstantInt::get(tyNum, 0); llvm::Value* one = ConstantInt::get(tyNum, 1); ExpandedType typAggrExpanded = root->getType(expression); assert(typAggrExpanded->__operator == TypeOperator::ARRAY); llvm::Type* typEl = llvm->toLLVMType(ExpandedType(typAggrExpanded->__operands[0])); ArrayType* typAggr = (ArrayType*) llvm::ArrayType::get(typEl, length); llvm::Value* list = llvm->builder.CreateAlloca(typAggr, ConstantInt::get(Type::getInt32Ty(llvm::getGlobalContext()), length, false), hintRetVar); const std::vector& operands = expression.getOperands(); llvm::Value* addrOperand = llvm->builder.CreateGEP(typAggr, list, ArrayRef(std::vector{zero, zero})); llvm->builder.CreateStore(scope->process(operands.front()), addrOperand) ; for (auto i=++operands.begin(); i!=operands.end(); ++i){ addrOperand = llvm->builder.CreateGEP(typEl, addrOperand, ArrayRef(std::vector{one})); llvm->builder.CreateStore(scope->process(*i), addrOperand) ; } return list; // Value* listDest = l.builder.CreateAlloca(typList, ConstantInt::get(typI32, __size), *hintRetVar); // l.buil1der.CreateMemCpy(listDest, listSource, __size, 16); } llvm::Value* - Advanced::compileConstantStringAsPChar(const string& data, const std::string& hintRetVar) { + AdvancedInstructions::compileConstantStringAsPChar(const string& data, const std::string& hintRetVar) { EXPAND_CONTEXT UNUSED(function); UNUSED(scope); Type* typPchar = PointerType::getUnqual(Type::getInt8Ty(llvm::getGlobalContext())); //ArrayType* typStr = (ArrayType*) (llvm->toLLVMType(ExpandedType(TypeAnnotation(tag_array, TypePrimitive::I8, size+1)))); /* std::vector chars; chars.reserve(size+1); for (size_t i=0; i< size; ++i){ chars[i] = ConstantInt::get(typI8, (unsigned char) data[i]); } chars[size] = ConstantInt::get(typI8, 0); */ Value* rawData = ConstantDataArray::getString(llvm::getGlobalContext(), data); Value* rawPtrData = llvm->builder.CreateAlloca(rawData->getType(), ConstantInt::get(Type::getInt32Ty(llvm::getGlobalContext()), 1, false)); llvm->builder.CreateStore(rawData, rawPtrData); return llvm->builder.CreateCast(llvm::Instruction::BitCast, rawPtrData, typPchar, hintRetVar); } diff --git a/cpp/src/compilation/advanced.h b/cpp/src/compilation/advancedinstructions.h similarity index 88% rename from cpp/src/compilation/advanced.h rename to cpp/src/compilation/advancedinstructions.h index 76f4c4f..5c7bd16 100644 --- a/cpp/src/compilation/advanced.h +++ b/cpp/src/compilation/advancedinstructions.h @@ -1,52 +1,53 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * - * File: InstructionsAdvanced.h + * File: AdvancedInstructions.h * Author: pgess * * Created on June 26, 2016, 6:00 PM */ #ifndef INSTRUCTIONSADVANCED_H #define INSTRUCTIONSADVANCED_H #include "ast.h" #include "llvmlayer.h" #include "pass/compilepass.h" #include namespace xreate { namespace compilation { -class Advanced { +class AdvancedInstructions { public: - Advanced(compilation::Context ctx); + AdvancedInstructions(compilation::Context ctx); llvm::Value* compileArrayIndex(llvm::Value* aggregate, std::vector indexes, std::string ident = ""); llvm::Value* compileStructIndex(llvm::Value* aggregate, const ExpandedType& t, const std::string& idx); /* * - map Computation -> Llvm_Array: Prohibited, we do not know a result size * - map Llvm_Array -> Computation: considered in `compileGetElement` * - map Llvm_Array -> Llvm_Array considered by this method */ llvm::Value* compileMapSolidOutput(const Expression &expr, const std::string hintRetVar = ""); llvm::Value* compileFold(const Expression& fold, const std::string& ident=""); llvm::Value* compileFoldInf(const Expression& fold, const std::string& ident=""); //DISABLEDFEATURE Context Loop llvm::Value* compileLoopContext(const Expression& expression, const std::string& hintRetVar); llvm::Value* compileIf(const Expression& exprIf, const std::string& ident); llvm::Value* compileSwitch(const Expression& exprSwitch, const std::string& hintRetVar); + llvm::Value* compileSwitchVariant(const Expression& exprSwitch, const std::string& hintRetVar); llvm::Value* compileConstantStringAsPChar(const std::string &data, const std::string& hintRetVar); - llvm::Value* compileListAsSolidArray(const Expression &expr, const std::string& hintRetVar=""); + llvm::Value* compileListAsSolidArray(const Expression &expr, const std::string& hintRetVar); private: compilation::Context context; llvm::IntegerType* const tyNum; }; }} #endif /* INSTRUCTIONSADVANCED_H */ diff --git a/cpp/src/compilation/containers.cpp b/cpp/src/compilation/containers.cpp index 5735440..8999d93 100644 --- a/cpp/src/compilation/containers.cpp +++ b/cpp/src/compilation/containers.cpp @@ -1,206 +1,206 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * File: containers.cpp * Author: pgess * * \file compilation/containers.h * \brief Containers compilation support. See more [details on Containers](/w/concepts/containers) */ #include "compilation/containers.h" using namespace std; using namespace llvm; using namespace xreate; using namespace xreate::containers; Iterator* Iterator::create(xreate::compilation::Context context, const xreate::Symbol& var){ const Implementation& data = Query::queryImplementation(var); switch(data.impl){ case ON_THE_FLY: return new IteratorForward(context, var, data.extract()); case SOLID: return new IteratorForward(context, var, data.extract()); default: assert(true); } assert(false && "Unknown declaration"); return nullptr; } llvm::Value* IteratorForward::begin() { switch(sourceDecl.op) { case xreate::Operator::LIST: { sourceRawType = llvm::Type::getInt32Ty(llvm::getGlobalContext()); return llvm::ConstantInt::get(Type::getInt32Ty(llvm::getGlobalContext()), 0); }; case xreate::Operator::LIST_RANGE:{ assert(sourceDecl.operands.size()==2); llvm::Value* result = sourceUnit->process(sourceDecl.operands.at(0)); sourceRawType = result->getType(); return result; }; default: break; } if (linkedlist){ llvm::Value* result = sourceUnit->process(sourceDecl); sourceRawType = result->getType(); return result; } assert(false); } llvm::Value* IteratorForward::end(){ switch(sourceDecl.op) { case xreate::Operator::LIST: { size_t idLast = sourceDecl.operands.size() - 1; return ConstantInt::get(sourceRawType, idLast); } case xreate::Operator::LIST_RANGE: { assert(sourceDecl.operands.size() == 2); llvm::Value* valueEndOfRange = sourceUnit->process(sourceDecl.operands.at(1)); llvm::Value* valueConstOne = llvm::ConstantInt::get(llvm::Type::getInt32Ty(llvm::getGlobalContext()), 1); return llvm->builder.CreateAdd(valueEndOfRange, valueConstOne); }; default: break; } //return null pointer if (linkedlist){ return ConstantPointerNull::getNullValue(sourceRawType); } assert(false && "Unknown declaration"); return nullptr; } llvm::Value* IteratorForward::get(Value* index,const std::string& hintRetVar){ const Expression& currentDecl = CodeScope::getDefinition(current); switch (currentDecl.op) { case xreate::Operator::LIST: { //TODO re check is it right scope(source) to compile currentDecl. Provide unittests. llvm::Value* currentValue = sourceUnit->processSymbol(current); - return xreate::compilation::Advanced(context).compileArrayIndex(currentValue, std::vector{index}); + return xreate::compilation::AdvancedInstructions(context).compileArrayIndex(currentValue, std::vector{index}); }; case xreate::Operator::LIST_RANGE: { return index; }; case xreate::Operator::MAP: { assert(currentDecl.getOperands().size()==1); assert(currentDecl.bindings.size()); assert(currentDecl.blocks.size()); CodeScope* scopeLoop = currentDecl.blocks.front(); std::string varEl = currentDecl.bindings[0]; const Symbol& symbIn = Attachments::get(currentDecl.getOperands()[0]); auto it = std::unique_ptr(Iterator::create(context, symbIn)); Value* elIn = it->get(index, varEl); compilation::ICodeScopeUnit* unitLoop = function->getScopeUnit(scopeLoop); unitLoop->bindArg(elIn, std::move(varEl)); return unitLoop->compile(); } case xreate::Operator::NONE: { //TODO review iterator determination strategy for case of Expression::BINDING assert(currentDecl.__state==Expression::IDENT); const Symbol& symbIn = Attachments::get(currentDecl); auto it = std::unique_ptr(Iterator::create(context, symbIn)); return it->get(index); }; default: break; } if (linkedlist){ return index; } assert(false && "Unknown declaration"); return nullptr; } llvm::Value* IteratorForward::advance(Value* index, const std::string& hintRetVar){ switch(sourceDecl.op) { case xreate::Operator::LIST: case xreate::Operator::LIST_RANGE: return llvm->builder.CreateAdd(index, llvm::ConstantInt::get(llvm::Type::getInt32Ty(llvm::getGlobalContext()), 1), hintRetVar); default: break; } if (linkedlist){ ExpandedType tySource = llvm->ast->getType(CodeScope::getDefinition(source)); assert(tySource->__operator == TypeOperator::ARRAY && "Linked list implementation has to have ARRAY type"); assert(tySource->__operands.size()); - return xreate::compilation::Advanced(context).compileStructIndex(index, ExpandedType(TypeAnnotation(tySource->__operands.at(0))), linkedlist.fieldPointer); + return xreate::compilation::AdvancedInstructions(context).compileStructIndex(index, ExpandedType(TypeAnnotation(tySource->__operands.at(0))), linkedlist.fieldPointer); } assert(false && "Unknown declaration"); return nullptr; } //const ImplementationRec& implementation IteratorForward::IteratorForward(const compilation::Context& ctx, const xreate::Symbol& symbolContainer, const ImplementationRec& implementation) : Iterator(), __length(implementation.size), llvm(ctx.pass->man->llvm) { __container = ctx.function->getScopeUnit(symbolContainer.scope)->processSymbol(symbolContainer); } llvm::Value* IteratorForward::begin(){ //0 return llvm::ConstantInt::get(llvm::Type::getInt32Ty(llvm::getGlobalContext()), 0); } llvm::Value* IteratorForward::end(){ //length return llvm::ConstantInt::get(llvm::Type::getInt32Ty(llvm::getGlobalContext()), __length); } llvm::Value* IteratorForward::get(llvm::Value* index,const std::string& hintRetVar){ //GEP[index]] llvm::Type* tyNum = llvm::Type::getInt32Ty(llvm::getGlobalContext()); llvm::Value* pResult = llvm->builder.CreateGEP(__container, ArrayRef(std::vector{ConstantInt::get(tyNum, 0), index})); return llvm->builder.CreateLoad(pResult, hintRetVar); } llvm::Value* IteratorForward::advance(llvm::Value* index, const std::string& hintRetVar){ //index + 1 llvm::Type* tyNum = llvm::Type::getInt32Ty(llvm::getGlobalContext()); return llvm->builder.CreateAdd(index, llvm::ConstantInt::get(tyNum, 1), hintRetVar); } diff --git a/cpp/src/compilation/containers.h b/cpp/src/compilation/containers.h index 5a190f3..6fa52d9 100644 --- a/cpp/src/compilation/containers.h +++ b/cpp/src/compilation/containers.h @@ -1,98 +1,98 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * File: containers.h * Author: pgess */ #ifndef CODEINSTRUCTIONS_H #define CODEINSTRUCTIONS_H #include "ast.h" #include "llvmlayer.h" #include "pass/compilepass.h" -#include "compilation/advanced.h" +#include "compilation/advancedinstructions.h" #include "query/context.h" #include "query/containers.h" namespace xreate { namespace containers { using namespace llvm; /** \brief Factory to create relevant iterator based on solution * provided by xreate::containers::Query * \sa xreate::containers::Query */ class Iterator{ public : virtual llvm::Value* begin() =0; virtual llvm::Value* end() = 0; virtual llvm::Value* get(llvm::Value* index,const std::string& hintRetVar="") = 0; virtual llvm::Value* advance(llvm::Value* index, const std::string& hintRetVar="")=0; virtual ~Iterator(){}; static Iterator* create(xreate::compilation::Context context, const xreate::Symbol& var); }; template class IteratorForward; /** \brief Possible container implementation. Represents computation on the fly * \sa xreate::containers::Iterator, \sa xreate::containers::Query */ template<> class IteratorForward : public Iterator { private: LLVMLayer* llvm; const xreate::Symbol current; const Symbol source; const ImplementationLinkedList linkedlist; - CodeScope* const sourceScope; + const CodeScope* const sourceScope; //TODO initialize and mark as const (three fields) compilation::ICodeScopeUnit* sourceUnit; compilation::IFunctionUnit* function; //TODO is used somewhere? const Expression& sourceDecl; compilation::Context context; llvm::Type* sourceRawType =nullptr; public: IteratorForward(const compilation::Context& ctx, const xreate::Symbol& s, const ImplementationRec& implementation) : llvm(ctx.pass->man->llvm), current(s), source(implementation.source), linkedlist(source), sourceScope(source.scope), sourceUnit(ctx.function->getScopeUnit(source.scope)), sourceDecl(CodeScope::getDefinition(source)), context(ctx) {} llvm::Value* begin() override; llvm::Value* end() override; llvm::Value* get(llvm::Value* index,const std::string& hintRetVar="") override; llvm::Value* advance(llvm::Value* index, const std::string& hintRetVar="") override; }; /** \brief Possible container implementation. Represents contiguous in memory(array) implementation * \sa xreate::containers::Iterator, \sa xreate::containers::Query */ template<> class IteratorForward: public Iterator{ size_t __length; llvm::Value* __container; LLVMLayer* llvm; public: IteratorForward(const compilation::Context& ctx, const xreate::Symbol& symbolContainer, const ImplementationRec& implementation); llvm::Value* begin() override; llvm::Value* end() override; llvm::Value* get(llvm::Value* index,const std::string& hintRetVar="") override; llvm::Value* advance(llvm::Value* index, const std::string& hintRetVar="") override; }; }} #endif //CODEINSTRUCTIONS_H diff --git a/cpp/src/compilation/polymorphcompiler.h b/cpp/src/compilation/polymorphcompiler.h index d2c933e..fcc7382 100644 --- a/cpp/src/compilation/polymorphcompiler.h +++ b/cpp/src/compilation/polymorphcompiler.h @@ -1,55 +1,55 @@ /* * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * File: polymorphcompiler.h * Author: pgess * * Created on October 7, 2017 */ #ifndef POLYMORPHCOMPILER_H #define POLYMORPHCOMPILER_H #include "pass/compilepass.h" #include "query/polymorph.h" namespace xreate { namespace polymorph { typedef Expression Guard; template class PolymorphCodeScopeUnit: public Parent{ public: - PolymorphCodeScopeUnit(CodeScope* codeScope, compilation::IFunctionUnit* f, CompilePass* compilePass) + PolymorphCodeScopeUnit(const CodeScope* const codeScope, compilation::IFunctionUnit* f, CompilePass* compilePass) : Parent(codeScope, f, compilePass) {} protected: compilation::ICallStatement* findFunction(const Expression& opCall) override { //Check does invocation require guards const std::string& nameCallee = opCall.getValueString(); const std::list& specializations = Parent::pass->man->root->getFunctionSpecializations(nameCallee); if (specializations.size() == 1){ if (!specializations.front()->guard.isValid()) { return Parent::findFunction(opCall); } } assert(Attachments::exists(opCall) && "Guard required"); const Expression& guardSelected = Attachments::get(opCall); std::map indexSpecs; for(ManagedFnPtr specialization: specializations){ indexSpecs.emplace(specialization->guard, specialization); } assert(indexSpecs.count(guardSelected) && "Can't found appropriate guard"); return new compilation::CallStatementRaw(Parent::pass->getFunctionUnit(indexSpecs.at(guardSelected))->compile(), Parent::pass->man->llvm); } }; } } //end of xreate::polymorph #endif /* POLYMORPHCOMPILER_H */ diff --git a/cpp/src/compilation/scopedecorators.h b/cpp/src/compilation/scopedecorators.h index 54e7a23..b0e66ec 100644 --- a/cpp/src/compilation/scopedecorators.h +++ b/cpp/src/compilation/scopedecorators.h @@ -1,145 +1,147 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * File: scopedecorators.h * Author: pgess * * Created on February 24, 2017, 11:35 AM */ /** * \file scopedecorators.h * \brief Basic code block compilation xreate::compilation::ICodeScopeUnit decorators */ #ifndef SCOPEDECORATORS_H #define SCOPEDECORATORS_H #include "ast.h" #include "compilation/targetinterpretation.h" #include "compilation/versions.h" #include "compilation/transformations.h" #include "compilation/polymorphcompiler.h" namespace xreate { class CompilePass; namespace compilation { class ICodeScopeUnit; class IFunctionUnit; /**\brief Caching ability for code scope compilation * \extends xreate::compilation::ICodeScopeUnit */ template class CachedScopeDecorator: public Parent{ typedef CachedScopeDecorator SELF; public: - CachedScopeDecorator(CodeScope* codeScope, IFunctionUnit* f, CompilePass* compilePass): Parent(codeScope, f, compilePass){} + CachedScopeDecorator(const CodeScope* const codeScope, IFunctionUnit* f, CompilePass* compilePass): Parent(codeScope, f, compilePass){} - void bindArg(llvm::Value* value, std::string&& alias) + Symbol bindArg(llvm::Value* value, std::string&& alias) { //ensure existence of an alias assert(Parent::scope->__identifiers.count(alias)); //memorize new value for an alias ScopedSymbol id{Parent::scope->__identifiers.at(alias), versions::VERSION_NONE}; __rawVars[id] = value; + + return Symbol{id, Parent::scope}; } void bindArg(llvm::Value* value, const ScopedSymbol& s) { __rawVars[s] = value; } llvm::Value* compile(const std::string& hintBlockDecl="") override{ if (__rawVars.count(ScopedSymbol::RetSymbol)){ return __rawVars[ScopedSymbol::RetSymbol]; } return Parent::compile(hintBlockDecl); } llvm::Value* processSymbol(const Symbol& s, std::string hintRetVar) override{ - CodeScope* scope = s.scope; + const CodeScope* scope = s.scope; SELF* self = dynamic_cast(Parent::function->getScopeUnit(scope)); if (self->__rawVars.count(s.identifier)){ return self->__rawVars[s.identifier]; } //Declaration could be overriden Expression declaration = CodeScope::getDefinition(s, true); if (!declaration.isDefined()){ if (self->__declarationsOverriden.count(s.identifier)){ declaration = self->__declarationsOverriden[s.identifier]; } else { assert(false); //in case of binding there should be raws provided. } } return self->__rawVars[s.identifier] = Parent::processSymbol(s, hintRetVar); } void overrideDeclaration(const Symbol binding, Expression&& declaration){ SELF* self = dynamic_cast(Parent::function->getScopeUnit(binding.scope)); self->__declarationsOverriden.emplace(binding.identifier, std::move(declaration)); } void registerChildScope(std::shared_ptr scope){ __childScopes.push_back(scope); } void reset(){ __rawVars.clear(); __declarationsOverriden.clear(); __childScopes.clear(); } private: std::unordered_map __declarationsOverriden; std::unordered_map __rawVars; std::list> __childScopes; }; /**\brief Default code scope compilation functionality*/ typedef CachedScopeDecorator< polymorph::PolymorphCodeScopeUnit< ::xreate::compilation::TransformationsScopeDecorator< interpretation::InterpretationScopeDecorator< versions::VersionsScopeDecorator>>>> DefaultCodeScopeUnit; } //end of compilation namespace struct CachedScopeDecoratorTag; struct VersionsScopeDecoratorTag; template<> struct DecoratorsDict{ typedef compilation::CachedScopeDecorator< polymorph::PolymorphCodeScopeUnit< compilation::TransformationsScopeDecorator< interpretation::InterpretationScopeDecorator< versions::VersionsScopeDecorator>>>> result; }; template<> struct DecoratorsDict{ typedef versions::VersionsScopeDecorator< compilation::BasicCodeScopeUnit> result; }; } //end of xreate #endif /* SCOPEDECORATORS_H */ diff --git a/cpp/src/compilation/targetinterpretation.cpp b/cpp/src/compilation/targetinterpretation.cpp index 00637b1..6b61305 100644 --- a/cpp/src/compilation/targetinterpretation.cpp +++ b/cpp/src/compilation/targetinterpretation.cpp @@ -1,595 +1,595 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * File: targetinterpretation.cpp * Author: pgess * * Created on June 29, 2016, 6:45 PM */ /** * \file targetinterpretation.h * \brief Interpretation support. See more [details on Interpretation](/w/concepts/dsl/) */ #include "compilation/targetinterpretation.h" #include "pass/interpretationpass.h" #include "analysis/typeinference.h" #include "llvmlayer.h" #include "compilation/scopedecorators.h" #include #include #include using namespace std; using namespace xreate::compilation; namespace xreate{ namespace interpretation{ const Expression EXPRESSION_FALSE = Expression(Atom(0)); const Expression EXPRESSION_TRUE = Expression(Atom(1)); Expression representAsAnnotation(const Gringo::Symbol& atom){ switch (atom.type()) { case Gringo::SymbolType::Num: { Expression result(Operator::VARIANT, {Expression(atom.num())}); result.setValueDouble(0); return result; } case Gringo::SymbolType::Str: { Expression result(Operator::VARIANT, {Expression(Atom(std::string(atom.string().c_str())))}); result.setValueDouble(1); return result; } case Gringo::SymbolType::Fun: { Expression fnDescription(Operator::LIST_NAMED, {}); std::list> bindings{Atom("name"), Atom("arguments")}; fnDescription.addBindings(bindings.begin(), bindings.end()); fnDescription.addArg(Expression(Atom(std::string(atom.name().c_str())))); Expression args(Operator::LIST, {}); for (const Gringo::Symbol& arg : atom.args()) { args.addArg(representAsAnnotation(arg)); } fnDescription.addArg(std::move(args)); Expression result(Operator::VARIANT, {fnDescription}); result.setValueDouble(2); return result; } default: { assert(false); } } } CodeScope* InterpretationScope::processOperatorIf(const Expression& expression){ const Expression& exprCondition = process(expression.getOperands()[0]); if (exprCondition == EXPRESSION_TRUE){ return expression.blocks.front(); } return expression.blocks.back(); } CodeScope* InterpretationScope::processOperatorSwitch(const Expression& expression) { const Expression& exprCondition = process(expression.operands[0]); bool flagHasDefault = expression.operands[1].op == Operator::CASE_DEFAULT; //TODO check that one and only one case variant is appropriate for (size_t size = expression.operands.size(), i= flagHasDefault? 2: 1; igetScope(exprCase.blocks.front())->processScope() == exprCondition){ + if (function->getScope((const CodeScope*) exprCase.blocks.front())->processScope() == exprCondition){ return exprCase.blocks.back(); } } if (flagHasDefault){ const Expression& exprCaseDefault = expression.operands[1]; return exprCaseDefault.blocks.front(); } assert(false && "Switch has no appropriate variant"); return nullptr; } CodeScope* InterpretationScope::processOperatorSwitchVariant(const Expression& expression){ const Expression& condition = process(expression.operands.at(0)); assert(condition.op == Operator::VARIANT); - const string identCondition = expression.bindings.front(); + const string& identCondition = expression.bindings.front(); Expression opExpected(Atom(condition.getValueDouble())); auto itFoundValue = std::find(++expression.operands.begin(), expression.operands.end(), opExpected); assert(itFoundValue != expression.operands.end()); int indexBlock = itFoundValue - expression.operands.begin() -1; auto blockFound = expression.blocks.begin(); std::advance(blockFound, indexBlock); InterpretationScope* scopeI12n = function->getScope(*blockFound); if (condition.operands.size()) { const Expression& value = condition.operands.at(0); scopeI12n->overrideBinding(value, identCondition); } return *blockFound; } llvm::Value* InterpretationScope::compileHybrid(const InterpretationOperator& op, const Expression& expression, const Context& context){ switch(op){ case IF_INTERPRET_CONDITION: { CodeScope* scopeResult = processOperatorIf(expression); llvm::Value* result = context.function->getScopeUnit(scopeResult)->compile(); return result; } case SWITCH_INTERPRET_CONDITION:{ CodeScope* scopeResult = processOperatorSwitch(expression); llvm::Value* result = context.function->getScopeUnit(scopeResult)->compile(); return result; } case SWITCH_VARIANT: { CodeScope* scopeResult = processOperatorSwitchVariant(expression); const Expression& condition = expression.operands.at(0); const Expression& valueCondition = process(condition); const string identCondition = expression.bindings.front(); auto scopeCompilation = Decorators::getInterface(context.function->getScopeUnit(scopeResult)); if(valueCondition.operands.size()){ //override value Symbol symbCondition{ScopedSymbol{scopeResult->__identifiers.at(identCondition), versions::VERSION_NONE}, scopeResult}; scopeCompilation->overrideDeclaration(symbCondition, Expression(valueCondition.operands.at(0))); //set correct type for binding: TypeAnnotation typeVariant = typeinference::getType(condition, *function->man->ast); int conditionIndex = valueCondition.getValueDouble(); ScopedSymbol symbolInternal = scopeResult->getSymbol(identCondition); scopeResult->__declarations[symbolInternal].bindType(typeVariant.__operands.at(conditionIndex)); } llvm::Value* result = context.function->getScopeUnit(scopeResult)->compile(); return result; } case FOLD_INTERPRET_INPUT: { //initialization const Expression& exprInput = process(expression.getOperands()[0]); assert(exprInput.op == Operator::LIST); CodeScope* scopeBody = expression.blocks.front(); const string& nameEl = expression.bindings[0]; Symbol symbEl{ScopedSymbol{scopeBody->__identifiers.at(nameEl), versions::VERSION_NONE}, scopeBody}; const std::string& idAccum = expression.bindings[1]; llvm::Value* rawAccum = context.scope->process(expression.getOperands()[1]); InterpretationScope* intrBody = function->getScope(scopeBody); auto unitBody = Decorators::getInterface(context.function->getScopeUnit(scopeBody)); const std::vector elementsInput= exprInput.getOperands(); for (size_t i=0; ireset(); unitBody->reset(); Expression exprElement = elementsInput[i]; intrBody->overrideBinding(exprElement, nameEl); unitBody->overrideDeclaration(symbEl, move(exprElement)); unitBody->bindArg(rawAccum, string(idAccum)); rawAccum = unitBody->compile(); } return rawAccum; } /* case FOLD_INF_INTERPRET_INOUT{ } */ //TODO refactor as InterpretationCallStatement class case CALL_INTERPRET_PARTIAL: { const std::string &calleeName = expression.getValueString(); ICodeScopeUnit* scopeUnitSelf = context.scope; ManagedFnPtr callee = this->function->man->ast->findFunction(calleeName); const FunctionInterpretationData& calleeData = FunctionInterpretationHelper::getSignature(callee); std::vector argsActual; PIFSignature sig; sig.declaration = callee; for(size_t no=0, size = expression.operands.size(); no < size; ++no){ const Expression& op = expression.operands[no]; if (calleeData.signature.at(no) == INTR_ONLY){ sig.bindings.push_back(process(op)); continue; } argsActual.push_back(scopeUnitSelf->process(op)); } TargetInterpretation* man = dynamic_cast(this->function->man); PIFunction* pifunction = man->getFunction(move(sig)); llvm::Function* raw = pifunction->compile(); boost::scoped_ptr statement(new CallStatementRaw(raw, man->pass->man->llvm)); return (*statement)(move(argsActual)); } default: break; } assert(false&& "Unknown hybrid operator"); return nullptr; } llvm::Value* InterpretationScope::compile(const Expression& expression, const Context& context){ const InterpretationData& data = Attachments::get(expression); if (data.op != InterpretationOperator::NONE){ return compileHybrid(data.op, expression, context); } Expression result = process(expression); return context.scope->process(result); } Expression InterpretationScope::process(const Expression& expression){ switch (expression.__state){ case Expression::INVALID: assert(false); case Expression::NUMBER: case Expression::STRING: return expression; case Expression::IDENT:{ Symbol s = Attachments::get(expression); return Parent::processSymbol(s); } case Expression::COMPOUND: break; default: assert(false); } switch (expression.op) { case Operator::EQU: { const Expression& left = process(expression.operands[0]); const Expression& right = process(expression.operands[1]); if (left == right) return EXPRESSION_TRUE; return EXPRESSION_FALSE; } case Operator::NE: { const Expression& left = process(expression.operands[0]); const Expression& right = process(expression.operands[1]); if (left == right) return EXPRESSION_FALSE; return EXPRESSION_TRUE; } case Operator::LOGIC_AND: { assert(expression.operands.size() == 1); return process (expression.operands[0]); } // case Operator::LOGIC_OR: case Operator::CALL: { const std::string &fnName = expression.getValueString(); ManagedFnPtr fnAst = this->function->man->ast->findFunction(fnName); InterpretationFunction* fnUnit = this->function->man->getFunction(fnAst); vector args; args.reserve(expression.getOperands().size()); for(size_t i=0, size = expression.getOperands().size(); iprocess(args); } case Operator::CALL_INTRINSIC: { std::string nameFunction = expression.getValueString(); if(nameFunction=="query"){ assert(expression.operands.size() == 1); assert(expression.operands.front().__state == Expression::STRING); std::string namePredicate = expression.operands.front().getValueString(); ClaspLayer::ModelFragment model = (static_cast(function->man))->pass->man->clasp->query(namePredicate); Expression result(Operator::LIST, {}); if(model) for (const auto& row: boost::make_iterator_range(model.get())) { result.addArg(representAsAnnotation(std::get<1>(row))); } return result; } else { assert(false && "Unknown intrinsic"); } } case Operator::IF:{ CodeScope* scopeResult = processOperatorIf(expression); return function->getScope(scopeResult)->processScope(); } case Operator::SWITCH: { CodeScope* scopeResult = processOperatorSwitch(expression); return function->getScope(scopeResult)->processScope(); } case Operator::SWITCH_VARIANT: { CodeScope* scopeResult = processOperatorSwitchVariant(expression); return function->getScope(scopeResult)->processScope(); } case Operator::INDEX: { Expression exprData = process(expression.operands[0]); for (size_t keyId=1; keyIdgetScope(expression.blocks.front()); Expression accum = exprInit; for(size_t size=exprInput.getOperands().size(), i=0; ioverrideBinding(exprInput.getOperands()[i], argEl); body->overrideBinding(accum, argAccum); accum = body->processScope(); } return accum; } // case Operator::MAP: { // break; // } default: break; } return expression; } InterpretationFunction* TargetInterpretation::getFunction(IFunctionUnit* unit){ if (__dictFunctionsByUnit.count(unit)) { return __dictFunctionsByUnit.at(unit); } InterpretationFunction* f = new InterpretationFunction(unit->function, this); __dictFunctionsByUnit.emplace(unit, f); assert(__functions.emplace(unit->function.id(), f).second); return f; } PIFunction* TargetInterpretation::getFunction(PIFSignature&& sig){ auto f = __pifunctions.find(sig); if (f != __pifunctions.end()){ return f->second; } PIFunction* result = new PIFunction(PIFSignature(sig), __pifunctions.size(), this); __pifunctions.emplace(move(sig), result); assert(__dictFunctionsByUnit.emplace(result->functionUnit, result).second); return result; } InterpretationScope* TargetInterpretation::transformContext(const Context& c){ return this->getFunction(c.function)->getScope(c.scope->scope); } llvm::Value* TargetInterpretation::compile(const Expression& expression, const Context& ctx){ return transformContext(ctx)->compile(expression, ctx); } InterpretationFunction::InterpretationFunction(const ManagedFnPtr& function, Target* target) : Function(function, target) {} Expression InterpretationFunction::process(const std::vector& args){ InterpretationScope* body = getScope(__function->__entry); for(size_t i=0, size = args.size(); ioverrideBinding(args.at(i), string(body->scope->__bindings.at(i))); } return body->processScope(); } // Partial function interpretation typedef BasicFunctionUnit PIFunctionUnitParent; class PIFunctionUnit: public PIFunctionUnitParent{ public: PIFunctionUnit(ManagedFnPtr f, std::set&& arguments, size_t id, CompilePass* p) : PIFunctionUnitParent(f, p), argumentsActual(move(arguments)), __id(id) {} protected: std::vector prepareArguments(){ LLVMLayer* llvm = PIFunctionUnitParent::pass->man->llvm; AST* ast = PIFunctionUnitParent::pass->man->root; CodeScope* entry = PIFunctionUnitParent::function->__entry; std::vector signature; for(size_t no: argumentsActual){ VNameId argId = entry->__identifiers.at(entry->__bindings.at(no)); ScopedSymbol arg{argId, versions::VERSION_NONE}; signature.push_back(llvm->toLLVMType(ast->expandType(entry->__declarations.at(arg).type))); } return signature; } llvm::Function::arg_iterator prepareBindings(){ CodeScope* entry = PIFunctionUnitParent::function->__entry; ICodeScopeUnit* entryCompilation = PIFunctionUnitParent::getScopeUnit(entry); llvm::Function::arg_iterator fargsI = PIFunctionUnitParent::raw->arg_begin(); for(size_t no: argumentsActual){ ScopedSymbol arg{entry->__identifiers.at(entry->__bindings.at(no)), versions::VERSION_NONE}; entryCompilation->bindArg(&*fargsI, arg); fargsI->setName(entry->__bindings.at(no)); ++fargsI; } return fargsI; } virtual std::string prepareName(){ return PIFunctionUnitParent::prepareName() + "_" + std::to_string(__id); } private: std::set argumentsActual; size_t __id; }; PIFunction::PIFunction(PIFSignature&& sig, size_t id, TargetInterpretation* target) : InterpretationFunction(sig.declaration, target), signatureInstance(move(sig)) { const FunctionInterpretationData& functionData = FunctionInterpretationHelper::getSignature(signatureInstance.declaration); std::set argumentsActual; for (size_t no=0, size=functionData.signature.size(); no < size; ++no){ if (functionData.signature.at(no) != INTR_ONLY){ argumentsActual.insert(no); } } functionUnit = new PIFunctionUnit(signatureInstance.declaration, move(argumentsActual), id, target->pass); CodeScope* entry = signatureInstance.declaration->__entry; auto entryUnit = Decorators::getInterface<>(functionUnit->getEntry()); InterpretationScope* entryIntrp = InterpretationFunction::getScope(entry); for(size_t no=0, sigNo=0, size = entry->__bindings.size(); no < size; ++no){ if (functionData.signature.at(no) == INTR_ONLY){ entryIntrp->overrideBinding(signatureInstance.bindings[sigNo], entry->__bindings[no]); VNameId argId = entry->__identifiers.at(entry->__bindings[no]); Symbol argSymbol{ScopedSymbol{argId, versions::VERSION_NONE}, entry}; entryUnit->overrideDeclaration(argSymbol, Expression(signatureInstance.bindings[sigNo])); ++sigNo; } } } llvm::Function* PIFunction::compile(){ llvm::Function* raw = functionUnit->compile(); return raw; } bool operator<(const PIFSignature& lhs, const PIFSignature& rhs){ if (lhs.declaration.id() != rhs.declaration.id()) { return lhs.declaration.id() < rhs.declaration.id(); } return lhs.bindings < rhs.bindings; } bool operator<(const PIFSignature& lhs, PIFunction* const rhs){ return lhs < rhs->signatureInstance; } bool operator<(PIFunction* const lhs, const PIFSignature& rhs){ return lhs->signatureInstance < rhs; } }} /** \class xreate::interpretation::InterpretationFunction * * Holds list of xreate::interpretation::InterpretationScope 's focused on interpretation of individual code scopes * * There is particulat subclass PIFunction intended to represent partially interpreted functions *\sa TargetInterpretation, [Interpretation Concept](/w/concepts/dfa) */ /** \class xreate::interpretation::TargetInterpretation * * Executed during compilation and intented to preprocess eligible parts of code. * Established on [Targets Infrastructure](\ref compilation::Target) * * Holds list of InterpretationFunction / PIFunction to represent interpretation process for individual functions * * In order to be activated during compilation process there is * InterpretationScopeDecorator implementation of ICodeScopeUnit * \sa InterpretationPass, compilation::Target, [Interpretation Concept](/w/concepts/dfa) * */ \ No newline at end of file diff --git a/cpp/src/compilation/targetinterpretation.h b/cpp/src/compilation/targetinterpretation.h index 99a29d7..567bf92 100644 --- a/cpp/src/compilation/targetinterpretation.h +++ b/cpp/src/compilation/targetinterpretation.h @@ -1,139 +1,139 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * File: targetstatic.h * Author: pgess * * Created on July 2, 2016, 1:25 PM */ #ifndef TARGETSTATIC_H #define TARGETSTATIC_H #include "ast.h" #include "pass/compilepass.h" #include "compilation/targets.h" #include "pass/interpretationpass.h" #include "clasplayer.h" namespace xreate{ namespace interpretation{ class TargetInterpretation; class InterpretationScope; class InterpretationFunction; }} namespace xreate{ namespace compilation{ template <> struct TargetInfo { typedef Expression Result; typedef interpretation::InterpretationScope Scope; typedef interpretation::InterpretationFunction Function; }; }} namespace xreate{ namespace interpretation{ /** \brief Encapsulates interpretation of a single Code Scope */ class InterpretationScope: public compilation::Scope{ typedef Scope Parent; public: - InterpretationScope(CodeScope* scope, compilation::Function* f): Parent(scope, f) {} + InterpretationScope(const CodeScope* scope, compilation::Function* f): Parent(scope, f) {} Expression process(const Expression& expression) override; llvm::Value* compile(const Expression& expression, const compilation::Context& context); private: llvm::Value* compileHybrid(const InterpretationOperator& op, const Expression& expression, const compilation::Context& context); //llvm::Value* compilePartialFnCall(const Expression& expression, const Context& context); CodeScope* processOperatorIf(const Expression& expression); CodeScope* processOperatorSwitch(const Expression& expression); CodeScope* processOperatorSwitchVariant(const Expression& expression); }; /** \brief Encapsulates interpretation of a single %Function */ class InterpretationFunction: public compilation::Function{ public: InterpretationFunction(const ManagedFnPtr& function, compilation::Target* target); Expression process(const std::vector& args); }; /** \brief Signature of a partially interpreted function */ struct PIFSignature{ ManagedFnPtr declaration; std::vector bindings; }; class PIFunctionUnit; /** \brief Partially interpreted function */ class PIFunction: public InterpretationFunction{ public: PIFunctionUnit* functionUnit; PIFSignature signatureInstance; PIFunction(PIFSignature&& sig, size_t id, TargetInterpretation* target); llvm::Function* compile(); }; bool operator<(const PIFSignature& lhs, PIFunction* const rhs); bool operator<(PIFunction* const lhs, const PIFSignature& rhs); /** \brief Encapsulates actual [Interpretation](/w/concepts/dfa) based on InterpretationPass analysis results */ class TargetInterpretation: public compilation::Target{ public: TargetInterpretation(AST* root, CompilePass* passCompilation): Target(root), pass(passCompilation){} //target: public: InterpretationFunction* getFunction(compilation::IFunctionUnit* unit); PIFunction* getFunction(PIFSignature&& sig); private: std::map __pifunctions; std::map __dictFunctionsByUnit; //self: public: CompilePass* pass; llvm::Value* compile(const Expression& expression, const compilation::Context& ctx); private: InterpretationScope* transformContext(const compilation::Context& c); }; /**\brief Interpretation-aware Code Scope decorator * \extends xreate::compilation::ICodeScopeUnit */ template class InterpretationScopeDecorator: public Parent{ public: - InterpretationScopeDecorator(CodeScope* codeScope, compilation::IFunctionUnit* f, CompilePass* compilePass): Parent(codeScope, f, compilePass){} + InterpretationScopeDecorator(const CodeScope* const codeScope, compilation::IFunctionUnit* f, CompilePass* compilePass): Parent(codeScope, f, compilePass){} virtual llvm::Value* process(const Expression& expr, const std::string& hintVarDecl){ const InterpretationData& data = Attachments::get(expr, {ANY, NONE}); bool flagInterpretationEligible = (data.resolution == INTR_ONLY || data.op != InterpretationOperator::NONE); if (flagInterpretationEligible){ compilation::Context ctx{this, this->function, this->pass}; return Parent::pass->targetInterpretation->compile(expr, ctx); } return Parent::process(expr, hintVarDecl); } }; /** \brief translates Logic expression(Gringo::Symbol) into Xreate expression to support intrinsic function `query` */ Expression representAsAnnotation(const Gringo::Symbol& symbol); }} //end of xreate:: interpretation #endif /* TARGETSTATIC_H */ //transformers: // template<> // struct TransformerInfo { // static const int id = 1; // }; diff --git a/cpp/src/compilation/targets.h b/cpp/src/compilation/targets.h index 5c39425..1b86b31 100644 --- a/cpp/src/compilation/targets.h +++ b/cpp/src/compilation/targets.h @@ -1,201 +1,201 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * File: targetabstract.h * Author: pgess * * Created on July 2, 2016, 1:25 PM */ /** * \file * \brief Compilation targets infrastructure */ #ifndef TARGETABSTRACT_H #define TARGETABSTRACT_H #include "ast.h" #include #include namespace xreate{ namespace compilation { template struct TargetInfo{ //typedef Result //typedef Function //typedef Scope }; template class Function; template class Target; template class Scope{ typedef typename TargetInfo::Scope Self; public: - CodeScope* scope; + const CodeScope* scope; typename TargetInfo::Result processSymbol(const Symbol& s){ - CodeScope* scope = s.scope; + const CodeScope* scope = s.scope; Self* self = function->getScope(scope); if (self->__bindings.count(s.identifier)) { return self->__bindings[s.identifier]; } const Expression& declaration = CodeScope::getDefinition(s, true); if (!declaration.isDefined()){ assert(false); //for bindings there should be result already } return self->__bindings[s.identifier] = self->process(declaration); } typename TargetInfo::Result processScope() { if (raw) return *raw; raw = process(scope->getBody()); return *raw; } // typename TargetInfo::Result // processFunction(typename TargetInfo::Function* fnRemote, const std::vector::Result>& args){ // Scope scopeRemote = fnRemote->getScope(fnRemote->__function->__entry); // // if (scopeRemote->raw){ // return scopeRemote->raw; // } // // return fnRemote->process(args); // } virtual typename TargetInfo::Result process(const Expression& expression)=0; - Scope(CodeScope* codeScope, Function* f) + Scope(const CodeScope* codeScope, Function* f) : scope(codeScope), function(f) {} virtual ~Scope(){} void overrideBinding(typename TargetInfo::Result arg, const std::string& name){ assert(scope->__identifiers.count(name)); ScopedSymbol id{scope->__identifiers.at(name), versions::VERSION_NONE}; __bindings[id] = arg; //reset the result if any: raw.reset(); } void registerChildScope(std::shared_ptr scope){ __childScopes.push_back(scope); } void reset(){ __bindings.clear(); __childScopes.clear(); raw.reset(); } protected: Function* function=0; std::map::Result> __bindings; std::list> __childScopes; typename boost::optional::Result> raw; }; template class Function{ typedef typename TargetInfo::Result Result; typedef typename TargetInfo::Scope ConcreteScope; public: Function(const ManagedFnPtr& function, Target* target) : man(target), __function(function) {} virtual ~Function(){}; ConcreteScope* - getScope(CodeScope* scope){ + getScope(const CodeScope* const scope){ if (__scopes.count(scope)) { auto result = __scopes.at(scope).lock(); if (result){ return result.get(); } } std::shared_ptr unit(new ConcreteScope(scope, this)); if (scope->__parent != nullptr){ getScope(scope->__parent)->registerChildScope(unit); } else { assert(!__entryScope); __entryScope = unit; } if (!__scopes.emplace(scope, unit).second){ __scopes[scope] = unit; } return unit.get(); } virtual Result process(const std::vector& args)=0; Target* man=0; ManagedFnPtr __function; protected: - std::map> __scopes; + std::map> __scopes; std::shared_ptr __entryScope; }; /** \brief Similar to xreate::IPass */ template class Target { typedef typename TargetInfo::Function ConcreteFunction; public: Target(AST* root): ast(root){} ConcreteFunction* getFunction(const ManagedFnPtr& function){ unsigned int id = function.id(); if (!__functions.count(id)){ ConcreteFunction* unit = new ConcreteFunction(function, this); __functions.emplace(id, unit); return unit; } return __functions.at(id); } AST* ast; virtual ~Target(){ for (const auto& entry: __functions){ delete entry.second; } } protected: std::map __functions; }; }} #endif /* TARGETABSTRACT_H */ diff --git a/cpp/src/compilation/transformations.h b/cpp/src/compilation/transformations.h index d9c3a67..2dcf8bc 100644 --- a/cpp/src/compilation/transformations.h +++ b/cpp/src/compilation/transformations.h @@ -1,116 +1,116 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * File: transformations.h * Author: pgess * * Created on March 25, 2017, 9:04 PM */ #ifndef TRANSFORMATIONS_H #define TRANSFORMATIONS_H #include "pass/compilepass.h" namespace xreate { namespace compilation { template struct TransformerInfo { //static const unsigned int id = 1; (current vacant id) }; class Transformer{ public: virtual llvm::Value* transform(const Expression& expression, llvm::Value* raw, const Context& ctx)=0; virtual ~Transformer(){}; }; class TransformationsManager { public: std::list getRelevantTransformers(const Expression& expression); template void registerTransformer(const std::string& annotation, TransformerType* t){ const int id = TransformerInfo::id; assert(!__transformers.count(id)); __transformers[id] = t; __subscriptions.emplace(annotation, id); } template void unregisterTransformer(const std::string& annotation, TransformerType* t){ const unsigned int id = TransformerInfo::id; auto range = __subscriptions.equal_range(annotation); const auto entry = make_pair(annotation, id); __subscriptions.erase(std::find_if(range.first, range.second, [id](const auto& el){return el.second == id;})); __transformers.erase(id); } template TransformerType* update(TransformerType* newInstance){ const int id = TransformerInfo::id; Transformer* oldInstance = __transformers[id]; __transformers[id] = newInstance; return static_cast(oldInstance); } template bool exists(){ const int id = TransformerInfo::id; return __transformers.count(id); } template TransformerType* get(){ const int id = TransformerInfo::id; return static_cast(__transformers.at(id)); } private: std::map __transformers; std::multimap __subscriptions; }; /**\brief Provides custom transformations during Code Scope compilation * \extends xreate::compilation::ICodeScopeUnit */ template class TransformationsScopeDecorator: public Transformer, public Parent { // SCOPE DECORATOR PART public: - TransformationsScopeDecorator(CodeScope* codeScope, IFunctionUnit* f, CompilePass* compilePass) + TransformationsScopeDecorator(const CodeScope* const codeScope, IFunctionUnit* f, CompilePass* compilePass) : Parent(codeScope, f, compilePass){} virtual llvm::Value* process(const Expression& expr, const std::string& hintVarDecl=""){ llvm::Value* result = Parent::process(expr, hintVarDecl); return transform(expr, result, Context{this, Parent::function, Parent::pass}); } // TRANSFORMER PART public: virtual llvm::Value* transform(const Expression& expression, llvm::Value* raw, const Context& ctx) { llvm::Value* result = raw; TransformationsManager* man = Parent::pass->managerTransformations; if (expression.tags.size()) for (Transformer* handler: man->getRelevantTransformers(expression)){ result = handler->transform(expression, result, ctx); } return result; } }; } } #endif /* TRANSFORMATIONS_H */ diff --git a/cpp/src/compilation/versions.h b/cpp/src/compilation/versions.h index d63d03c..c448bde 100644 --- a/cpp/src/compilation/versions.h +++ b/cpp/src/compilation/versions.h @@ -1,153 +1,153 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * versions.cpp * * Author: pgess * Created on January 21, 2017, 1:24 PM */ /** * \file * \brief CodeScope's Decorator to support Versions */ #include "pass/versionspass.h" #include "pass/compilepass.h" #include "llvmlayer.h" namespace xreate { class CompilePass; namespace compilation { class ICodeScopeUnit; class IFunctionUnit; } namespace versions{ /**\brief Enables compilation of code with versioned variables * \details Dictates order of computation determined by VersionsPass * \extends xreate::compilation::ICodeScopeUnit * \sa VersionsPass, VersionsGraph */ template class VersionsScopeDecorator: public Parent{ typedef VersionsScopeDecorator SELF; public: - VersionsScopeDecorator(CodeScope* codeScope, compilation::IFunctionUnit* f, CompilePass* compilePass): Parent(codeScope, f, compilePass){} + VersionsScopeDecorator(const CodeScope* const codeScope, compilation::IFunctionUnit* f, CompilePass* compilePass): Parent(codeScope, f, compilePass){} virtual llvm::Value* processSymbol(const Symbol& s, std::string hintSymbol=""){ if (Attachments::exists(s)){ const std::list dependencies = Attachments::get(s); for(const Symbol& symbolDependent: dependencies){ processSymbol(symbolDependent); } } llvm::Value* result = Parent::processSymbol(s, hintSymbol); if (s.identifier.version == VERSION_INIT){ llvm::Value* storage = SELF::processIntrinsicInit(result->getType(), hintSymbol); setSymbolStorage(s, storage); processIntrinsicCopy(result, storage); return compilation::ICodeScopeUnit::pass->man->llvm->builder.CreateLoad(storage); } else if (s.identifier.version != VERSION_NONE){ Symbol symbolInitVersion = getSymbolInitVersion(s); llvm::Value* storage = getSymbolStorage(symbolInitVersion); processIntrinsicCopy(result, storage); return compilation::ICodeScopeUnit::pass->man->llvm->builder.CreateLoad(storage); } return result; } llvm::Value* processIntrinsicInit(llvm::Type* typeStorage, const std::string& hintVarDecl=""){ llvm::IntegerType* tyInt = llvm::Type::getInt32Ty(llvm::getGlobalContext()); llvm::ConstantInt* constOne = llvm::ConstantInt::get(tyInt, 1, false); return compilation::ICodeScopeUnit::pass->man->llvm->builder.CreateAlloca(typeStorage, constOne, hintVarDecl); } void processIntrinsicCopy(llvm::Value* value, llvm::Value* storage){ compilation::ICodeScopeUnit::pass->man->llvm->builder.CreateStore(value, storage); } private: std::map __symbolStorage; static Symbol getSymbolInitVersion(const Symbol& s){ return Symbol{ScopedSymbol{s.identifier.id, VERSION_INIT}, s.scope}; } llvm::Value* getSymbolStorage(const Symbol& s){ return __symbolStorage.at(s); } void setSymbolStorage(const Symbol& s, llvm::Value* storage){ __symbolStorage[s] = storage; } }; template class VersionedFunctionDecorator : public Parent { public: VersionedFunctionDecorator(ManagedFnPtr f, CompilePass* p) : Parent(f, p){} protected: std::vector prepareArguments() { std::vector&& arguments = Parent::prepareArguments(); return arguments; } }; } } //end of namespace xreate::versions // llvm::Value* // processIntrinsicInitAndCopy(){ // // } //llvm::Value* //process(const Expression& expr, const std::string& hintVarDecl){ // case Operator::CALL_INTRINSIC: { // enum INRINSIC{INIT, COPY}; // // const ExpandedType& typSymbol = pass->man->root->expandType(expr.type); // // INTRINSIC op = (INTRINSIC) expr.getValueDouble(); // // switch (op){ // case INIT: { // llvm::Type* typSymbolRaw = l.toLLVMType(typSymbol); // // // return storage; // } // // case COPY: { // llvm::Type* typSymbolRaw = l.toLLVMType(typSymbol); // llvm::value* valueOriginal = process(expr.getOperands()[0], hintVarDecl); // llvm::Value* storage = l.builder.CreateAlloca(typSymbolRaw, constOne, hintVarDecl); // llvm::Value* valueCopy = l.builder.CreateStore(valueOriginal, storage); // // return valueCopy; // } // } // return; // } //} //}; diff --git a/cpp/src/llvmlayer.cpp b/cpp/src/llvmlayer.cpp index b00afd2..7490e19 100644 --- a/cpp/src/llvmlayer.cpp +++ b/cpp/src/llvmlayer.cpp @@ -1,271 +1,288 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * llvmlayer.cpp * * Author: pgess */ /** * \file llvmlayer.h * \brief Wrapper over LLVM */ #include "ast.h" #include "llvmlayer.h" #include "ExternLayer.h" #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/ExecutionEngine/MCJIT.h" #include "llvm/Support/TargetSelect.h" #include #include using namespace llvm; using namespace xreate; using namespace std; LLVMLayer::LLVMLayer(AST* root) : ast(root), builder(getGlobalContext()) { module = new llvm::Module(root->getModuleName(), llvm::getGlobalContext()); layerExtern = new ExternLayer(this); layerExtern->init(root); } void* LLVMLayer::getFunctionPointer(llvm::Function* function){ uint64_t entryAddr = jit->getFunctionAddress(function->getName().str()); return (void*) entryAddr; } void LLVMLayer::initJit(){ std::string ErrStr; LLVMInitializeNativeTarget(); llvm::InitializeNativeTargetAsmPrinter(); llvm::EngineBuilder builder((std::unique_ptr(module))); jit = builder .setEngineKind(llvm::EngineKind::JIT) .setErrorStr(&ErrStr) .setVerifyModules(true) .create(); } void LLVMLayer::print(){ llvm::PassManager PM; PM.addPass(llvm::PrintModulePass(llvm::outs(), "banner")); PM.run(*module); } llvm::BasicBlock* LLVMLayer::initExceptionBlock(llvm::BasicBlock* blockException){ initExceptionsSupport(); PointerType* tyInt8P = PointerType::getInt8PtrTy(llvm::getGlobalContext()); Value* nullInt8P = llvm::ConstantPointerNull::get(tyInt8P); builder.SetInsertPoint(blockException); llvm::Function* fAllocate = module->getFunction("__cxa_allocate_exception"); llvm::Function* fThrow = module->getFunction("__cxa_throw"); auto exception = builder.CreateCall(fAllocate, ConstantInt::get(IntegerType::getInt64Ty(getGlobalContext()), 4)); vector throwParams{exception, nullInt8P, nullInt8P}; builder.CreateCall(fThrow, ArrayRef(throwParams)); builder.CreateUnreachable(); return blockException; } void LLVMLayer::moveToGarbage(void *o) { __garbage.push_back(o); } llvm::Type* LLVMLayer:: toLLVMType(const ExpandedType& ty) const { std::map empty; return toLLVMType(ty, empty); } llvm::Type* LLVMLayer:: toLLVMType(const ExpandedType& ty, std::map& conjuctions) const { TypeAnnotation t = ty; switch (t.__operator) { case TypeOperator::ARRAY: { assert(t.__operands.size()==1); TypeAnnotation elTy = t.__operands.at(0); return llvm::ArrayType::get(toLLVMType(ExpandedType(move(elTy)), conjuctions), t.__size); } case TypeOperator::STRUCT: { assert(t.__operands.size()); std::vector pack_; pack_.reserve(t.__operands.size()); std::transform(t.__operands.begin(), t.__operands.end(), std::inserter(pack_, pack_.end()), [this, &conjuctions](const TypeAnnotation& t){ return toLLVMType(ExpandedType(TypeAnnotation(t)), conjuctions); }); llvm::ArrayRef pack(pack_); //process recursive types: if (conjuctions.count(t.conjuctionId)) { auto result = conjuctions[t.conjuctionId]; result->setBody(pack, false); return result; } return llvm::StructType::get(llvm::getGlobalContext(), pack, false); }; case TypeOperator::LINK: { llvm::StructType* conjuction = llvm::StructType::create(llvm::getGlobalContext()); int id = t.conjuctionId; conjuctions.emplace(id, conjuction); return conjuction; }; case TypeOperator::CALL: { assert(false); }; case TypeOperator::CUSTOM: { //Look in extern types - clang::QualType qt = layerExtern->lookupType(t.__valueCustom); return layerExtern->toLLVMType(qt); }; case TypeOperator::VARIANT: { - int size = t.fields.size(); - assert(size); + /* Variant Type Layout: + * struct { + * id: i8, Holds stored variant id + * storage: type of biggest variant + * } + */ + uint64_t sizeStorage=0; + llvm::Type* typStorageRaw = llvm::Type::getVoidTy(llvm::getGlobalContext()); + for(const TypeAnnotation& subtype: t.__operands){ + llvm::Type* subtypeRaw = toLLVMType(ExpandedType(subtype), conjuctions); + + uint64_t sizeSubtype = module->getDataLayout().getTypeStoreSize(subtypeRaw); + if (sizeSubtype > sizeStorage){ + sizeStorage = sizeSubtype; + typStorageRaw = subtypeRaw; + } + } + + std::array layout; + layout[0] = llvm::Type::getInt8Ty(llvm::getGlobalContext()); //id + layout[1] = typStorageRaw; //storage - int bitcount = ceil(log2(size)); - return llvm::Type::getIntNTy(llvm::getGlobalContext(), bitcount); + return llvm::StructType::get(llvm::getGlobalContext(), llvm::ArrayRef(layout.begin(), layout.end())); } case TypeOperator::NONE: { switch (t.__value) { case TypePrimitive::I32: case TypePrimitive::Int: case TypePrimitive::Num: return llvm::Type::getInt32Ty(llvm::getGlobalContext()); case TypePrimitive::Bool: return llvm::Type::getInt1Ty(llvm::getGlobalContext()); case TypePrimitive::I8: return llvm::Type::getInt8Ty(llvm::getGlobalContext()); case TypePrimitive::I64: return llvm::Type::getInt64Ty(llvm::getGlobalContext()); case TypePrimitive::Float: return llvm::Type::getDoubleTy(llvm::getGlobalContext()); case TypePrimitive::String: return llvm::Type::getInt8PtrTy(llvm::getGlobalContext()); default: assert(false); } } default: assert(false); } assert(false); return nullptr; } void LLVMLayer::initExceptionsSupport(){ Type* typInt8Ptr = PointerType::get(IntegerType::get(module->getContext(), 8), 0); if (!module->getFunction("__cxa_throw")) { std::vector fThrowSignature{typInt8Ptr, typInt8Ptr, typInt8Ptr}; FunctionType* tyFThrow = FunctionType::get( /*Result=*/Type::getVoidTy(module->getContext()), /*Params=*/fThrowSignature, /*isVarArg=*/false); llvm::Function::Create( /*Type=*/tyFThrow, /*Linkage=*/GlobalValue::ExternalLinkage, /*Name=*/"__cxa_throw", module); // (external, no body) } if (!module->getFunction("__cxa_allocate_exception")) { std::vectorfAllocateSignature{IntegerType::get(module->getContext(), 64)}; FunctionType* tyFAllocate = FunctionType::get( /*Result=*/typInt8Ptr, /*Params=*/fAllocateSignature, /*isVarArg=*/false); llvm::Function::Create( /*Type=*/tyFAllocate, /*Linkage=*/GlobalValue::ExternalLinkage, /*Name=*/"__cxa_allocate_exception", module); // (external, no body) } } bool TypeUtils::isStruct(const ExpandedType& ty){ const TypeAnnotation& t = ty.get(); if (t.__operator==TypeOperator::STRUCT) { return true; } if (t.__operator != TypeOperator::CUSTOM) { return false; } clang::QualType tqual = llvm->layerExtern->lookupType(t.__valueCustom); const clang::Type * raw = tqual.getTypePtr(); // TODO skip ALL the pointers until non-pointer type found if (raw->isStructureType()) return true; if (!raw->isAnyPointerType()) return false; clang::QualType pointee = raw->getPointeeType(); return pointee->isStructureType(); } bool TypeUtils::isPointer(const ExpandedType &ty) { if (ty.get().__operator != TypeOperator::CUSTOM) return false; clang::QualType qt = llvm->layerExtern->lookupType(ty.get().__valueCustom); return llvm->layerExtern->isPointer(qt); } std::vector TypeUtils::getStructFields(const ExpandedType &t) { return (t.get().__operator == TypeOperator::STRUCT) ? t.get().fields : llvm->layerExtern->getStructFields( llvm->layerExtern->lookupType(t.get().__valueCustom)); } diff --git a/cpp/src/pass/abstractpass.h b/cpp/src/pass/abstractpass.h index 93322d9..a91d829 100644 --- a/cpp/src/pass/abstractpass.h +++ b/cpp/src/pass/abstractpass.h @@ -1,206 +1,206 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * Author: pgess */ #ifndef ABSTRACTPASS_H #define ABSTRACTPASS_H #include "ast.h" #include "xreatemanager.h" #include namespace xreate { /** \brief Holds current position in %AST while traversing*/ struct PassContext { - CodeScope* scope = 0; + const CodeScope* scope = 0; ManagedFnPtr function; ManagedRulePtr rule; std::string varDecl; PassContext() {} - PassContext updateScope(CodeScope* scopeNew) { + PassContext updateScope(const CodeScope* scopeNew) { PassContext context2{*this}; context2.scope = scopeNew; return context2; } ~PassContext(){} }; /** \brief Base class for all passes to inherit */ class IPass { public: IPass(PassManager* manager); /** \brief Executes pass */ virtual void run()=0; /** \brief Finalizes pass. Empty by default*/ virtual void finish(); PassManager* man; }; template Output defaultValue(); template<> void defaultValue(); /** \brief Stores processing results for already visited nodes */ template class SymbolCache: private std::map{ public: bool isCached(const Symbol& symbol){ return this->count(symbol); } Output setCachedValue(const Symbol& symbol, Output&& value){ (*this)[symbol] = value; return value; } Output getCachedValue(const Symbol& symbol){ assert(this->count(symbol)); return this->at(symbol); } }; /** \brief Set of already visited nodes */ template<> class SymbolCache: private std::set{ public: bool isCached(const Symbol& symbol){ bool result = this->count(symbol) > 0; return result; } void setCachedValue(const Symbol& symbol){ this->insert(symbol); } void getCachedValue(const Symbol& symbol){ } }; /** \brief Minimal useful IPass implementation*/ template class AbstractPass: public IPass { SymbolCache __visitedSymbols; protected: virtual Output processSymbol(const Symbol& symbol, PassContext context, const std::string& hintSymbol=""){ if (__visitedSymbols.isCached(symbol)) return __visitedSymbols.getCachedValue(symbol); const Expression& declaration = CodeScope::getDefinition(symbol, true); if (declaration.isDefined()){ PassContext context2 = context.updateScope(symbol.scope); Output&& result = process(declaration, context2, hintSymbol); return __visitedSymbols.setCachedValue(symbol, std::move(result)); } return defaultValue(); } Output processExpressionCall(const Expression& expression, PassContext context){ const std::string &calleeName = expression.getValueString(); std::list callees = man->root->getFunctionSpecializations(calleeName); if (callees.size() == 1 && callees.front()){ return processFnCall(callees.front(), context); } else { for (const ManagedFnPtr& callee: callees){ processFnCallUncertain(callee, context); } return defaultValue(); } } SymbolCache& getSymbolCache(){ return __visitedSymbols; } public: AbstractPass(PassManager* manager) : IPass(manager){} /** \brief Processes function invocation instruction */ virtual Output processFnCall(ManagedFnPtr functionCallee, PassContext context){ return defaultValue(); } /** \brief Processes function invocation instruction in uncertain cases * \details Executed when it's impossible statically determine exact function invocation. * In this case get executed for all possible candidates */ virtual void processFnCallUncertain(ManagedFnPtr functionCallee, PassContext context) {} /** \brief Processes Logic Rule */ virtual void process(ManagedRulePtr rule) {} /** \brief Processes Function */ virtual Output process(ManagedFnPtr function) { PassContext context; context.function = function; return process(function->getEntryScope(), context); } /** \brief Processes single CodeScope */ virtual Output process(CodeScope* scope, PassContext context, const std::string& hintBlockDecl=""){ context.scope = scope; return processSymbol(Symbol{ScopedSymbol::RetSymbol, scope}, context); } //TODO expose Symbol instead of varDecl. Required by DFAPass. /** \brief Processes single Expression */ virtual Output process(const Expression& expression, PassContext context, const std::string& varDecl=""){ if (expression.__state == Expression::IDENT){ assert(context.scope); return processSymbol(Attachments::get(expression), context, expression.getValueString()); } assert(false); return defaultValue(); } /** \brief Executes AST traverse */ void run() { ManagedRulePtr rule = man->root->begin(); while (rule.isValid()) { process(rule); ++rule; } ManagedFnPtr f = man->root->begin(); while (f.isValid()) { process(f); ++f; } } }; template<> void AbstractPass::processSymbol(const Symbol& symbol, PassContext context, const std::string& hintSymbol); template<> void AbstractPass::process(const Expression& expression, PassContext context, const std::string& hintSymbol); } #endif diff --git a/cpp/src/pass/cfapass.cpp b/cpp/src/pass/cfapass.cpp index f231187..a317acd 100644 --- a/cpp/src/pass/cfapass.cpp +++ b/cpp/src/pass/cfapass.cpp @@ -1,124 +1,124 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * cfapass.cpp * * Author: pgess */ /** * \file cfapass.h * \brief Control Flow Analysis(CFA) */ #include "cfapass.h" #include "analysis/cfagraph.h" #include "analysis/DominatorsTreeAnalysisProvider.h" #include using namespace std; using namespace xreate::cfa; void CFAPass::initSignatures(){ auto range = man->root->__interfacesData.equal_range(CFA); for (auto i = range.first; i!= range.second; ++i){ __signatures.emplace(i->second.op, i->second); } } void CFAPass::run(){ initSignatures(); return AbstractPass::run(); } void CFAPass::finish() { man->clasp->registerReport(__context.graph); dominators::DominatorsTreeAnalysisProvider* reportDominators = new dominators::DominatorsTreeAnalysisProvider(); reportDominators->run(man->clasp, __context.graph); man->clasp->registerReport(reportDominators); return AbstractPass::finish(); } void CFAPass::processFnCall(ManagedFnPtr function, PassContext context) { ClaspLayer* clasp = man->clasp; __context.graph->addCallConnection(clasp->pack(context.scope), function->getName()); return AbstractPass::processFnCall(function, context); } void CFAPass::processFnCallUncertain(ManagedFnPtr function, PassContext context){ ClaspLayer* clasp = man->clasp; __context.graph->addCallConnection(clasp->pack(context.scope), function->getName()); return AbstractPass::processFnCallUncertain(function, context); } void CFAPass::process(CodeScope* scope, PassContext context, const std::string& hintBlockDecl){ ClaspLayer* clasp = man->clasp; - CodeScope* scopeParent = context.scope; + const CodeScope* scopeParent = context.scope; ScopePacked scopeId = clasp->pack(scope); if (scopeParent){ __context.graph->addParentConnection(scopeId, clasp->pack(scopeParent)); } else { __context.graph->addParentConnection(scopeId, context.function->getName()); } //TOTEST scope annotations //SECTIONTAG context gather scope annotations __context.graph->addScopeAnnotations(scopeId, scope->tags); __context.graph->addContextRules(scopeId, scope->contextRules); return AbstractPass::process(scope, context, hintBlockDecl); } //TOTEST scope annotations via scheme void CFAPass::process(const Expression& expression, PassContext context, const std::string& varDecl){ ClaspLayer* clasp = man->clasp; if (expression.__state == Expression::COMPOUND){ Operator op= expression.op; if (__signatures.count(op)) { assert(expression.blocks.size()); for (const auto& scheme: boost::make_iterator_range(__signatures.equal_range(expression.op))) { __context.graph->addScopeAnnotations(clasp->pack(expression.blocks.front()), scheme.second.getOperands()); } } } return AbstractPass::process(expression, context, varDecl); } void CFAPass::process(ManagedFnPtr function) { __context.graph->addFunctionAnnotations(function->getName(), function->getTags()); return AbstractPass::process(function); } CFAPass::CFAPass(PassManager* manager) : AbstractPass(manager) , __context{new CFAGraph(manager->clasp)} {} /** * \class xreate::cfa::CFAPass * \details Provides CFA, important analysis for reasoning. Iterates over AST and stores collected data in CFAGraph */ \ No newline at end of file diff --git a/cpp/src/pass/compilepass.cpp b/cpp/src/pass/compilepass.cpp index 66021a2..799683a 100644 --- a/cpp/src/pass/compilepass.cpp +++ b/cpp/src/pass/compilepass.cpp @@ -1,827 +1,847 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * Author: pgess * * compilepass.cpp */ /** * \file compilepass.h * \brief Compilation pass */ #include "compilepass.h" #include "clasplayer.h" #include #include "llvmlayer.h" #include "query/containers.h" #include "query/context.h" #include "compilation/containers.h" #include "compilation/latecontextcompiler2.h" #include "ExternLayer.h" #include "pass/adhocpass.h" #include "compilation/targetinterpretation.h" #include "pass/versionspass.h" #include "compilation/scopedecorators.h" #include "compilation/adhocfunctiondecorator.h" #include "compilation/operators.h" #include "analysis/typeinference.h" #include #include #include using namespace std; using namespace llvm; //TODO use Scope //SECTIONTAG late-context FunctionDecorator namespace xreate{namespace context{ /** \brief Late Context enabled decorator for IFunctionUnit * \extends IFunctionUnit */ template class LateContextFunctionDecorator : public Parent { public: LateContextFunctionDecorator(ManagedFnPtr f, CompilePass* p) : Parent(f, p), contextCompiler(this, p) { } protected: std::vector prepareArguments() { std::vector&& arguments = Parent::prepareArguments(); size_t sizeLateContextDemand = contextCompiler.getFunctionDemandSize(); if (sizeLateContextDemand) { llvm::Type* ty32 = llvm::Type::getInt32Ty(llvm::getGlobalContext()); llvm::Type* tyDemand = llvm::ArrayType::get(ty32, sizeLateContextDemand); arguments.push_back(tyDemand); } return arguments; } llvm::Function::arg_iterator prepareBindings() { llvm::Function::arg_iterator fargsI = Parent::prepareBindings(); size_t sizeLateContextDemand = contextCompiler.getFunctionDemandSize(); if (sizeLateContextDemand) { fargsI->setName("latecontext"); contextCompiler.rawContextArgument = &*fargsI; ++fargsI; } return fargsI; } public: context::LateContextCompiler2 contextCompiler; }; }} //end of namespace xreate::context namespace xreate { namespace compilation{ std::string BasicFunctionUnit::prepareName(){ AST* ast = IFunctionUnit::pass->man->root; string name = ast->getFunctionSpecializations(IFunctionUnit::function->__name).size() > 1 ? IFunctionUnit::function->__name + std::to_string(IFunctionUnit::function.id()) : IFunctionUnit::function->__name; return name; } std::vector BasicFunctionUnit::prepareArguments() { LLVMLayer* llvm = IFunctionUnit::pass->man->llvm; AST* ast = IFunctionUnit::pass->man->root; CodeScope* entry = IFunctionUnit::function->__entry; std::vector signature; std::transform(entry->__bindings.begin(), entry->__bindings.end(), std::inserter(signature, signature.end()), [llvm, ast, entry](const std::string & arg)->llvm::Type* { assert(entry->__identifiers.count(arg)); ScopedSymbol argid{entry->__identifiers.at(arg), versions::VERSION_NONE}; return llvm->toLLVMType(ast->expandType(entry->__declarations.at(argid).type)); }); return signature; } llvm::Type* BasicFunctionUnit::prepareResult() { LLVMLayer* llvm = IFunctionUnit::pass->man->llvm; AST* ast = IFunctionUnit::pass->man->root; CodeScope* entry = IFunctionUnit::function->__entry; return llvm->toLLVMType(ast->expandType(entry->__declarations.at(ScopedSymbol::RetSymbol).type)); } llvm::Function::arg_iterator BasicFunctionUnit::prepareBindings() { CodeScope* entry = IFunctionUnit::function->__entry; ICodeScopeUnit* entryCompilation = IFunctionUnit::getScopeUnit(entry); llvm::Function::arg_iterator fargsI = IFunctionUnit::raw->arg_begin(); for (std::string &arg : entry->__bindings) { ScopedSymbol argid{entry->__identifiers[arg], versions::VERSION_NONE}; entryCompilation->bindArg(&*fargsI, argid); fargsI->setName(arg); ++fargsI; } return fargsI; } //DEBT compiler rigidly depends on exact definition of DefaultFunctionUnit typedef context::LateContextFunctionDecorator< adhoc::AdhocFunctionDecorator< BasicFunctionUnit>> DefaultFunctionUnit; -ICodeScopeUnit::ICodeScopeUnit(CodeScope* codeScope, IFunctionUnit* f, CompilePass* compilePass) +ICodeScopeUnit::ICodeScopeUnit(const CodeScope* const codeScope, IFunctionUnit* f, CompilePass* compilePass) : pass(compilePass), function(f), scope(codeScope) { } llvm::Value* CallStatementRaw::operator()(std::vector&& args, const std::string& hintDecl) { llvm::Function* calleeInfo = dyn_cast(__callee); if (calleeInfo) { auto argsFormal = calleeInfo->args(); int pos = 0; //SECTIONTAG types/convert function ret value for (auto argFormal = argsFormal.begin(); argFormal != argsFormal.end(); ++argFormal, ++pos) { args[pos] = typeinference::doAutomaticTypeConversion(args[pos], argFormal->getType(), llvm->builder); } } return llvm->builder.CreateCall(__calleeTy, __callee, args, hintDecl); } //DESABLEDFEATURE implement inlining class CallStatementInline : public ICallStatement { public: CallStatementInline(IFunctionUnit* caller, IFunctionUnit* callee, LLVMLayer* l) : __caller(caller), __callee(callee), llvm(l) { } llvm::Value* operator()(std::vector&& args, const std::string& hintDecl) { //TOTEST inlining // CodeScopeUnit* entryCompilation = outer->getScopeUnit(function->__entry); // for(int i=0, size = args.size(); ibindArg(args.at(i), string(entryCompilation->scope->__bindings.at(i))); // } // // // return entryCompilation->compile(); return nullptr; } private: IFunctionUnit* __caller; IFunctionUnit* __callee; LLVMLayer* llvm; bool isInline() { // Symbol ret = Symbol{0, function->__entry}; // bool flagOnTheFly = SymbolAttachments::get(ret, false); //TODO consider inlining return false; } }; -BasicCodeScopeUnit::BasicCodeScopeUnit(CodeScope* codeScope, IFunctionUnit* f, CompilePass* compilePass) +BasicCodeScopeUnit::BasicCodeScopeUnit(const CodeScope* const codeScope, IFunctionUnit* f, CompilePass* compilePass) : ICodeScopeUnit(codeScope, f, compilePass) { } llvm::Value* BasicCodeScopeUnit::processSymbol(const Symbol& s, std::string hintRetVar) { Expression declaration = CodeScope::getDefinition(s); - CodeScope* scope = s.scope; + const CodeScope* scope = s.scope; ICodeScopeUnit* self = ICodeScopeUnit::function->getScopeUnit(scope); return self->process(declaration, hintRetVar); } //TASK Isolate out context functionalty in decorator //TOTEST static late context decisions //TOTEST dynamic late context decisions ICallStatement* BasicCodeScopeUnit::findFunction(const Expression& opCall) { const std::string& calleeName = opCall.getValueString(); LLVMLayer* llvm = pass->man->llvm; ClaspLayer* clasp = pass->man->clasp; DefaultFunctionUnit* function = dynamic_cast (this->function); context::ContextQuery* queryContext = pass->queryContext; const std::list& specializations = pass->man->root->getFunctionSpecializations(calleeName); //if no specializations registered - check external function if (specializations.size() == 0) { llvm::Function* external = llvm->layerExtern->lookupFunction(calleeName); llvm::outs() << "Debug/External function: " << calleeName; external->getType()->print(llvm::outs(), true); llvm::outs() << "\n"; return new CallStatementRaw(external, llvm); } //no decisions required if (specializations.size() == 1) { if (!specializations.front()->guardContext.isValid()) { return new CallStatementRaw(pass->getFunctionUnit(specializations.front())->compile(), llvm); } } //TODO move dictSpecialization over to a separate function in order to perform cache, etc. //prepare specializations dictionary std::map dictSpecializations; boost::optional variantDefault; boost::optional variant; for (const ManagedFnPtr& f : specializations) { const Expression& guard = f->guardContext; //default case: if (!guard.isValid()) { variantDefault = f; continue; } assert(dictSpecializations.emplace(guard, f).second && "Found several identical specializations"); } //check static context ScopePacked scopeCaller = clasp->pack(this->scope); const string atomSpecialization = "specialization"; const Expression topicSpecialization(Operator::CALL,{(Atom(string(atomSpecialization))), Expression(Operator::CALL, {Atom(string(calleeName))}), Atom(scopeCaller)}); const context::Decisions& decisions = queryContext->getFinalDecisions(scopeCaller); if (decisions.count(topicSpecialization)) { variant = dictSpecializations.at(decisions.at(topicSpecialization)); } //TODO check only demand for this particular topic. size_t sizeDemand = function->contextCompiler.getFunctionDemandSize(); //decision made if static context found or no late context exists(and there is default variant) bool flagHasStaticDecision = variant || (variantDefault && !sizeDemand); //if no late context exists if (flagHasStaticDecision) { IFunctionUnit* calleeUnit = pass->getFunctionUnit(variant ? *variant : *variantDefault); //inlining possible based on static decision only // if (calleeUnit->isInline()) { // return new CallStatementInline(function, calleeUnit); // } return new CallStatementRaw(calleeUnit->compile(), llvm); } //require default variant if no static decision made assert(variantDefault); llvm::Function* functionVariantDefault = this->pass->getFunctionUnit(*variantDefault)->compile(); llvm::Value* resultFn = function->contextCompiler.findFunction(calleeName, functionVariantDefault, scopeCaller); llvm::PointerType *resultPTy = cast(resultFn->getType()); llvm::FunctionType *resultFTy = cast(resultPTy->getElementType()); return new CallStatementRaw(resultFn, resultFTy, llvm); } //DISABLEDFEATURE transformations // if (pass->transformations->isAcceptable(expr)){ // return pass->transformations->transform(expr, result, ctx); // } llvm::Value* BasicCodeScopeUnit::process(const Expression& expr, const std::string& hintVarDecl) { #define DEFAULT(x) (hintVarDecl.empty()? x: hintVarDecl) llvm::Value *left; llvm::Value *right; LLVMLayer& l = *pass->man->llvm; - xreate::compilation::Advanced instructions = xreate::compilation::Advanced({this, function, pass}); + xreate::compilation::AdvancedInstructions instructions = xreate::compilation::AdvancedInstructions({this, function, pass}); switch (expr.op) { case Operator::SUB: case Operator::MUL: case Operator::DIV: case Operator::EQU: case Operator::LSS: case Operator::GTR: case Operator::NE: case Operator::LSE: case Operator::GTE: assert(expr.__state == Expression::COMPOUND); assert(expr.operands.size() == 2); left = process(expr.operands[0]); right = process(expr.operands[1]); //SECTIONTAG types/convert binary operation right = typeinference::doAutomaticTypeConversion(right, left->getType(), l.builder); break; default:; } switch (expr.op) { case Operator::ADD: { left = process(expr.operands[0]); Context context{this, function, pass}; llvm::Value* resultSU = StructUpdate::add(expr.operands[0], left, expr.operands[1], context, DEFAULT("tmp_add")); if (resultSU) return resultSU; right = process(expr.operands[1]); llvm::Value* resultAddPA = pointerarithmetic::PointerArithmetic::add(left, right, context, DEFAULT("tmp_add")); if (resultAddPA) { return resultAddPA; } return l.builder.CreateAdd(left, right, DEFAULT("tmp_add")); break; } case Operator::SUB: return l.builder.CreateSub(left, right, DEFAULT("tmp_sub")); break; case Operator::MUL: return l.builder.CreateMul(left, right, DEFAULT("tmp_mul")); break; case Operator::DIV: return l.builder.CreateSDiv(left, right, DEFAULT("tmp_div")); break; case Operator::EQU: if (left->getType()->isIntegerTy()) return l.builder.CreateICmpEQ(left, right, DEFAULT("tmp_equ")); if (left->getType()->isFloatingPointTy()) return l.builder.CreateFCmpOEQ(left, right, DEFAULT("tmp_equ")); break; case Operator::NE: return l.builder.CreateICmpNE(left, right, DEFAULT("tmp_ne")); break; case Operator::LSS: return l.builder.CreateICmpSLT(left, right, DEFAULT("tmp_lss")); break; case Operator::LSE: return l.builder.CreateICmpSLE(left, right, DEFAULT("tmp_lse")); break; case Operator::GTR: return l.builder.CreateICmpSGT(left, right, DEFAULT("tmp_gtr")); break; case Operator::GTE: return l.builder.CreateICmpSGE(left, right, DEFAULT("tmp_gte")); break; case Operator::NEG: left = process(expr.operands[0]); return l.builder.CreateNeg(left, DEFAULT("tmp_neg")); break; case Operator::CALL: { assert(expr.__state == Expression::COMPOUND); shared_ptr callee(findFunction(expr)); const std::string& nameCallee = expr.getValueString(); //prepare arguments std::vector args; args.reserve(expr.operands.size()); std::transform(expr.operands.begin(), expr.operands.end(), std::inserter(args, args.end()), [this](const Expression & operand) { return process(operand); } ); ScopePacked outerScopeId = pass->man->clasp->pack(this->scope); //TASK a) refactor CALL/ADHOC/find function //SECTIONTAG late-context propagation arg size_t calleeDemandSize = pass->queryContext->getFunctionDemand(nameCallee).size(); if (calleeDemandSize) { DefaultFunctionUnit* function = dynamic_cast (this->function); llvm::Value* argLateContext = function->contextCompiler.compileContextArgument(nameCallee, outerScopeId); args.push_back(argLateContext); } return (*callee)(move(args), DEFAULT("res_" + nameCallee)); } case Operator::IF: { return instructions.compileIf(expr, DEFAULT("tmp_if")); } case Operator::SWITCH: { return instructions.compileSwitch(expr, DEFAULT("tmp_switch")); } case Operator::LOOP_CONTEXT: { assert(false); return nullptr; //return instructions.compileLoopContext(expr, DEFAULT("tmp_loop")); } case Operator::LOGIC_AND: { assert(expr.operands.size() == 1); return process(expr.operands[0]); } case Operator::LIST: { return instructions.compileListAsSolidArray(expr, DEFAULT("tmp_list")); }; case Operator::LIST_RANGE: { assert(false); //no compilation phase for a range list // return InstructionList(this).compileConstantArray(expr, l, hintRetVar); }; case Operator::LIST_NAMED: { typedef Expanded ExpandedType; ExpandedType tyStructLiteral = l.ast->getType(expr); const std::vector fieldsFormal = (tyStructLiteral.get().__operator == TypeOperator::CUSTOM) ? l.layerExtern->getStructFields(l.layerExtern->lookupType(tyStructLiteral.get().__valueCustom)) : tyStructLiteral.get().fields; std::map indexFields; for (size_t i = 0, size = fieldsFormal.size(); i < size; ++i) { indexFields.emplace(fieldsFormal[i], i); } llvm::StructType* tyLiteralRaw = llvm::cast(l.toLLVMType(tyStructLiteral)); llvm::Value* record = llvm::UndefValue::get(tyLiteralRaw); for (size_t i = 0; i < expr.operands.size(); ++i) { const Expression& operand = expr.operands.at(i); unsigned int fieldId = indexFields.at(expr.bindings.at(i)); llvm::Value* result = process(operand); assert(result); record = l.builder.CreateInsertValue(record, result, llvm::ArrayRef({fieldId})); } return record; }; case Operator::MAP: { assert(expr.blocks.size()); return instructions.compileMapSolidOutput(expr, DEFAULT("map")); }; case Operator::FOLD: { return instructions.compileFold(expr, DEFAULT("fold")); }; case Operator::FOLD_INF: { return instructions.compileFoldInf(expr, DEFAULT("fold")); }; case Operator::INDEX: { //TASK allow multiindex compilation assert(expr.operands.size() == 2); assert(expr.operands[0].__state == Expression::IDENT); const std::string& hintIdent = expr.operands[0].getValueString(); Symbol s = Attachments::get(expr.operands[0]); const ExpandedType& t2 = pass->man->root->getType(expr.operands[0]); llvm::Value* aggr = processSymbol(s, hintIdent); switch (t2.get().__operator) { case TypeOperator::STRUCT: case TypeOperator::CUSTOM: { std::string idxField; const Expression& idx = expr.operands.at(1); switch (idx.__state) { //named struct field case Expression::STRING: idxField = idx.getValueString(); break; //anonymous struct field case Expression::NUMBER: idxField = to_string((int) idx.getValueDouble()); break; default: assert(false && "Wrong index for a struct"); } return instructions.compileStructIndex(aggr, t2, idxField); }; case TypeOperator::ARRAY: { std::vector indexes; std::transform(++expr.operands.begin(), expr.operands.end(), std::inserter(indexes, indexes.end()), [this] (const Expression & op) { return process(op); } ); return instructions.compileArrayIndex(aggr, indexes, DEFAULT(string("el_") + hintIdent)); }; default: assert(false); } }; //SECTIONTAG adhoc actual compilation //TODO a) make sure that it's correct: function->adhocImplementation built for Entry scope and used in another scope case Operator::ADHOC: { DefaultFunctionUnit* function = dynamic_cast (this->function); assert(function->adhocImplementation && "Adhoc implementation not found"); const Expression& comm = adhoc::AdhocExpression(expr).getCommand(); CodeScope* scope = function->adhocImplementation->getCommandImplementation(comm); ICodeScopeUnit* unitScope = function->getScopeUnit(scope); //SECTIONTAG types/convert ADHOC ret convertation llvm::Type* resultTy = l.toLLVMType(pass->man->root->expandType(function->adhocImplementation->getResultType())); return typeinference::doAutomaticTypeConversion(unitScope->compile(), resultTy, l.builder); }; case Operator::CALL_INTRINSIC: { const std::string op = expr.getValueString(); if (op == "copy") { llvm::Value* result = process(expr.getOperands().at(0)); auto decoratorVersions = Decorators::getInterface(this); llvm::Value* storage = decoratorVersions->processIntrinsicInit(result->getType()); decoratorVersions->processIntrinsicCopy(result, storage); return l.builder.CreateLoad(storage, hintVarDecl); } assert(false && "undefined intrinsic"); } case Operator::VARIANT: { - //TASK Variant compilation to implement - assert(false&& "Variant compilation not implemented yet"); - return nullptr; -// const ExpandedType& typVariant = pass->man->root->getType(expr); -// llvm::Type* typRaw = l.toLLVMType(typVariant); -// int value = expr.getValueDouble(); -// return llvm::ConstantInt::get(typRaw, value); + const ExpandedType& typVariant = pass->man->root->getType(expr); + llvm::Type* typVariantRaw = l.toLLVMType(typVariant); + llvm::Type* typStorageRaw = llvm::cast(typVariantRaw)->getElementType(1); + llvm::Type* typIdRaw = llvm::cast(typVariantRaw)->getElementType(0); + + uint64_t id = expr.getValueDouble(); + const ExpandedType& subtyp = ExpandedType(typVariant->__operands.at(id)); + llvm::Type* subtypRaw = l.toLLVMType(subtyp); + Attachments::put(expr.operands.at(0), subtyp); + llvm::Value* subtypValue = process(expr.operands.at(0)); + + //reinterpret subtype + llvm::Value* addrAsStorage = l.builder.CreateAlloca(typStorageRaw); + llvm::Value* addrAsSubtyp = l.builder.CreateBitOrPointerCast(addrAsStorage, subtypRaw->getPointerTo()); + + l.builder.CreateStore(subtypValue, addrAsSubtyp); + llvm::Value* storageRaw = l.builder.CreateLoad(typStorageRaw, addrAsStorage); + + llvm::Value* variantRaw = llvm::UndefValue::get(typVariantRaw); + variantRaw = l.builder.CreateInsertValue(variantRaw, llvm::ConstantInt::get(typIdRaw, id), llvm::ArrayRef({0})); + variantRaw = l.builder.CreateInsertValue(variantRaw, storageRaw, llvm::ArrayRef({1})); + return variantRaw; + } + + case Operator::SWITCH_VARIANT: + { + return instructions.compileSwitchVariant(expr, DEFAULT("tmpswitch")); } case Operator::NONE: assert(expr.__state != Expression::COMPOUND); switch (expr.__state) { case Expression::IDENT: { Symbol s = Attachments::get(expr); return processSymbol(s, expr.getValueString()); } case Expression::NUMBER: { llvm::Type* typConst; if (expr.type.isValid()) { typConst = l.toLLVMType(pass->man->root->getType(expr)); } else { typConst = llvm::Type::getInt32Ty(llvm::getGlobalContext()); } int literal = expr.getValueDouble(); return llvm::ConstantInt::get(typConst, literal); } case Expression::STRING: { return instructions.compileConstantStringAsPChar(expr.getValueString(), DEFAULT("tmp_str")); }; default: { break; } }; break; default: break; } assert(false && "Can't compile expression"); return 0; } llvm::Value* BasicCodeScopeUnit::compile(const std::string& hintBlockDecl) { if (!hintBlockDecl.empty()) { llvm::BasicBlock *block = llvm::BasicBlock::Create(llvm::getGlobalContext(), hintBlockDecl, function->raw); pass->man->llvm->builder.SetInsertPoint(block); } Symbol symbScope = Symbol{ScopedSymbol::RetSymbol, scope}; return processSymbol(symbScope); } ICodeScopeUnit::~ICodeScopeUnit() { } IFunctionUnit::~IFunctionUnit() { } llvm::Function* IFunctionUnit::compile() { if (raw != nullptr) return raw; LLVMLayer* llvm = pass->man->llvm; llvm::IRBuilder<>& builder = llvm->builder; string&& functionName = prepareName(); std::vector&& types = prepareArguments(); llvm::Type* expectedResultType = prepareResult(); llvm::FunctionType *ft = llvm::FunctionType::get(expectedResultType, types, false); raw = llvm::cast(llvm->module->getOrInsertFunction(functionName, ft)); prepareBindings(); const std::string&blockName = "entry"; llvm::BasicBlock* blockCurrent = builder.GetInsertBlock(); llvm::Value* result = getScopeUnit(function->__entry)->compile(blockName); assert(result); //SECTIONTAG types/convert function ret value builder.CreateRet(typeinference::doAutomaticTypeConversion(result, expectedResultType, llvm->builder)); if (blockCurrent) { builder.SetInsertPoint(blockCurrent); } llvm->moveToGarbage(ft); return raw; } ICodeScopeUnit* -IFunctionUnit::getScopeUnit(CodeScope* scope) { +IFunctionUnit::getScopeUnit(const CodeScope * const scope) { if (__scopes.count(scope)) { auto result = __scopes.at(scope).lock(); if (result) { return result.get(); } } std::shared_ptr unit(pass->buildCodeScopeUnit(scope, this)); if (scope->__parent != nullptr) { auto parentUnit = Decorators::getInterface(getScopeUnit(scope->__parent)); parentUnit->registerChildScope(unit); } else { __orphanedScopes.push_back(unit); } if (!__scopes.emplace(scope, unit).second) { __scopes[scope] = unit; } return unit.get(); } ICodeScopeUnit* IFunctionUnit::getScopeUnit(ManagedScpPtr scope) { return getScopeUnit(&*scope); } ICodeScopeUnit* IFunctionUnit::getEntry() { return getScopeUnit(function->getEntryScope()); } template<> compilation::IFunctionUnit* CompilePassCustomDecorators::buildFunctionUnit(const ManagedFnPtr& function){ return new DefaultFunctionUnit(function, this); } template<> compilation::ICodeScopeUnit* -CompilePassCustomDecorators::buildCodeScopeUnit(CodeScope* scope, IFunctionUnit* function){ +CompilePassCustomDecorators::buildCodeScopeUnit(const CodeScope* const scope, IFunctionUnit* function){ return new DefaultCodeScopeUnit(scope, function, this); } } // emf of compilation IFunctionUnit* CompilePass::getFunctionUnit(const ManagedFnPtr& function) { unsigned int id = function.id(); if (!functions.count(id)) { IFunctionUnit* unit = buildFunctionUnit(function); functions.emplace(id, unit); return unit; } return functions.at(id); } void CompilePass::run() { managerTransformations = new TransformationsManager(); targetInterpretation = new interpretation::TargetInterpretation(this->man->root, this); queryContext = reinterpret_cast (man->clasp->getQuery(QueryId::ContextQuery)); //Find out main function; ClaspLayer::ModelFragment model = man->clasp->query(Config::get("function-entry")); assert(model && "Error: No entry function found"); assert(model->first != model->second && "Error: Ambiguous entry function"); string nameMain = std::get<0>(ClaspLayer::parse(model->first->second)); IFunctionUnit* unitMain = getFunctionUnit(man->root->findFunction(nameMain)); entry = unitMain->compile(); } llvm::Function* CompilePass::getEntryFunction() { assert(entry); return entry; } void CompilePass::prepareQueries(ClaspLayer* clasp) { clasp->registerQuery(new containers::Query(), QueryId::ContainersQuery); clasp->registerQuery(new context::ContextQuery(), QueryId::ContextQuery); Attachments::init(); clasp->registerQuery(new polymorph::PolymorphQuery(), QueryId::PolymorphQuery); } } //end of namespace xreate /** * \class xreate::CompilePass * \brief Encapsulates all compilation activities * * xreate::CompilePass iterates over xreate::AST tree and produces executable code fed by data(via xreate::Attachments) gathered by previous passes as well as data via queries(xreate::IQuery) from xreate:ClaspLayer reasoner. * Compilation's done using xreate::LLVMLayer(wrapper over LLVM toolchain) and based on following aspects: * - Containers support. See \ref compilation/containers.h * - Late Conext compilation. See xreate::context::LateContextCompiler2 * - Interpretation support. See xreate::interpretation::TargetInterpretation * - Loop saturation support. See xreate::compilation::TransformerSaturation * - External Code access. See xreate::ExternLayer(wrapper over Clang library) * * \section adaptability_sect Adaptability * xreate::CompilePass's architecture provides adaptability by employing: * - %Function Decorators to alter function-level compilation. See xreate::compilation::IFunctionUnit * - Code Block Decorators to alter code block level compilation. See xreate::compilation::ICodeScopeUnit * Default functionality defined by \ref xreate::compilation::DefaultCodeScopeUnit * - Targets to allow more versitile extensions. * Currently only xreate::interpretation::TargetInterpretation use Targets infrastructure. See xreate::compilation::Target * - %Altering Function invocation. xreate::compilation::ICallStatement * * Client able to construct compiler with desired decorators using xreate::compilation::CompilePassCustomDecorators. * As a handy alias, `CompilePassCustomDecorators` constructs default compiler * */ diff --git a/cpp/src/pass/compilepass.h b/cpp/src/pass/compilepass.h index 0c16972..7bc170f 100644 --- a/cpp/src/pass/compilepass.h +++ b/cpp/src/pass/compilepass.h @@ -1,218 +1,218 @@ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * Author: pgess * * compilepass.h */ #ifndef COMPILEPASS_H #define COMPILEPASS_H #include "abstractpass.h" #include "llvm/IR/Function.h" namespace xreate { class ClaspLayer; class CompilePass; class LLVMLayer; namespace adhoc{ class AdhocScheme; } namespace context{ class ContextQuery; class LateContextCompiler2; } namespace interpretation{ class TargetInterpretation; } } namespace xreate { namespace compilation { class ICodeScopeUnit; class IFunctionUnit; class TransformationsManager; /** \brief Holds current position in %AST while traversing*/ struct Context{ ICodeScopeUnit* scope; IFunctionUnit* function; CompilePass* pass; }; /** \brief Interface to specify custom way of function invocation * \details Default implementation is xreate::compilation::CallStatementRaw */ class ICallStatement { public: /** \brief Returns result of custom function invocation for given arguments*/ virtual llvm::Value* operator() (std::vector&& args, const std::string& hintDecl="") = 0; }; /** \brief Default ICallStatement implementation */ class CallStatementRaw: public ICallStatement{ public: CallStatementRaw(llvm::Function* callee, LLVMLayer* l) : __callee(callee), __calleeTy(callee->getFunctionType()), llvm(l) {} CallStatementRaw(llvm::Value* callee, llvm::FunctionType* ty, LLVMLayer* l) : __callee(callee), __calleeTy(ty), llvm(l) {} /** \brief Makes type conversions and returns LLVM call statement with given arguments*/ llvm::Value* operator() (std::vector&& args, const std::string& hintDecl=""); private: llvm::Value* __callee; llvm::FunctionType* __calleeTy; LLVMLayer* llvm; }; /** \brief Interface to allow modification of CodeScope compilation * \details Default implementation defined in xreate::compilation::DefaultCodeScopeUnit */ class ICodeScopeUnit{ public: CompilePass* const pass; IFunctionUnit* const function; - CodeScope* const scope; + const CodeScope* const scope; - ICodeScopeUnit(CodeScope* codeScope, IFunctionUnit* f, CompilePass* compilePass); + ICodeScopeUnit(const CodeScope* const codeScope, IFunctionUnit* f, CompilePass* compilePass); virtual ~ICodeScopeUnit(); virtual llvm::Value* compile(const std::string& hintBlockDecl="")=0; virtual llvm::Value* processSymbol(const Symbol& s, std::string hintRetVar="")=0; virtual llvm::Value* process(const Expression& expr, const std::string& hintVarDecl="")=0; - virtual void bindArg(llvm::Value* value, std::string&& alias)=0; + virtual Symbol bindArg(llvm::Value* value, std::string&& alias)=0; virtual void bindArg(llvm::Value* value, const ScopedSymbol& s)=0; protected: virtual ICallStatement* findFunction(const Expression& opCall)=0; }; /** \brief Minimal useful ICodeScopeUnit implementation suited for inheritance */ class BasicCodeScopeUnit: public ICodeScopeUnit{ public: - BasicCodeScopeUnit(CodeScope* codeScope, IFunctionUnit* f, CompilePass* compilePass); + BasicCodeScopeUnit(const CodeScope* const codeScope, IFunctionUnit* f, CompilePass* compilePass); llvm::Value* processSymbol(const Symbol& s, std::string hintRetVar="") override; llvm::Value* process(const Expression& expr, const std::string& hintVarDecl="") override; llvm::Value* compile(const std::string& hintBlockDecl="") override; protected: ICallStatement* findFunction(const Expression& opCall) override; }; /** \brief Interface to specify compilation of %Function */ class IFunctionUnit{ public: IFunctionUnit(ManagedFnPtr f, CompilePass* p): function(f), pass(p) {} virtual ~IFunctionUnit(); llvm::Function* compile(); ICodeScopeUnit* getEntry(); - ICodeScopeUnit* getScopeUnit(CodeScope* scope); + ICodeScopeUnit* getScopeUnit(const CodeScope * const scope); ICodeScopeUnit* getScopeUnit(ManagedScpPtr scope); ManagedFnPtr function; llvm::Function* raw = nullptr; protected: CompilePass* pass=nullptr; virtual std::string prepareName() = 0; virtual std::vector prepareArguments() = 0; virtual llvm::Type* prepareResult() = 0; virtual llvm::Function::arg_iterator prepareBindings() = 0; private: - std::map> __scopes; + std::map> __scopes; std::list> __orphanedScopes; }; /** \brief Minimal useful IFunctionUnit implementation suited for inheritance */ class BasicFunctionUnit: public IFunctionUnit{ public: BasicFunctionUnit(ManagedFnPtr f, CompilePass* p) : IFunctionUnit(f, p) {} protected: std::string prepareName() override; virtual std::vector prepareArguments() override; virtual llvm::Type* prepareResult() override; virtual llvm::Function::arg_iterator prepareBindings() override; }; } // end of namespace compilation class CompilePass : public AbstractPass { friend class context::LateContextCompiler2; friend class compilation::BasicCodeScopeUnit; friend class compilation::IFunctionUnit; public: compilation::TransformationsManager* managerTransformations; interpretation::TargetInterpretation* targetInterpretation; CompilePass(PassManager* manager): AbstractPass(manager) {} /** \brief Executes compilation process */ void run() override; /**\brief Returns compiled specified %Function * \details Executes function compilation or read cache if it's already done */ compilation::IFunctionUnit* getFunctionUnit(const ManagedFnPtr& function); /**\brief Returns compiled main(entry) %Function in program */ llvm::Function* getEntryFunction(); /** \brief Initializes queries required by compiler. See xreate::IQuery, xreate::ClaspLayer */ static void prepareQueries(ClaspLayer* clasp); protected: virtual compilation::IFunctionUnit* buildFunctionUnit(const ManagedFnPtr& function)=0; - virtual compilation::ICodeScopeUnit* buildCodeScopeUnit(CodeScope* scope, compilation::IFunctionUnit* function)=0; + virtual compilation::ICodeScopeUnit* buildCodeScopeUnit(const CodeScope* const scope, compilation::IFunctionUnit* function)=0; private: //TODO free `functions` in destructor std::map functions; llvm::Function* entry = 0; context::ContextQuery* queryContext; }; namespace compilation{ /** \brief Constructs compiler with desired %Function and %Code Scope decorators. See adaptability in xreate::CompilePass*/ template class CompilePassCustomDecorators: public ::xreate::CompilePass{ public: CompilePassCustomDecorators(PassManager* manager): ::xreate::CompilePass(manager) {} virtual compilation::IFunctionUnit* buildFunctionUnit(const ManagedFnPtr& function) override{ return new FUNCTION_DECORATOR(function, this); } - virtual compilation::ICodeScopeUnit* buildCodeScopeUnit(CodeScope* scope, IFunctionUnit* function) override{ + virtual compilation::ICodeScopeUnit* buildCodeScopeUnit(const CodeScope* const scope, IFunctionUnit* function) override{ return new SCOPE_DECORATOR(scope, function, this); } }; template<> compilation::IFunctionUnit* CompilePassCustomDecorators::buildFunctionUnit(const ManagedFnPtr& function); template<> compilation::ICodeScopeUnit* -CompilePassCustomDecorators::buildCodeScopeUnit(CodeScope* scope, IFunctionUnit* function); +CompilePassCustomDecorators::buildCodeScopeUnit(const CodeScope* const scope, IFunctionUnit* function); }} //end of namespace xreate::compilation #endif // COMPILEPASS_H diff --git a/cpp/tests/adhoc.cpp b/cpp/tests/adhoc.cpp index eae5f4a..72a565f 100644 --- a/cpp/tests/adhoc.cpp +++ b/cpp/tests/adhoc.cpp @@ -1,196 +1,196 @@ /* Any copyright is dedicated to the Public Domain. * http://creativecommons.org/publicdomain/zero/1.0/ * * adhoc-exceptions.cpp * * Created on: Nov 19, 2015 * Author: pgess */ class Adhoc_pass_Adhoc1_Test; #define FRIENDS_ADHOC \ friend class ::Adhoc_pass_Adhoc1_Test; #include "ast.h" #include "xreatemanager.h" #include "gtest/gtest.h" #include #include #include #include #include "pass/adhocpass.h" #include "pass/compilepass.h" #include "llvmlayer.h" using namespace xreate; using namespace xreate::adhoc; using namespace std; TEST(Adhoc, ast_operatorAdhoc1){ XreateManager* man = XreateManager::prepare ( "test = function:: int {\n" " ad hoc exception(nonImplemented)\n" "}"); - Expression subject = man->root->findFunction("test")->getEntryScope()->getBody(); + const Expression& subject = man->root->findFunction("test")->getEntryScope()->getBody(); ASSERT_EQ(Operator::ADHOC, subject.op); Expression exception = AdhocExpression(subject).getCommand(); ASSERT_EQ("exception", exception.getValueString()); } TEST(Adhoc, ast_schemeAdhoc1){ XreateManager* man = XreateManager::prepare ( "interface(adhoc){\n" " pre function expectNoErrors:: bool {\n" " case (Error) {false}\n" " case (Success) {true}\n" " }\n" " }"); assert(man->root->__interfacesData.count(ASTInterface::Adhoc)); Expression adhocData = man->root->__interfacesData.find(ASTInterface::Adhoc)->second; ASSERT_EQ(Operator::SWITCH, adhocData.operands[0].op); } TEST(Adhoc, pass_Adhoc1){ details::tier1::XreateManager* man = details::tier1::XreateManager::prepare ( "interface(adhoc){\n" " pre function expectNoErrors:: bool {\n" " case (Error) {false}\n" " case (Success) {true}\n" " }\n" "}\n" "main = function::int; entry {0} \n" ); man->analyse(); AdhocPass* pass = reinterpret_cast(man->getPassById(PassId::AdhocPass)); EXPECT_TRUE(pass->__schemes.size() > 0); AdhocScheme* scheme = pass->__schemes.begin()->second; EXPECT_EQ("expectNoErrors", scheme->getName()); } TEST(Adhoc, full_1){ XreateManager* man = XreateManager::prepare ( " import raw (\"core/control-context.lp\").\n" " interface(adhoc){\n" " pre function expectNoErrors:: bool {\n" " case (error) {false}\n" " case (success) {true}\n" " }\n" " }\n" " test1 = pre function {\n" " context:: expectNoErrors." " ad hoc success\n" " }" "main = function::bool;entry {\n" " test1()\n" " }"); bool (*main)() = (bool (*)()) man->run(); bool result = main(); ASSERT_EQ(true, result); } TEST(Adhoc, full_2){ XreateManager* man = XreateManager::prepare ( " import raw (\"core/control-context.lp\").\n" " interface(adhoc){\n" " pre function expectNoErrors:: bool {\n" " case (error) {false}\n" " case (success) {true}\n" " }\n" " pre function expectErrors:: bool {\n" " case (error) {true}\n" " case (success) {false}\n" " }\n" " }\n" " test1 = pre function {\n" " context:: expectNoErrors." " ad hoc success\n" " }\n" " test2 = pre function {\n" " context:: expectErrors." " ad hoc success\n" " }" "main = function::bool;entry {\n" " test1() != test2()\n" "}"); bool (*main)() = (bool (*)()) man->run(); bool result = main(); ASSERT_EQ(true, result); } //TODO adhoc type. FDecl sets wrong type in prefunc case(invalid type)) TEST(Adhoc, full_contextExpectNoErrrors){ XreateManager* man = XreateManager::prepare ( "import raw (\"core/control-context.lp\").\n" "interface(extern-c){\n" " xml2 = library:: pkgconfig(\"libxml-2.0\").\n" " \n" " include {\n" " xml2 = [\"stdlib.h\"]\n" " }.\n" "}" "interface(adhoc){\n" " pre function expectNoErrors:: bool {\n" " case (error) {false}\n" " case (success) {true}\n" " }\n" "}\n" "expectErrorCode = pre function(x::int){\n" " if (x==0)::undef {ad hoc success}\n" " else {ad hoc error}\n" "}\n" "main = function::bool; entry {\n" " context:: expectNoErrors." " expectErrorCode(system(\"ls -la\"))\n" "}" ); int (*main)() = (int (*)()) man->run(); ASSERT_EQ(1, main()); } //DEBT Implement compilation of switch adhoc TEST(Adhoc, ast_switchAdhoc1){ XreateManager* man = XreateManager::prepare ( "test1 = function:: bool {\n" " x = 0. \n" " switch ad hoc (x:: errors)\n" " case (error) {0}\n" " case (success) {1}\n" "\n" "}" ); - Expression eSwitch = man->root->findFunction("test1")->getEntryScope()->getBody(); + const Expression& eSwitch = man->root->findFunction("test1")->getEntryScope()->getBody(); EXPECT_EQ(Operator::SWITCH_ADHOC, eSwitch.op); EXPECT_EQ(3, eSwitch.operands.size()); EXPECT_EQ(1, eSwitch.tags.size()); EXPECT_EQ("errors", eSwitch.tags.begin()->first); Expression eCondition = eSwitch.getOperands()[0]; EXPECT_EQ("x", eCondition.getValueString()); } diff --git a/cpp/tests/compilation.cpp b/cpp/tests/compilation.cpp index 12377ae..41d6927 100644 --- a/cpp/tests/compilation.cpp +++ b/cpp/tests/compilation.cpp @@ -1,104 +1,147 @@ /* Any copyright is dedicated to the Public Domain. * http://creativecommons.org/publicdomain/zero/1.0/ * * compilation.cpp * * Created on: - * Author: pgess */ #include "xreatemanager.h" #include "gtest/gtest.h" using namespace xreate; //DEBT implement no pkgconfig ways to link libs //TOTEST FunctionUnit::compileInline TEST(Compilation, DISABLED_functionInline1){ } TEST(Compilation, functionEntry1){ std::unique_ptr program(XreateManager::prepare( "func1 = function(a:: int):: int {a+8} \ func2 = function::int; entry {12 + func1(4)} \ ")); void* entryPtr = program->run(); int (*entry)() = (int (*)())(intptr_t)entryPtr; int answer = entry(); ASSERT_EQ(24, answer); } TEST(Compilation, full_IFStatementWithVariantType){ XreateManager* man = XreateManager::prepare( "Color = type variant {RED, BLUE, GREEN}.\n" "\n" " main = function(x::int):: bool; entry {\n" " color = if (x == 0 )::Color {RED()} else {BLUE()}.\n" " if (color == BLUE())::bool {true} else {false}\n" " }" ); bool (*main)(int) = (bool (*)(int)) man->run(); ASSERT_FALSE(main(0)); ASSERT_TRUE(main(1)); } +TEST(Compilation, full_Variant1){ + XreateManager* man = XreateManager::prepare(R"Code( + OneArgument = type{x::int}. + TwoArguments = type{x::int, y::int}. + + Command= type variant{ + Add::TwoArguments, + Dec::OneArgument + }. + + main = function::Command; entry { + Dec({x=2})::Command + } + )Code"); + + void (*main)() = (void (*)()) man->run(); +} + +TEST(Compilation, full_SwitchVariant1){ + XreateManager* man = XreateManager::prepare(R"Code( + OneArgument = type{x::int}. + TwoArguments = type{x::int, y::int}. + + Command= type variant{ + Add::TwoArguments, + Dec::OneArgument + }. + + main = function::int; entry { + //command = Dec({x = 8}):: Command. + command = Add({x= 3, y= 5}):: Command. + + switch variant(command)::int + case(Add){command["x"] + command["y"]} + case(Dec){command["x"]} + } + )Code"); + + int (*mainFn)() = (int (*)()) man->run(); + int result = mainFn(); + ASSERT_EQ(8, result); +} + TEST(Compilation, full_StructUpdate){ XreateManager* man = XreateManager::prepare( R"Code( Rec = type { a :: int, b:: int }. test= function:: int; entry { a = {a = 18, b = 20}:: Rec. b = a + {a = 11}:: Rec. b["a"] } )Code"); int (*main)() = (int (*)()) man->run(); int result = main(); ASSERT_EQ(11, result); } TEST(Compilation, AnonymousStruct_init_index){ std::string code = R"Code( main = function:: int; entry { x = {10, 15} :: {int, int}. x[1] } )Code"; std::unique_ptr man(XreateManager::prepare(move(code))); int (*main)() = (int (*)()) man->run(); EXPECT_EQ(15, main()); } TEST(Compilation, AnonymousStruct_init_update){ std::string code = R"Code( main = function:: int; entry { x = {10, 15} :: {int, int}. y = x + {6}:: {int, int}. y[0] } )Code"; std::unique_ptr man(XreateManager::prepare(move(code))); int (*main)() = (int (*)()) man->run(); EXPECT_EQ(6, main()); } diff --git a/cpp/tests/context.cpp b/cpp/tests/context.cpp index b989947..942d862 100644 --- a/cpp/tests/context.cpp +++ b/cpp/tests/context.cpp @@ -1,497 +1,497 @@ /* Any copyright is dedicated to the Public Domain. * http://creativecommons.org/publicdomain/zero/1.0/ - * + * * frame-context.cpp * * Created on: Dec 3, 2015 * Author: pgess */ #include "xreatemanager.h" #include "query/context.h" #include "gtest/gtest.h" #include #include using namespace xreate; using namespace xreate::context; TEST(Context, frame_Context1){ details::tier1::XreateManager* man = details::tier1::XreateManager::prepare( " import raw (\"core/control-context.lp\").\n" " compute = function::int {\n" " 0\n" " }\n" " computeFast = function:: int {\n" " context:: computation(fast).\n" " compute()\n" " }\n" " computePrecisely = function:: int {\n" " context:: computation(precise). \n" " compute()\n" " }\n" "test = function(cmnd:: int):: int; entry {\n" " context:: arithmetic(iee754). \n" " if (cmnd > 0)::int {computePrecisely()} else {computeFast()} \n" "}\n" ); ContextQuery* query = (ContextQuery*) man->clasp->registerQuery(new ContextQuery(), QueryId::ContextQuery); man->analyse(); CodeScope* scopeTestC = man->root->findFunction("compute")->getEntryScope(); const Domain& context = query->getContext(man->clasp->pack(scopeTestC)); int contextSize = context.size(); EXPECT_EQ(1, contextSize); //arithmetic(iee754) } TEST(Context, contextAsRequirementSuccessful1){ XreateManager* man = XreateManager::prepare( " import raw (\"core/control-context.lp\").\n" " case context::safe {\n" " funcSensitive = function::int {\n" " 0\n" " }}\n" " test = function:: int; entry {\n" " context:: safe; test.\n" " funcSensitive()\n" " }\n" ); int (*main)() = (int (*)()) man->run(); ASSERT_EQ(0, main()); } TEST(Context, contextAsRequirementFailed){ XreateManager* man = XreateManager::prepare( " import raw (\"core/control-context.lp\").\n" " case context::safe {\n" " funcSensitive = function::int {\n" " 0\n" " }}\n" " test = function:: int; entry {\n" " context:: non_safe; test.\n" " funcSensitive()\n" " }\n" ); ASSERT_DEATH(man->run(), "findFunction"); } TEST(Context, ContextPropagationNested){ XreateManager* man = XreateManager::prepare( " import raw (\"core/control-context.lp\").\n" " case context::safe {\n" " square = function(x:: int) ::int {\n" " x * x\n" " }}\n" " test = function:: int; entry {\n" " context:: safe; test.\n" " range = [1..10]:: [int]. \n" " loop fold(range->x::int, 0->acc):: int { \n" " acc + square(x) \n" " } \n" " }\n" ); int (*main)() = (int (*)()) man->run(); ASSERT_EQ(385, main()); } TEST(Context, ContextPropagationNestedInterfunction){ XreateManager* man = XreateManager::prepare( " import raw (\"core/control-context.lp\").\n" " case context::toMillimeters {\n" " convertConcrete = function(source:: num)::num {\n" " 10 * source \n" " }\n" " }\n" " case context::toInches {\n" " convertConcrete = function(source:: num)::num {\n" " 2 * source \n" " }\n" " }\n" "convert= function(source:: num):: num { \n" "convertConcrete(source) \n" "} \n" "test = function(source:: num):: num; entry {\n" " context:: toMillimeters.\n" " convert(1)\n" "}\n" ); int (*main)(int) = (int (*)(int)) man->run(); ASSERT_EQ(10, main(1)); } TEST(Context, full_ContextBasedFunctionSpecialization){ XreateManager* man = XreateManager::prepare( " import raw (\"core/control-context.lp\").\n" " case context::toMillimeters {\n" " convert = function(source:: num)::num {\n" " 10 * source \n" " }\n" " }\n" " case context::toInches {\n" " convert = function(source:: num)::num {\n" " 2 * source \n" " }\n" " }\n" "test = function(vrnt:: int)::int; entry {\n" " switch(vrnt):: int\n" " case (0) {\n" " context:: toMillimeters.\n" " convert(1)\n" " }\n" "\n" " case (1) {\n" " context:: toInches.\n" " convert(1)\n" " }\n" " case default {0}\n" " }" ); int (*main)(int) = (int (*)(int)) man->run(); ASSERT_EQ(10, main(0)); ASSERT_EQ(2, main(1)); } TEST(Context, full_RuleContext){ /* "rule context:: childs(Child)\n" " case artefact(Item)\n" " {\n" " artefact_depends(Item, Child)\n" " }"; */ XreateManager* man = XreateManager::prepare( " import raw (\"core/control-context.lp\").\n" " case context:: toMilli {\n" " convert = function(length::int)::int{\n" " 10 * length\n" " }\n" " }\n" "\n" " case context:: toCenti {\n" " convert = function(length::int)::int{\n" " length\n" " }\n" " }\n" "\n" " main=function::int; entry {\n" " context:: output(milli).\n" "\n" " rule context::toMilli\n" " case (output(milli)) {truth}\n" "\n" " convert(1)\n" " }" ); man->clasp->addRawScript("truth."); int (*entry)() = (int (*)()) man->run(); ASSERT_EQ(10, entry()); } TEST(Context, full_InheritedRuleContext){ XreateManager* man = XreateManager::prepare( " import raw (\"core/control-context.lp\"). \n" " case context:: toMilli {\n" " convert = function(length::int)::int{\n" " 10 * length\n" " }\n" " }\n" " case context:: toCenti {\n" " convert = function(length::int)::int{\n" " length\n" " }\n" " }\n" "\n" "main = function(comm:: num)::num; entry{\n" " rule context::X case (output(X)) {truth}\n" "\n" " switch (comm)::num \n" " case (0) {\n" " context:: output(toMilli).\n" " convert(1)\n" " }\n" " case default {\n" " context:: output(toCenti).\n" " convert(1)\n" " }\n" " }"); man->clasp->addRawScript("truth."); int (*entry)(int) = (int (*)(int)) man->run(); ASSERT_EQ(10, entry(0)); ASSERT_EQ(1, entry(1)); } TEST(Context, full_LateContext){ details::tier1::XreateManager* man = details::tier1::XreateManager::prepare( "import raw (\"core/control-context.lp\").\n" " convert = function(length:: num)::num{\n" " 0\n" " }\n" "case context:: milli {\n" " convert = function(length:: num)::num{\n" " 1000 * length\n" " }\n" "}\n" "\n" "case context:: centi {\n" " convert = function(length:: num)::num{\n" " 100 * length\n" " }\n" "}\n" "\n" "calculate = function(length:: num)::num {\n" " convert(length)\n" "}\n" "\n" "main = function(com:: num):: num; entry {\n" " switch (com):: num \n" " case (0) {\n" " context:: milli.\n" " calculate(1)\n" " }\n" "\n" " case default{\n" " context:: centi. \n" " calculate(1)\n" " }\n" "}"); man->analyse(); ContextQuery* queryContext = reinterpret_cast(man->clasp->getQuery(QueryId::ContextQuery)); - Expression exprSwitch = man->root->findFunction("main")->__entry->getBody(); - CodeScope* blockDefault = man->root->findFunction("main")->__entry->getBody().operands[1].blocks.front(); + const Expression& exprSwitch = man->root->findFunction("main")->__entry->getBody(); + const CodeScope* blockDefault = man->root->findFunction("main")->__entry->getBody().operands.at(1).blocks.front(); ScopePacked blockDefaultId = man->clasp->pack(blockDefault); const Domain& domDefault = queryContext->getContext(blockDefaultId); ASSERT_EQ(1, domDefault.count(Expression(Atom("centi")))); std::list variants = man->root->getFunctionSpecializations("convert"); for (ManagedFnPtr f: variants){ const Expression guard = f->guardContext; bool result = (guard.getValueString() == "centi" || guard.getValueString() == "milli" || !guard.isValid()); ASSERT_TRUE(result); } const FunctionDemand& demMain = queryContext->getFunctionDemand("main"); ASSERT_EQ(0, demMain.size()); const FunctionDemand& demCalculate = queryContext->getFunctionDemand("calculate"); ASSERT_EQ(1, demCalculate.size()); int (*entry)(int) = (int (*)(int)) man->run(); ASSERT_EQ(1000, entry(0)); ASSERT_EQ(100, entry(1)); } TEST(Context, loopContextExists){ XreateManager* man = XreateManager::prepare ( "import raw (\"core/control-context.lp\").\n" "interface(cfa){\n" " operator fold:: annotation1.\n" "}\n" "\n" "main = function:: int; entry {\n" " x = [1..10]:: [int].\n" " sum = loop fold (x->el:: int, 0->sum):: int {\n" " el + sum + f1()\n" " }. \n" " sum\n" "}" "case context:: annotation1 {" " f1 = function::int {\n" " x = 0:: int. " " x\n" " }" "}" ); man->run(); } TEST(Context, pathDependentContext){ std::string program = R"CODE( import raw("core/control-context.lp"). convert = function(length:: num) :: num { 0 } case context:: convert(milli, meters) { convert = function(length:: num) :: num { 1000 * length } } case context:: convert(centi, meters) { convert = function(length:: num) :: num { 100 * length } } case context:: convert(centi, kilo) { convert = function(length:: num) :: num { 100000 * length } } case context:: convert(milli, kilo) { convert = function(length:: num) :: num { 1000000 * length } } main = function(value::num, unitsInput::num, unitsOutput::num)::num; entry{ switch (unitsInput)::num case (0) { test_fromMilli(value, unitsOutput) } case (1) { test_fromCenti(value, unitsOutput) } case default {0} } test_fromCenti = function(value::num, output::num)::num{ context:: input(centi). switch(output):: num case (0) { toMeters(value) } case (1) { toKilo(value) } case default {0} } test_fromMilli = function(value::num, output::num)::num{ context:: input(milli). switch(output):: num case (0) { toMeters(value) } case (1) { toKilo(value) } case default {0} } toMeters = function(value::num)::num { rule context:: convert(X, meters) case (input(X)) {truth} doConvert(value) } toKilo = function(value::num)::num { rule context:: convert(X, kilo) case (input(X)) {truth} doConvert(value) } doConvert = function(value::num)::num{ convert(value) })CODE"; boost::scoped_ptr man(details::tier1::XreateManager::prepare(move(program))); man->clasp->addRawScript("truth."); man->analyse(); int (*test)(int, int, int) = (int (*)(int, int, int))man->run(); enum {INPUT_MILLI, INPUT_CENTI}; enum {OUTPUT_METERS, OUTPUT_KILO}; ASSERT_EQ(1000000, test(1, INPUT_MILLI, OUTPUT_KILO)); ASSERT_EQ(200, test(2, INPUT_CENTI, OUTPUT_METERS)); } //TODO recover context loop and enable the test TEST(Context, DISABLED_full_LoopContext){ XreateManager* man = XreateManager::prepare( " import raw (\"core/control-context.lp\")\n" " case context:: a {\n" " print = function:: string {\n" " \"a\"\n" " }}\n" "\n" " case context:: b {\n" " print = function:: string {\n" " \"b\"\n" " }}\n" "\n" " case context:: c {\n" " print = function:: string {\n" " \"c\"\n" " }}\n" "\n" " case context:: d {\n" " print = function:: string {\n" " \"d\"\n" " }}\n" "\n" " start = function(command::int)::string; entry {\n" " switch (command) :: string \n" " case (0) {\n" " context:: print(a); print(b); print(d).\n" "\n" " loop context (\"print\") {\n" " print()\n" " }\n" " }\n" "\n" " case default {\n" " context:: print(c).\n" " loop context (\"print\") {\n" " print()\n" " }\n" " }\n" " }"); char* (*main)(int) =(char* (*)(int)) man->run(); ASSERT_STREQ("c", main(1)); ASSERT_STREQ("a", main(0)); } diff --git a/grammar/xreate.ATG b/grammar/xreate.ATG index e9b8f81..82efffe 100644 --- a/grammar/xreate.ATG +++ b/grammar/xreate.ATG @@ -1,660 +1,660 @@ //TODO add ListLiteral //TODO ExprTyped: assign default(none) type #include "ast.h" #include "ExternLayer.h" #include "pass/adhocpass.h" #include #include #define wprintf(format, ...) \ char __buffer[100]; \ wcstombs(__buffer, format, 100); \ fprintf(stderr, __buffer, __VA_ARGS__) using namespace std; COMPILER Xreate details::inconsistent::AST* root = nullptr; // current program unit void ensureInitalizedAST(){ if (root == nullptr) root = new details::inconsistent::AST(); } struct { std::stack scopesOld; CodeScope* scope = nullptr; } context; void pushContextScope(CodeScope* scope){ context.scopesOld.push(context.scope); context.scope = scope; } void popContextScope(){ context.scope = context.scopesOld.top(); context.scopesOld.pop(); } int nextToken() { scanner->ResetPeek(); return scanner->Peek()->kind; } bool checkTokenAfterIdent(int key){ if (la->kind != _ident) return false; return nextToken() == key; } bool checkParametersList() { return la->kind == _ident && nextToken() == _lparen; } bool checkInfix() { return la->kind == _ident && nextToken() == _ident; } bool checkIndex() { return la->kind == _ident && nextToken() == _lbrack; } bool checkFuncDecl() { if (la->kind != _ident) return false; int token2 = nextToken(); int token3 = scanner->Peek()->kind; return token2 == _assign && (token3 == _function || token3 == _pre); } bool checkAssignment() { if (la->kind != _ident) return false; scanner->ResetPeek(); int token2 = scanner->Peek()->kind; if (token2 == _lcurbrack) { scanner->Peek(); int token3 = scanner->Peek()->kind; if (token3 != _rcurbrack) return false; int token4 = scanner->Peek()->kind; return token4 == _assign; } return token2 == _assign; } void recognizeIdentifier(Expression& i){ if (!context.scope->recognizeIdentifier(i)){ root->postponeIdentifier(context.scope, i); } } enum SwitchKind{SWITCH_NORMAL, SWITCH_META}; CHARACTERS letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz". any = ANY - '"'. digit = "0123456789". cr = '\r'. lf = '\n'. tab = '\t'. TOKENS ident = (letter | '_') {letter | digit | '_'}. number = (digit | '-' digit) {digit}. string = '"' { any } '"'. function = "function". pre = "pre". lparen = '('. rparen = ')'. lbrack = '['. rbrack = ']'. lcurbrack = '{'. rcurbrack = '}'. equal = "==". assign = '='. implic = '-' '>'. colon = ':'. context = "context". tagcolon = "::". lse = "<=". lss = "<". gte = ">=". gtr = ">". ne1 = "!=". ne2= "<>". COMMENTS FROM "/*" TO "*/" NESTED COMMENTS FROM "//" TO lf IGNORE cr + lf + tab PRODUCTIONS Xreate = (. Function* function; ensureInitalizedAST(); .) {( RuleDecl | InterfaceData | Imprt | ContextSection | GuardSection | IF(checkFuncDecl()) FDecl (. root->add(function); .) | TDecl | SkipModulesSection )} (. .) . Ident = ident (. name = t->val; .). VarIdent = ident (. e = Expression(Atom(t->val)); .) [ lcurbrack ( ident (. SemErr(coco_string_create("var version as ident is not implemented yet")); .) | number (. Attachments::put(e, Atom(t->val).get()); .) ) rcurbrack ] . FDecl = (. std::wstring fname; std::wstring argName; TypeAnnotation typIn; TypeAnnotation typOut; bool flagIsPrefunct = false; Expression binding; .) Ident assign [pre (. flagIsPrefunct = true; .)] function (. f = new Function(fname); f->isPrefunction = flagIsPrefunct; CodeScope* entry = f->getEntryScope(); .) ['(' Ident tagcolon ExprAnnotations (. f->addBinding(Atom(argName), move(binding)); .) {',' Ident tagcolon ExprAnnotations (. f->addBinding(Atom (argName), move(binding));.) } ')'] [ tagcolon ( IF(flagIsPrefunct) FnTag | Type ) {';' FnTag }] -BDecl (. entry->getBody().bindType(move(typOut));.) +BDecl (. const_cast(entry->getBody()).bindType(move(typOut));.) . ContextSection<>= (. Expression context; Function* f; .) "case" "context" tagcolon MetaSimpExpr lcurbrack { FDecl (. f->guardContext = context; root->add(f); .) } rcurbrack. GuardSection<>= (. Expression guard; Function* f; .) "guard" tagcolon MetaSimpExpr lcurbrack { FDecl (. f->guard = guard; root->add(f); .) } rcurbrack. /** * TYPES * */ TypeTerm = (. std::wstring tid; .) ("string" (. typ = TypePrimitive::String;.) | "num" (. typ = TypePrimitive::Num;.) | "int" (. typ = TypePrimitive::Int;.) | "float" (. typ = TypePrimitive::Float;.) | "bool" (. typ = TypePrimitive::Bool; .) | "i8" (. typ = TypePrimitive::I8; .) | "i32" (. typ = TypePrimitive::I32; .) | "i64" (. typ = TypePrimitive::I64; .) ). Type = (. TypeAnnotation typ2; TypePrimitive typ3; std::wstring tid, field; .) ( TList | TStruct | TVariant | TypeTerm (. typ = typ3; .) | IF (checkIndex()) Ident lbrack Ident (. typ = TypeAnnotation(TypeOperator::ACCESS, {}); typ.__valueCustom = Atom(tid).get(); typ.fields.push_back(Atom(field).get()); .) {',' Ident (. typ.fields.push_back(Atom(field).get()); .) } rbrack | Ident (. typ = TypeAnnotation(TypeOperator::CUSTOM, {}); typ.__valueCustom = Atom(tid).get(); .) ['(' Type (. typ.__operator = TypeOperator::CALL; typ.__operands.push_back(typ2); .) {',' Type (. typ.__operands.push_back(typ2); .) } ')'] ) . TList = (. TypeAnnotation ty; .) '[' Type ']' (. typ = TypeAnnotation(TypeOperator::ARRAY, {ty}); .) . TStruct = (. TypeAnnotation t; std::wstring key; size_t keyCounter=0; .) lcurbrack ( IF(checkTokenAfterIdent(_tagcolon)) Ident tagcolon Type | Type (. key = to_wstring(keyCounter++); .) ) (. typ = TypeAnnotation(TypeOperator::STRUCT, {t}); typ.fields.push_back(Atom(key).get()); .) {',' ( IF(checkTokenAfterIdent(_tagcolon)) Ident tagcolon Type | Type (. key = to_wstring(keyCounter++); .) ) (. typ.__operands.push_back(t); typ.fields.push_back(Atom(key).get()); .) } rcurbrack. TVariant= (. TypeAnnotation t, typVoid(TypeOperator::STRUCT, {}); std::vector operands; std::vector> keys; std::wstring variant; .) "variant" lcurbrack Ident (. t=typVoid; .) [tagcolon Type] (. keys.push_back(Atom(variant)); operands.push_back(t); .) {',' Ident (. t=typVoid; .) [tagcolon Type] (. keys.push_back(Atom(variant)); operands.push_back(t); .) } rcurbrack (. typ = TypeAnnotation(TypeOperator::VARIANT, {}); typ.__operands = operands; typ.addFields(std::move(keys)); .) . TDecl = (. TypeAnnotation t; std::wstring tname, arg; std::vector> args; .) Ident assign "type" ['(' Ident (. args.push_back(Atom(arg)); .) {',' Ident (. args.push_back(Atom(arg)); .) } ')'] Type'.' (. t.addBindings(move(args)); root->add(move(t), Atom(tname)); .) . ContextDecl = (. Expression tag; .) context tagcolon MetaSimpExpr (. scope->tags.push_back(tag); .) {';' MetaSimpExpr (. scope->tags.push_back(tag); .) }. VDecl = (. std::wstring vname; Expression var, value;.) VarIdent assign ExprTyped (. Symbol identSymbol = f->addDefinition(move(var), move(value)); Attachments::put(value, identSymbol); .) . BDecl = lcurbrack (. Expression body; pushContextScope(scope); .) {(IF(checkAssignment()) VDecl '.' | RuleContextDecl | ContextDecl'.' | ExprTyped (. scope->setBody(body); Attachments::put(body, Symbol{ScopedSymbol::RetSymbol, scope});.) )} rcurbrack (. popContextScope(); .) . IfDecl = (. Expression cond; ManagedScpPtr blockTrue = root->add(new CodeScope(context.scope)); ManagedScpPtr blockFalse = root->add(new CodeScope(context.scope)); .) "if" '(' Expr ')' (. e = Expression(Operator::IF, {cond}); .) tagcolon ExprAnnotations BDecl<&*blockTrue> "else" BDecl<&*blockFalse> (. e.addBlock(blockTrue); e.addBlock(blockFalse); .) . LoopDecl = (. Expression eIn, eAcc, eFilters; std::wstring varEl, varAcc, contextClass; Expression tagsEl; ManagedScpPtr block = root->add(new CodeScope(context.scope)); .) "loop" ("map" '(' Expr implic Ident (. e = Expression(Operator::MAP, {eIn}); .) tagcolon ExprAnnotations ')' tagcolon ExprAnnotations (. e.addBindings({Atom(varEl)}); block->addBinding(Atom(varEl), move(tagsEl)); .) BDecl<&*block> (. e.addBlock(block); .) |"fold" ("inf" '(' Expr implic Ident ')' (. e = Expression(Operator::FOLD_INF, {eAcc}); e.addBindings({Atom(varAcc)}); block->addBinding(Atom(varAcc), Expression()); .) tagcolon ExprAnnotations BDecl<&*block> (. e.addBlock(block); .) | '(' Expr implic Ident tagcolon ExprAnnotations ['|' Expr ] ',' Expr implic Ident')' (. e = Expression(Operator::FOLD, {eIn, eAcc}); e.addBindings({Atom(varEl), Atom(varAcc)}); .) tagcolon ExprAnnotations (. block->addBinding(Atom(varEl), move(tagsEl)); block->addBinding(Atom(varAcc), Expression()); .) BDecl<&*block> (. e.addBlock(block); .) ) | "context" '(' string (. contextClass = t->val; .) ')' BDecl<&*block> (. e = Expression(Operator::LOOP_CONTEXT, {Expression(Atom(std::move(contextClass)))}); e.addBlock(block); .) ). // Switches SwitchDecl = (. TypeAnnotation typ; eSwitch = Expression(Operator::SWITCH, {}); Expression eCondition; Expression tag;.) "switch" ( SwitchVariantDecl | lparen ExprTyped rparen tagcolon ExprAnnotations (. eSwitch.operands.push_back(eCondition);.) CaseDecl {CaseDecl} ) . CaseDecl = (. ManagedScpPtr scope = root->add(new CodeScope(context.scope)); Expression condition; .) "case" ( IF(flagSwitchKind == SWITCH_META) lparen MetaSimpExpr rparen BDecl<&*scope> (. Expression exprCase(Operator::CASE, {}); exprCase.addTags({condition}); exprCase.addBlock(scope); outer.addArg(move(exprCase));.) | "default" BDecl<&*scope> (. Expression exprCase(Operator::CASE_DEFAULT, {}); exprCase.addBlock(scope); outer.operands.insert(++outer.operands.begin(), exprCase); .) | lparen CaseParams<&*scope> rparen (. ManagedScpPtr scopeBody = root->add(new CodeScope(&*scope)); Expression exprCase(Operator::CASE, {}); .) BDecl<&*scopeBody> (. exprCase.addBlock(scope); exprCase.addBlock(scopeBody); outer.addArg(move(exprCase)); .) ). CaseParams = (. Expression condition; Expression guard(Operator::LOGIC_AND, {}); pushContextScope(scope); .) ExprTyped (. guard.addArg(Expression(condition)); .) {',' ExprTyped (. guard.addArg(Expression(condition)); .) } (. scope->setBody(guard); popContextScope(); .) . SwitchVariantDecl = (. Expression varTested; std::wstring varAlias; bool flagAliasFound = false; expr = Expression(Operator::SWITCH_VARIANT, {}); .) "variant" lparen Expr [implic Ident (. flagAliasFound = true; .) ] [tagcolon ExprAnnotations] rparen tagcolon ExprAnnotations (. expr.addArg(std::move(varTested)); if (flagAliasFound) { expr.addBindings({Atom(varAlias)}); } else { if(varTested.__state != Expression::IDENT){ SemErr(coco_string_create("Switch variant expects identifier")); } expr.addBindings({Atom(string(varTested.getValueString()))}); } .) CaseVariantDecl {CaseVariantDecl} . CaseVariantDecl = (. ManagedScpPtr scope = root->add(new CodeScope(context.scope)); std::wstring key; scope->addBinding(Atom(string(expr.bindings.front())), Expression()); .) "case" lparen Ident rparen (. expr.addArg(root->recognizeVariantConstructor(Atom(std::move(key)))); .) BDecl<&*scope> (. expr.addBlock(scope); .) . IntrinsicDecl= (. std::wstring name; .) "intrinsic" Ident< name> (. outer = Expression(Operator::CALL_INTRINSIC, {}); outer.setValue(Atom(name)); .) lparen [CalleeParams] rparen . /*============================ INTERFACES ===============================*/ Imprt<> = "import" "raw" lparen string (. root->__rawImports.push_back(Atom(t->val).get()); .) rparen '.'. InterfaceData<> = "interface" '(' ( "dfa" ')' InterfaceDFA | "extern-c" ')' InterfaceExternC | "cfa" ')' InterfaceCFA | "adhoc" ')' InterfaceAdhoc ). InterfaceAdhoc<> = '{' { PrefunctionSchemeDecl } '}'. PrefunctionSchemeDecl<> = (. TypeAnnotation typReturn; std::wstring prefName; Expression exprCases; .) pre function Ident tagcolon Type lcurbrack SwitchDecl rcurbrack (. Expression prefData(Operator::CALL, {Atom(prefName), exprCases}); prefData.bindType(typReturn); root->addInterfaceData(Adhoc, move(prefData)); .). InterfaceExternC<> = (. ExternData data; .) '{' {IncludeExternDecl | LibExternDecl } '}' (. root->addExternData(move(data)); .) . LibExternDecl = (. std::wstring pkgname, libname; .) Ident assign "library" tagcolon "pkgconfig" '(' string (. pkgname = t->val; .) ')' '.' (. data.addLibrary(Atom(libname), Atom(pkgname)); .) . IncludeExternDecl = (. Expression inc; .) "include" StructLiteral '.' (. data.addIncludeDecl(move(inc)); .) . InterfaceDFA<> = '{' { InstructDecl } '}' . InstructDecl = (.Operator op; Expression tag; Expression scheme; std::vector& tags = scheme.operands; tags.push_back(Expression()); /* return value */ .) "operator" InstructAlias tagcolon '(' (.scheme.setOp(op); .) [ MetaSimpExpr (. tags.push_back(tag); .) { ',' MetaSimpExpr (. tags.push_back(tag); .) } ] ')' [ implic MetaSimpExpr (. tags[0] = tag; .) ] (. root->addDFAData(move(scheme)); .) '.'. InstructAlias = ( "map" (. op = Operator::MAP; .) | "list_range" (. op = Operator::LIST_RANGE; .) | "list" (. op = Operator::LIST; .) | "fold" (. op = Operator::FOLD; .) | "index" (. op = Operator::INDEX; .) ). InterfaceCFA<> = '{' { InstructCFADecl } '}' . InstructCFADecl<> = (.Operator op; Expression tag; Expression scheme; std::vector& tags = scheme.operands; .) "operator" InstructAlias tagcolon (. scheme.setOp(op); .) [ MetaSimpExpr (. tags.push_back(tag); .) { ',' MetaSimpExpr (. tags.push_back(tag); .) } ] '.' (. root->addInterfaceData(CFA, move(scheme)); .). /*============================ METAPROGRAMMING ===============================*/ // TagsDecl = (. Expression tag; TagModifier mod = TagModifier::NONE; .) // ':' { MetaSimpExpr (. /*f.addTag(std::move(tag), mod); */ .) // }. FnTag = (. Expression tag; TagModifier mod = TagModifier::NONE; .) MetaSimpExpr ['-' TagMod] (. f->addTag(std::move(tag), mod); .). TagMod = ( "assert" (. mod = TagModifier::ASSERT; .) | "require" (. mod = TagModifier::REQUIRE; .) ). RuleDecl<> = "rule" tagcolon (. RuleArguments args; RuleGuards guards; DomainAnnotation typ; std::wstring arg; .) '(' Ident tagcolon Domain (. args.add(arg, typ); .) {',' Ident tagcolon Domain (. args.add(arg, typ); .) } ')' ["case" RGuard {',' RGuard}] '{' RBody '}' . /* - TODO use RGuard for guards-*/ RuleContextDecl = (.Expression eHead, eGuards, eBody; .) "rule" "context" tagcolon MetaSimpExpr "case" lparen MetaSimpExpr rparen '{' MetaSimpExpr '}' (.scope->contextRules.push_back(Expression(Operator::CONTEXT_RULE, {eHead, eGuards, eBody})); .). Domain = ( "function" (. dom = DomainAnnotation::FUNCTION; .) | "variable" (. dom = DomainAnnotation::VARIABLE; .) ). RGuard= (. Expression e; .) MetaExpr (. guards.add(std::move(e)); .). MetaExpr= (.Operator op; Expression e2; .) MetaExpr2 [MetaOp MetaExpr2 (. e = Expression(op, {e, e2}); .) ]. MetaExpr2= ( '(' MetaExpr ')' | MetaSimpExpr ). MetaSimpExpr= (. std::wstring i1, infix; Expression e2; .) ( '-' MetaSimpExpr (. e = Expression(Operator::NEG, {e2}); .) | IF(checkParametersList()) Ident (. e = Expression(Operator::CALL, {Expression(Atom(i1))}); .) '(' [ MetaCalleeParams ] ')' | IF(checkInfix()) Ident Ident MetaSimpExpr (. e = Expression(Operator::CALL, {Expression(Atom(infix))}); e.addArg(Expression(Atom(i1))); e.addArg(std::move(e2)); .) | Ident (. e = Expression(Operator::CALL, {Atom(i1)}); .) ). MetaCalleeParams = (. Expression e2; .) MetaSimpExpr (. e.addArg(Expression(e2)); .) {',' MetaSimpExpr (. e.addArg(Expression(e2)); .) }. RBody = (. Expression e; std::wstring msg; .) "warning" MetaExpr ["message" string (. msg = t->val; .) ] (. root->add(new RuleWarning(RuleArguments(args), RuleGuards(guards), std::move(e), Atom(msg))); .) . MetaOp< Operator& op> = implic (. op = Operator::IMPL; .) . /*============================ Expressions ===============================*/ ExprAnnotations = (. TypeAnnotation typ; std::list tags; Expression tag; e.tags.clear();.) Type (. e.bindType(move(typ)); .) {';' MetaSimpExpr (. tags.push_back(tag); .) } (. e.addTags(tags); .) . ExprTyped = Expr [tagcolon ExprAnnotations]. Expr< Expression& e> (. Operator op; Expression e2; .) = ExprArithmAdd [ RelOp ExprArithmAdd (. e = Expression(op, {e, e2}); .) ]. ExprArithmAdd< Expression& e>= (. Operator op; Expression e2; .) ExprArithmMul< e> [ AddOp< op> ExprArithmAdd< e2> (. e = Expression(op, {e, e2});.) ]. ExprArithmMul< Expression& e> (. Operator op; Expression e2; .) = ExprPostfix< e> [ MulOp< op> ExprArithmMul< e2> (. e = Expression(op, {e, e2}); .) ]. ExprPostfix = Term [ (. e = Expression(Operator::INDEX, {e}); .) {lbrack CalleeParams rbrack } ]. Term< Expression& e> (. std::wstring name; e = Expression(); .) = (IF (checkParametersList()) Ident< name> (. e = Expression(Operator::CALL, {Atom(name)}); root->recognizeVariantConstructor(e); .) '(' [CalleeParams] ')' | VarIdent (. recognizeIdentifier(e); .) | ListLiteral (. /* tuple */.) | StructLiteral (. /* struct */.) | LoopDecl | IfDecl | SwitchDecl | AdhocDecl | IntrinsicDecl | number (. e = Expression(Atom(t->val)); .) | string (. e = Expression(Atom(t->val)); .) | "true" (. e = Expression(Atom(1)); e.bindType(TypePrimitive::Bool); .) | "false" (. e = Expression(Atom(0)); e.bindType(TypePrimitive::Bool); .) | '-' Term (. e = Expression(Operator::NEG, {e}); .) | '(' ExprTyped ')' ). StructLiteral = (. std::wstring key; Expression val; std::list> keys; size_t keyCounter=0; .) lcurbrack (IF(checkTokenAfterIdent(_assign)) Ident '=' Expr | Expr (. key = to_wstring(keyCounter++); .) ) (. keys.push_back(Atom(key)); e = Expression(Operator::LIST_NAMED, {val}); .) {',' (IF(checkTokenAfterIdent(_assign)) Ident '=' Expr | Expr (. key = to_wstring(keyCounter++); .) ) (. e.addArg(Expression(val)); keys.push_back(Atom(key)); .) } rcurbrack (. e.addBindings(keys.begin(), keys.end()); .) . ListLiteral = (. Expression eFrom, eTo; .) '[' [ Expr (. e.addArg(Expression(eFrom)); .) (".." Expr (. e.addArg(Expression(eTo)); e.setOp(Operator::LIST_RANGE); .) |{',' Expr (. e.addArg(Expression(eFrom)); .) } (. e.setOp(Operator::LIST); .) ) ] ']'. AdhocDecl = (. Expression command; .) "ad" "hoc" MetaSimpExpr (. adhoc::AdhocExpression exprAdhoc; exprAdhoc.setCommand(command); e = exprAdhoc; .). CalleeParams = (. Expression e2; .) ExprTyped (. e.addArg(Expression(e2)); .) {',' ExprTyped (. e.addArg(Expression(e2)); .) }. AddOp< Operator& op> = (. op = Operator::ADD; .) ( '+' | '-' (. op = Operator::SUB; .) ). MulOp< Operator& op> = (. op = Operator::MUL; .) ( '*' | '/' (. op = Operator::DIV; .) ). RelOp< Operator& op> = (. op = Operator::EQU; .) ( equal | (ne1 | ne2) (. op = Operator::NE; .) | lse (. op = Operator::LSE; .) | lss (. op = Operator::LSS; .) | gte (. op = Operator::GTE; .) | gtr (. op = Operator::GTR; .) ). SkipModulesSection = "module" '{' {ANY} '}'. END Xreate.