Page Menu
Home
Xreate
Search
Configure Global Search
Log In
Docs
Questions
Repository
Issues
Patches
Internal API
Files
F2718187
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Feb 15, 5:09 PM
Size
41 KB
Mime Type
text/x-diff
Expires
Tue, Feb 17, 5:09 PM (1 d, 19 h)
Engine
blob
Format
Raw Data
Handle
237791
Attached To
rXR Xreate
View Options
diff --git a/cpp/src/pass/compilepass.cpp b/cpp/src/pass/compilepass.cpp
index cdd9647..4ab33f7 100644
--- a/cpp/src/pass/compilepass.cpp
+++ b/cpp/src/pass/compilepass.cpp
@@ -1,908 +1,909 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Author: pgess <v.melnychenko@xreate.org>
*/
/**
* \file compilepass.h
* \brief Main compilation routine. See \ref xreate::CompilePass
*/
#include "compilepass.h"
#include "transcendlayer.h"
#include "ast.h"
#include "llvmlayer.h"
#include "compilation/decorators.h"
#include "compilation/pointers.h"
#include "analysis/typeinference.h"
#include "compilation/control.h"
#include "compilation/demand.h"
#include "analysis/resources.h"
#ifdef XREATE_ENABLE_EXTERN
#include "ExternLayer.h"
#endif
#include "compilation/containers.h"
#include "compilation/containers/arrays.h"
#ifndef XREATE_CONFIG_MIN
#include "query/containers.h"
#include "pass/versionspass.h"
#include "compilation/targetinterpretation.h"
#endif
#include <boost/optional.hpp>
#include <memory>
using namespace std;
using namespace llvm;
using namespace xreate::typehints;
using namespace xreate::containers;
namespace xreate{
namespace compilation{
#define DEFAULT(x) (hintAlias.empty()? x: hintAlias)
std::string
BasicBruteFunction::prepareName() {
- AST* ast = IBruteFunction::pass->man->root;
+ AST* ast = IBruteFunction::pass->man->root;
- string name = ast->getFnSpecializations(__function->__name).size() > 1 ?
- __function->__name + std::to_string(__function.id()) :
- __function->__name;
+ string name = ast->getFnSpecializations(__function->__name).size() > 1 ?
+ __function->__name + std::to_string(__function.id()) :
+ __function->__name;
- return name;
+ return name;
}
std::vector<llvm::Type*>
BasicBruteFunction::prepareSignature() {
- CodeScope* entry = __function->__entry;
+ CodeScope* entry = __function->__entry;
- return getScopeSignature(entry);
+ return getScopeSignature(entry);
}
llvm::Type*
BasicBruteFunction::prepareResult() {
- LLVMLayer* llvm = IBruteFunction::pass->man->llvm;
- AST* ast = IBruteFunction::pass->man->root;
- CodeScope* entry = __function->__entry;
-
- return llvm->toLLVMType(ast->expandType(entry->__declarations.at(ScopedSymbol::RetSymbol).type));
+ LLVMLayer* llvm = IBruteFunction::pass->man->llvm;
+ AST* ast = IBruteFunction::pass->man->root;
+ CodeScope* entry = __function->__entry;
+ const Expression retE = entry->__declarations.at(ScopedSymbol::RetSymbol);
+ const ExpandedType& retT = ast->getType(retE);
+ return llvm->toLLVMType(retT, retE);
}
llvm::Function::arg_iterator
BasicBruteFunction::prepareBindings() {
CodeScope* entry = __function->__entry;
IBruteScope* entryCompilation = IBruteFunction::getBruteScope(entry);
llvm::Function::arg_iterator fargsI = IBruteFunction::raw->arg_begin();
for (std::string &arg : entry->__bindings) {
ScopedSymbol argid{entry->__identifiers[arg], versions::VERSION_NONE};
entryCompilation->bindArg(&*fargsI, argid);
fargsI->setName(arg);
++fargsI;
}
return fargsI;
}
void
BasicBruteFunction::applyAttributes(){}
IBruteScope::IBruteScope(const CodeScope * const codeScope, IBruteFunction* f, CompilePass* compilePass)
: pass(compilePass), function(f), scope(codeScope), lastBlockRaw(nullptr) { }
llvm::Value*
BruteFnInvocation::operator()(std::vector<llvm::Value *>&& args, const std::string& hintDecl) {
if (__calleeTy) {
auto argsFormalT = __calleeTy->params();
size_t sizeArgsF = __calleeTy->getNumParams();
assert(args.size() >= sizeArgsF);
assert(__calleeTy->isVarArg() || args.size() == sizeArgsF);
auto argFormalT = argsFormalT.begin();
for(size_t argId = 0; argId < args.size(); ++argId){
if(argFormalT != argsFormalT.end()){
args[argId] = typeinference::doAutomaticTypeConversion(
args.at(argId), *argFormalT, llvm->irBuilder);
++argFormalT;
}
}
}
//Do not name function call that returns Void.
std::string hintName = (!__calleeTy->getReturnType()->isVoidTy()) ? hintDecl : "";
return llvm->irBuilder.CreateCall(__calleeTy, __callee, args, hintName);
}
llvm::Value*
HiddenArgsFnInvocation::operator() (std::vector<llvm::Value *>&& args, const std::string& hintDecl) {
args.insert(args.end(), __args.begin(), __args.end());
return __parent->operator ()(std::move(args), hintDecl);
}
class CallStatementInline : public IFnInvocation{
public:
CallStatementInline(IBruteFunction* caller, IBruteFunction* callee, LLVMLayer* l)
: __caller(caller), __callee(callee), llvm(l) { }
llvm::Value* operator()(std::vector<llvm::Value *>&& args, const std::string& hintDecl) {
return nullptr;
}
private:
IBruteFunction* __caller;
IBruteFunction* __callee;
LLVMLayer* llvm;
bool
isInline() {
// Symbol ret = Symbol{0, function->__entry};
// bool flagOnTheFly = SymbolAttachments::get<IsImplementationOnTheFly>(ret, false);
//TODO consider inlining
return false;
}
} ;
BasicBruteScope::BasicBruteScope(const CodeScope * const codeScope, IBruteFunction* f, CompilePass* compilePass)
: IBruteScope(codeScope, f, compilePass) { }
llvm::Value*
BasicBruteScope::processSymbol(const Symbol& s, std::string hintRetVar) {
Expression declaration = CodeScope::getDefinition(s);
const CodeScope* scopeExternal = s.scope;
IBruteScope* scopeBruteExternal = IBruteScope::function->getBruteScope(scopeExternal);
assert(scopeBruteExternal->lastBlockRaw);
llvm::Value* resultRaw;
llvm::BasicBlock* blockOwn = pass->man->llvm->irBuilder.GetInsertBlock();
if (scopeBruteExternal->lastBlockRaw == blockOwn) {
resultRaw = scopeBruteExternal->process(declaration, hintRetVar);
scopeBruteExternal->lastBlockRaw = lastBlockRaw =
pass->man->llvm->irBuilder.GetInsertBlock();
} else {
pass->man->llvm->irBuilder.SetInsertPoint(scopeBruteExternal->lastBlockRaw);
resultRaw = scopeBruteExternal->processSymbol(s, hintRetVar);
pass->man->llvm->irBuilder.SetInsertPoint(blockOwn);
}
return resultRaw;
}
IFnInvocation*
BasicBruteScope::findFunction(const Expression& opCall) {
const std::string& calleeName = opCall.getValueString();
LLVMLayer* llvm = pass->man->llvm;
const std::list<ManagedFnPtr>& specializations = pass->man->root->getFnSpecializations(calleeName);
#ifdef XREATE_ENABLE_EXTERN
//if no specializations registered - check external function
if (specializations.size() == 0) {
llvm::Function* external = llvm->layerExtern->lookupFunction(calleeName);
llvm::outs() << "Debug/External function: " << calleeName;
external->getType()->print(llvm::outs(), true);
llvm::outs() << "\n";
return new BruteFnInvocation(external, llvm);
}
#endif
//There should be only one specialization without any valid guards at this point
return new BruteFnInvocation(pass->getBruteFn(
pass->man->root->findFunction(calleeName))->compile(),
llvm);
}
//DISABLEDFEATURE transformations
// if (pass->transformations->isAcceptable(expr)){
// return pass->transformations->transform(expr, result, ctx);
// }
llvm::Value*
BasicBruteScope::process(const Expression& expr, const std::string& hintAlias, const TypeAnnotation& expectedT) {
llvm::Value *leftRaw;
llvm::Value *rightRaw;
LLVMLayer& l = *pass->man->llvm;
Context ctx{this, function, pass};
xreate::compilation::ControlIR controlIR = xreate::compilation::ControlIR({this, function, pass});
switch (expr.op) {
case Operator::ADD:
case Operator::SUB: case Operator::MUL: case Operator::MOD:
case Operator::DIV: case Operator::EQU: case Operator::LSS:
case Operator::GTR: case Operator::NE: case Operator::LSE:
case Operator::GTE:
assert(expr.__state == Expression::COMPOUND);
assert(expr.operands.size() == 2);
leftRaw = process(expr.operands.at(0));
rightRaw = process(expr.operands.at(1));
break;
default:;
}
switch (expr.op) {
case Operator::AND:
{
assert(expr.operands.size());
llvm::Value* resultRaw = process(expr.operands.at(0));
if (expr.operands.size() == 1) return resultRaw;
for(size_t i=1; i< expr.operands.size()-1; ++i){
resultRaw = l.irBuilder.CreateAnd(resultRaw, process(expr.operands.at(i)));
}
return l.irBuilder.CreateAnd(resultRaw, process(expr.operands.at(expr.operands.size()-1)), hintAlias);
}
case Operator::OR:
{
assert(expr.operands.size());
llvm::Value* resultRaw = process(expr.operands.at(0));
if (expr.operands.size() == 1) return resultRaw;
for(size_t i=1; i< expr.operands.size()-1; ++i){
resultRaw = l.irBuilder.CreateOr(resultRaw, process(expr.operands.at(i)));
}
return l.irBuilder.CreateOr(resultRaw, process(expr.operands.at(expr.operands.size()-1)), hintAlias);
}
case Operator::ADD:
{
return l.irBuilder.CreateAdd(leftRaw, rightRaw, hintAlias);
}
case Operator::SUB:
return l.irBuilder.CreateSub(leftRaw, rightRaw, hintAlias);
break;
case Operator::MUL:
return l.irBuilder.CreateMul(leftRaw, rightRaw, hintAlias);
break;
case Operator::DIV:
if (leftRaw->getType()->isIntegerTy()) return l.irBuilder.CreateSDiv(leftRaw, rightRaw, hintAlias);
if (leftRaw->getType()->isFloatingPointTy()) return l.irBuilder.CreateFDiv(leftRaw, rightRaw, hintAlias);
break;
case Operator::MOD:{
return l.irBuilder.CreateSRem(leftRaw, rightRaw, hintAlias);
}
case Operator::EQU: {
if (leftRaw->getType()->isIntegerTy()) return l.irBuilder.CreateICmpEQ(leftRaw, rightRaw, hintAlias);
if (leftRaw->getType()->isFloatingPointTy()) return l.irBuilder.CreateFCmpOEQ(leftRaw, rightRaw, hintAlias);
const ExpandedType& leftT = pass->man->root->getType(expr.operands[0]);
const ExpandedType& rightT = pass->man->root->getType(expr.operands[1]);
if(leftT->__operator == TypeOperator::VARIANT && rightT->__operator == TypeOperator::VARIANT){
llvm::Type* selectorT = llvm::cast<llvm::StructType>(leftRaw->getType())->getElementType(0);
llvm::Value* leftUnwapped = typeinference::doAutomaticTypeConversion(leftRaw, selectorT, l.irBuilder);
llvm::Value* rightUnwapped = typeinference::doAutomaticTypeConversion(rightRaw, selectorT, l.irBuilder);
return l.irBuilder.CreateICmpEQ(leftUnwapped, rightUnwapped, hintAlias);
}
break;
}
case Operator::NE:
return l.irBuilder.CreateICmpNE(leftRaw, rightRaw, hintAlias);
break;
case Operator::LSS:
return l.irBuilder.CreateICmpSLT(leftRaw, rightRaw, hintAlias);
break;
case Operator::LSE:
return l.irBuilder.CreateICmpSLE(leftRaw, rightRaw, hintAlias);
break;
case Operator::GTR:
return l.irBuilder.CreateICmpSGT(leftRaw, rightRaw, hintAlias);
break;
case Operator::GTE:
return l.irBuilder.CreateICmpSGE(leftRaw, rightRaw, hintAlias);
break;
case Operator::NEG:
{
leftRaw = process(expr.operands[0]);
ExpandedType leftTy = pass->man->root->getType(expr.operands[0]);
if (leftTy->__value == TypePrimitive::Bool){
return l.irBuilder.CreateNot(leftRaw, hintAlias);
} else {
return l.irBuilder.CreateNeg(leftRaw, hintAlias);
}
break;
}
case Operator::CALL:
{
assert(expr.__state == Expression::COMPOUND);
shared_ptr<IFnInvocation> callee(findFunction(expr));
const std::string& nameCallee = expr.getValueString();
//prepare arguments
std::vector<llvm::Value *> args;
args.reserve(expr.operands.size());
std::transform(expr.operands.begin(), expr.operands.end(), std::inserter(args, args.end()),
[this](const Expression & operand) {
return process(operand);
}
);
return (*callee)(move(args), hintAlias);
}
case Operator::IF:
{
return controlIR.compileIf(expr, hintAlias);
}
case Operator::SWITCH:
{
return controlIR.compileSwitch(expr, hintAlias);
}
case Operator::LOGIC_AND:
{
assert(expr.operands.size() == 1);
return process(expr.operands[0]);
}
case Operator::LIST: //init record or array
{
ExpandedType exprT = l.ast->getType(expr, expectedT);
TypesHelper helper(pass->man->llvm);
enum {RECORD, ARRAY} kind;
if (helper.isArrayT(exprT)){
kind = ARRAY;
} else if (helper.isRecordT(exprT)){
kind = RECORD;
} else {
assert(false && "Inapproriate type");
}
#ifdef XREATE_ENABLE_EXTERN
if (exprT->__operator == TypeOperator::ALIAS){
if (l.layerExtern->isArrayType(exprT->__valueCustom)){
flagIsArray = true;
break;
}
if (l.layerExtern->isRecordType(exprT->__valueCustom)){
flagIsArray = false;
break;
}
assert(false && "Inapproriate external type");
}
#endif
switch(kind){
case RECORD:{
const std::vector<string> fieldsFormal = helper.getRecordFields(exprT);
containers::RecordIR irRecords(ctx);
llvm::StructType *recordTRaw = llvm::cast<llvm::StructType>(l.toLLVMType(exprT));
llvm::Value *resultRaw = irRecords.init(recordTRaw);
return irRecords.update(resultRaw, exprT, expr);
}
case ARRAY: {
std::unique_ptr<containers::IContainersIR> containerIR(
containers::IContainersIR::create(expr, expectedT, ctx));
llvm::Value* aggrRaw = containerIR->init(hintAlias);
return containerIR->update(aggrRaw, expr, hintAlias);
}
}
break;
};
case Operator::LIST_RANGE:
{
containers::RangeIR compiler(ctx);
const ExpandedType& aggrT = pass->man->root->getType(expr);
return compiler.init(expr, aggrT, hintAlias);
};
case Operator::MAP:
{
assert(expr.blocks.size());
containers::ImplementationType implType = containers::IContainersIR::getImplementation(expr, pass->man->root);
switch(implType){
case containers::ImplementationType::SOLID: {
ExpandedType exprT = pass->man->root->getType(expr, expectedT);
ArrayHint hint = find(expr, ArrayHint{});
containers::ArrayIR compiler(exprT, hint, ctx);
return compiler.operatorMap(expr, hintAlias);
}
case containers::ImplementationType::ON_THE_FLY:{
FlyHint hint = find<FlyHint>(expr, {});
containers::FlyIR compiler(hint, ctx);
return compiler.operatorMap(expr, hintAlias);
}
default:
break;
}
assert(false && "Operator MAP does not support this container impl");
return nullptr;
};
case Operator::FOLD:
{
return controlIR.compileFold(expr, hintAlias);
};
case Operator::FOLD_INF:
{
return controlIR.compileFoldInf(expr, hintAlias);
};
case Operator::INDEX:
{
assert(expr.operands.size() > 1);
const Expression& aggrE = expr.operands[0];
const ExpandedType& aggrT = pass->man->root->getType(aggrE);
llvm::Value* aggrRaw = process(aggrE);
switch (aggrT->__operator) {
case TypeOperator::RECORD:
{
list<string> fieldsList;
for(auto opIt = ++expr.operands.begin(); opIt!=expr.operands.end(); ++opIt){
fieldsList.push_back(getIndexStr(*opIt));
}
return controlIR.compileStructIndex(aggrRaw, aggrT, fieldsList);
};
case TypeOperator::ARRAY:
{
std::vector<llvm::Value*> indexes;
std::transform(++expr.operands.begin(), expr.operands.end(), std::inserter(indexes, indexes.end()),
[this] (const Expression & op) {
return process(op);
}
);
std::unique_ptr<containers::IContainersIR> containersIR(
containers::IContainersIR::create(aggrE, expectedT, ctx)
);
containers::ArrayIR* arraysIR = static_cast<containers::ArrayIR*>(containersIR.get());
return arraysIR->get(aggrRaw, indexes, hintAlias);
};
default:
assert(false);
}
};
case Operator::CALL_INTRINSIC:
{
// const std::string op = expr.getValueString();
//
// if (op == "copy") {
// llvm::Value* result = process(expr.getOperands().at(0));
//
// auto decoratorVersions = Decorators<VersionsScopeDecoratorTag>::getInterface(this);
// llvm::Value* storage = decoratorVersions->processIntrinsicInit(result->getType());
// decoratorVersions->processIntrinsicCopy(result, storage);
//
// return l.irBuilder.CreateLoad(storage, hintAlias);
// }
assert(false && "undefined intrinsic");
}
case Operator::QUERY:
case Operator::QUERY_LATE:
{
assert(false && "Should be processed by interpretation");
}
case Operator::VARIANT:
{
const ExpandedType& typResult = pass->man->root->getType(expr);
llvm::Type* typResultRaw = l.toLLVMType(typResult);
llvm::Type* typIdRaw = llvm::cast<llvm::StructType>(typResultRaw)->getElementType(0);
uint64_t id = expr.getValueDouble();
llvm::Value* resultRaw = llvm::UndefValue::get(typResultRaw);
resultRaw = l.irBuilder.CreateInsertValue(resultRaw, llvm::ConstantInt::get(typIdRaw, id), llvm::ArrayRef<unsigned>({0}));
const ExpandedType& typVariant = ExpandedType(typResult->__operands.at(id));
llvm::Type* typVariantRaw = l.toLLVMType(typVariant);
llvm::Value* variantRaw = llvm::UndefValue::get(typVariantRaw);
assert(expr.operands.size() == typVariant->__operands.size() && "Wrong variant arguments count");
if (!typVariant->__operands.size()) return resultRaw;
for (unsigned int fieldId = 0; fieldId < expr.operands.size(); ++fieldId) {
const ExpandedType& typField = ExpandedType(typVariant->__operands.at(fieldId));
Attachments::put<TypeInferred>(expr.operands.at(fieldId), typField);
llvm::Value* fieldRaw = process(expr.operands.at(fieldId));
assert(fieldRaw);
variantRaw = l.irBuilder.CreateInsertValue(variantRaw, fieldRaw, llvm::ArrayRef<unsigned>({fieldId}));
}
llvm::Type* typStorageRaw = llvm::cast<llvm::StructType>(typResultRaw)->getElementType(1);
llvm::Value* addrAsStorage = l.irBuilder.CreateAlloca(typStorageRaw);
llvm::Value* addrAsVariant = l.irBuilder.CreateBitOrPointerCast(addrAsStorage, typVariantRaw->getPointerTo());
l.irBuilder.CreateStore(variantRaw, addrAsVariant);
llvm::Value* storageRaw = l.irBuilder.CreateLoad(typStorageRaw, addrAsStorage);
resultRaw = l.irBuilder.CreateInsertValue(resultRaw, storageRaw, llvm::ArrayRef<unsigned>({1}));
return resultRaw;
}
case Operator::SWITCH_VARIANT:
{
return controlIR.compileSwitchVariant(expr, hintAlias);
}
case Operator::SWITCH_LATE:
{
assert(false && "Instruction's compilation should've been redirected to interpretation");
return nullptr;
}
case Operator::SEQUENCE:
{
return controlIR.compileSequence(expr);
}
case Operator::UNDEF:
{
llvm::Type* typExprUndef = l.toLLVMType(pass->man->root->getType(expr, expectedT));
return llvm::UndefValue::get(typExprUndef);
}
case Operator::UPDATE:
{
TypesHelper helper(pass->man->llvm);
containers::RecordIR irRecords(ctx);
const Expression& aggrE = expr.operands.at(0);
const Expression& updE = expr.operands.at(1);
const ExpandedType& aggrT = pass->man->root->getType(aggrE);
llvm::Value* aggrRaw = process(aggrE);
if (helper.isRecordT(aggrT)){
return irRecords.update(aggrRaw, aggrT, updE);
}
if (helper.isArrayT(aggrT)){
if (updE.op == Operator::LIST_INDEX){
std::unique_ptr<containers::IContainersIR> containersIR(
containers::IContainersIR::create(aggrE, TypeAnnotation(), ctx
));
return containersIR->update(aggrRaw, updE, hintAlias);
}
}
assert(false);
return nullptr;
}
case Operator::INVALID:
assert(expr.__state != Expression::COMPOUND);
switch (expr.__state) {
case Expression::IDENT:
{
Symbol s = Attachments::get<IdentifierSymbol>(expr);
return processSymbol(s, expr.getValueString());
}
case Expression::NUMBER:
{
llvm::Type* typConst = l.toLLVMType(pass->man->root->getType(expr, expectedT));
int literal = expr.getValueDouble();
if (typConst->isFloatingPointTy()) return llvm::ConstantFP::get(typConst, literal);
if (typConst->isIntegerTy()) return llvm::ConstantInt::get(typConst, literal);
assert(false && "Can't compile literal");
}
case Expression::STRING:
{
return controlIR.compileConstantStringAsPChar(expr.getValueString(), hintAlias);
};
default:
{
break;
}
};
break;
default: break;
}
assert(false && "Can't compile expression");
return 0;
}
llvm::Value*
BasicBruteScope::compile(const std::string& hintBlockDecl) {
LLVMLayer* llvm = pass->man->llvm;
if (!hintBlockDecl.empty()) {
llvm::BasicBlock *block = llvm::BasicBlock::Create(llvm->llvmContext, hintBlockDecl, function->raw);
pass->man->llvm->irBuilder.SetInsertPoint(block);
}
lastBlockRaw = pass->man->llvm->irBuilder.GetInsertBlock();
Symbol symbScope = Symbol{ScopedSymbol::RetSymbol, scope};
//set hint for an entry scope
string retAlias = (scope->__parent)? "" : function->prepareName();
return processSymbol(symbScope, retAlias);
}
IBruteScope::~IBruteScope() { }
IBruteFunction::~IBruteFunction() { }
llvm::Function*
IBruteFunction::compile() {
if (raw != nullptr) return raw;
LLVMLayer* llvm = pass->man->llvm;
llvm::IRBuilder<>& builder = llvm->irBuilder;
string&& functionName = prepareName();
std::vector<llvm::Type*>&& types = prepareSignature();
llvm::Type* expectedResultType = prepareResult();
llvm::FunctionType *ft = llvm::FunctionType::get(expectedResultType, types, false);
raw = llvm::cast<llvm::Function>(llvm->module->getOrInsertFunction(functionName, ft));
prepareBindings();
applyAttributes();
const std::string& blockName = "entry";
llvm::BasicBlock* blockCurrent = builder.GetInsertBlock();
llvm::Value* result = getBruteScope(__entry)->compile(blockName);
assert(result);
//SECTIONTAG types/convert function ret value
builder.CreateRet(typeinference::doAutomaticTypeConversion(result, expectedResultType, llvm->irBuilder));
if (blockCurrent) {
builder.SetInsertPoint(blockCurrent);
}
llvm->moveToGarbage(ft);
return raw;
}
IBruteScope*
IBruteFunction::getBruteScope(const CodeScope * const scope) {
if (__scopes.count(scope)) {
auto result = __scopes.at(scope).lock();
if (result) {
return result.get();
}
}
std::shared_ptr<IBruteScope> unit(pass->buildCodeScopeUnit(scope, this));
if (scope->__parent != nullptr) {
auto parentUnit = Decorators<CachedScopeDecoratorTag>::getInterface(getBruteScope(scope->__parent));
parentUnit->registerChildScope(unit);
} else {
__orphanedScopes.push_back(unit);
}
if (!__scopes.emplace(scope, unit).second) {
__scopes[scope] = unit;
}
return unit.get();
}
IBruteScope*
IBruteFunction::getScopeUnit(ManagedScpPtr scope) {
return getBruteScope(&*scope);
}
IBruteScope*
IBruteFunction::getEntry() {
return getBruteScope(__entry);
}
std::vector<llvm::Type*>
IBruteFunction::getScopeSignature(CodeScope* scope){
LLVMLayer* llvm = IBruteFunction::pass->man->llvm;
AST* ast = IBruteFunction::pass->man->root;
std::vector<llvm::Type*> result;
std::transform(scope->__bindings.begin(), scope->__bindings.end(), std::inserter(result, result.end()),
[llvm, ast, scope](const std::string & argAlias)->llvm::Type* {
assert(scope->__identifiers.count(argAlias));
ScopedSymbol argS{scope->__identifiers.at(argAlias), versions::VERSION_NONE};
const Expression& argE = scope->__declarations.at(argS);
const ExpandedType& argT = ast->expandType(argE.type);
return llvm->toLLVMType(argT, argE);
});
if(scope->trackExternalSymbs){
std::transform(scope->boundExternalSymbs.begin(), scope->boundExternalSymbs.end(), std::inserter(result, result.end()),
[llvm, ast](const Symbol& argS){
const Expression& argE = CodeScope::getDefinition(argS);
const ExpandedType& argT = ast->expandType(argE.type);
return llvm->toLLVMType(argT, argE);
});
}
return result;
}
template<>
compilation::IBruteFunction*
CompilePassCustomDecorators<void, void>
::buildFunctionUnit(const ManagedFnPtr& function) {
return new BruteFunctionDefault(function, this);
}
template<>
compilation::IBruteScope*
CompilePassCustomDecorators<void, void>
::buildCodeScopeUnit(const CodeScope * const scope, IBruteFunction* function) {
return new DefaultCodeScopeUnit(scope, function, this);
}
std::string
BasicBruteScope::getIndexStr(const Expression& index){
switch(index.__state){
//named struct field
case Expression::STRING:
return index.getValueString();
break;
//anonymous struct field
case Expression::NUMBER:
return to_string((int) index.getValueDouble());
break;
default:
assert(false && "Wrong index for a struct");
}
return "";
}
} // end of compilation
compilation::IBruteFunction*
CompilePass::getBruteFn(const ManagedFnPtr& function) {
unsigned int id = function.id();
if (!functions.count(id)) {
compilation::IBruteFunction* unit = buildFunctionUnit(function);
functions.emplace(id, unit);
return unit;
}
return functions.at(id);
}
void
CompilePass::prepare(){
//Initialization:
#ifndef XREATE_CONFIG_MIN
#endif
managerTransformations = new xreate::compilation::TransformationsManager();
targetInterpretation = new interpretation::TargetInterpretation(man, this);
}
void
CompilePass::run() {
prepare();
//Determine entry function:
StaticModel modelEntry = man->transcend->query(analysis::FN_ENTRY_PREDICATE);
if (man->options.requireEntryFn){
assert(modelEntry.size() && "Error: No entry function found");
assert(modelEntry.size() == 1 && "Error: Ambiguous entry function");
}
if(modelEntry.size()){
string fnEntryName = std::get<0>(TranscendLayer::parse<std::string>(modelEntry.begin()->second));
compilation::IBruteFunction* fnEntry = getBruteFn(man->root->findFunction(fnEntryName));
__fnEntryRaw = fnEntry->compile();
}
//Compile exterior functions:
StaticModel modelExterior = man->transcend->query(analysis::FN_EXTERIOR_PREDICATE);
for(const auto entry: modelExterior){
const string& fnName = std::get<0>(TranscendLayer::parse<std::string>(entry.second));
getBruteFn(man->root->findFunction(fnName))->compile();
}
}
llvm::Function*
CompilePass::getEntryFunction() {
return __fnEntryRaw;
}
void
CompilePass::prepareQueries(TranscendLayer* transcend) {
#ifndef XREATE_CONFIG_MIN
transcend->registerQuery(new latex::LatexQuery(), QueryId::LatexQuery);
#endif
transcend->registerQuery(new containers::Query(), QueryId::ContainersQuery);
transcend->registerQuery(new demand::DemandQuery(), QueryId::DemandQuery);
transcend->registerQuery(new polymorph::PolymorphQuery(), QueryId::PolymorphQuery);
}
} //end of namespace xreate
/**
* \class xreate::CompilePass
* \brief The owner of the compilation process. Performs fundamental compilation activities along with the xreate::compilation's routines
*
* xreate::CompilePass traverses over xreate::AST tree and produces executable code.
* The pass performs compilation using the following data sources:
* - %Attachments: the data gathered by the previous passes. See \ref xreate::Attachments.
* - Transcend solutions accessible via queries. See \ref xreate::IQuery, \ref xreate::TranscendLayer.
*
* The pass generates a bytecode by employing \ref xreate::LLVMLayer(wrapper over LLVM toolchain).
* Many compilation activities are delegated to more specific routines. Most notable delegated compilation aspects are:
* - Containers support. See \ref xreate::containers.
* - Latex compilation. See \ref xreate::latex.
* - Interpretation support. See \ref xreate::interpretation.
* - Loop saturation support. See \ref xreate::compilation::TransformationsScopeDecorator.
* - External code interaction support. See \ref xreate::ExternLayer (wrapper over Clang library).
*
* \section adaptability_sect Adaptability
* xreate::CompilePass's behaviour can be adapted in several ways:
* - %Function Decorators to alter function-level compilation. See \ref xreate::compilation::IBruteFunction
* - Code Block Decorators to alter code block level compilation. See \ref xreate::compilation::ICodeScopeUnit.
* Default functionality defined by \ref xreate::compilation::DefaultCodeScopeUnit
* - Targets to allow more versitile extensions.
* Currently only xreate::interpretation::TargetInterpretation use Targets infrastructure. See \ref xreate::compilation::Target.
* - Altering %function invocation. See \ref xreate::compilation::IFnInvocation.
*
* Clients are free to construct a compiler instantiation with the desired decorators by using \ref xreate::compilation::CompilePassCustomDecorators.
* As a handy alias, `CompilePassCustomDecorators<void, void>` constructs the default compiler.
*
*/
\ No newline at end of file
diff --git a/cpp/tests/containers.cpp b/cpp/tests/containers.cpp
index 7175642..ebc9a09 100644
--- a/cpp/tests/containers.cpp
+++ b/cpp/tests/containers.cpp
@@ -1,327 +1,340 @@
/* Any copyright is dedicated to the Public Domain.
* http://creativecommons.org/publicdomain/zero/1.0/
*
* containers.cpp
*
* Created on: Jun 9, 2015
* Author: pgess <v.melnychenko@xreate.org>
*/
#include "xreatemanager.h"
#include "query/containers.h"
#include "main/Parser.h"
#include "pass/compilepass.h"
#include "llvmlayer.h"
#include "supplemental/docutils.h"
#include "supplemental/basics.h"
#include "gtest/gtest.h"
using namespace std;
using namespace xreate::grammar::main;
using namespace xreate::containers;
using namespace xreate;
struct Tuple2 {intmax_t a; intmax_t b;};
typedef Tuple2 (*FnTuple2)();
struct Tuple4 {intmax_t a; intmax_t b; intmax_t c; intmax_t d;};
typedef Tuple4 (*FnTuple4)();
TEST(Containers, RecInitByList1){
string code = R"(
Rec = type {x:: int, y:: int}.
test = function(a:: int, b::int):: Rec; entry() {
{x = a + b, y = 2}
}
)";
auto man = XreateManager::prepare(move(code));
man->run();
}
TEST(Containers, RecInitByList2){
string code = R"(
Rec = type {x:: int, y:: int}.
test = function(a:: int, b::int):: Rec; entry() {
{a + b, y = 2}
}
)";
auto man = XreateManager::prepare(move(code));
man->run();
}
TEST(Containers, RecUpdateByList1){
string code = R"(
Rec = type {x:: int, y:: int}.
test = function(a:: int, b::int):: Rec; entry() {
r = {0, y = 2}:: Rec.
r : {a + b}
}
)";
auto man = XreateManager::prepare(move(code));
man->run();
}
TEST(Containers, RecUpdateByListIndex1){
string code = R"(
Rec = type {x:: int, y:: int}.
test = function(a:: int, b::int):: int; entry() {
r1 = undef:: Rec.
r2 = r1 : {[1] = b, [0] = a}:: Rec.
r2["x"]
}
)";
auto man = XreateManager::prepare(move(code));
Fn2Args program = (Fn2Args) man->run();
ASSERT_EQ(10, program(10, 11));
}
TEST(Containers, RecUpdateInLoop1){
FILE* code = fopen("scripts/containers/RecUpdateInLoop1.xreate", "r");
assert(code != nullptr);
auto man = XreateManager::prepare(code);
Fn1Args program = (Fn1Args) man->run();
ASSERT_EQ(11, program(10));
}
TEST(Containers, ArrayInit1){
XreateManager* man = XreateManager::prepare(
R"Code(
main = function(x:: int):: int; entry() {
a = {1, 2, 3}:: [int].
a[x]
}
)Code");
void* mainPtr = man->run();
Fn1Args main = (Fn1Args) mainPtr;
ASSERT_EQ(2, main(1));
delete man;
}
TEST(Containers, ArrayUpdate1){
XreateManager* man = XreateManager::prepare(R"(
main = function(x::int):: int; entry()
{
a = {1, 2, 3}:: [int]; csize(5).
b = a : {[1] = x}:: [int]; csize(5).
b[1]
}
)");
void* mainPtr = man->run();
Fn1Args main = (Fn1Args) mainPtr;
ASSERT_EQ(2, main(2));
delete man;
}
TEST(Containers, FlyMap1){
std::unique_ptr<XreateManager> man(XreateManager::prepare(R"(
main = function:: int; entry()
{
x = {1, 2, 3, 4}:: [int].
y = loop map(x->el::int)::[int]; fly(csize(4))
{2 * el:: int }.
loop fold((y::[int]; fly(csize(4)))->el:: int, 0->sum):: int {sum + el}-20
}
)"));
FnNoArgs mainFn = (FnNoArgs) man->run();
intmax_t valueMain = mainFn();
ASSERT_EQ(0, valueMain);
}
TEST(Containers, ArrayArg1){
FILE* code = fopen("scripts/containers/containers-tests.xreate", "r");
assert(code != nullptr);
std::unique_ptr<XreateManager> man(XreateManager::prepare(code));
man->options.requireEntryFn = false;
man->run();
FnNoArgs fnTested = (FnNoArgs) man->getExteriorFn("fn-ArrayArg1");
ASSERT_EQ(1, fnTested());
}
TEST(Containers, FlyArg1){
FILE* code = fopen("scripts/containers/containers-tests.xreate", "r");
assert(code != nullptr);
std::unique_ptr<XreateManager> man(XreateManager::prepare(code));
man->options.requireEntryFn = false;
man->run();
FnNoArgs fnTested = (FnNoArgs) man->getExteriorFn("fn-FlyArg1");
ASSERT_EQ(8, fnTested());
}
TEST(Containers, Range1){
FILE* code = fopen("scripts/containers/containers-tests.xreate", "r");
assert(code != nullptr);
std::unique_ptr<XreateManager> man(XreateManager::prepare(code));
man->options.requireEntryFn = false;
man->run();
{
FnNoArgs fnRange1 = (FnNoArgs) man->getExteriorFn("fn-Range1");
ASSERT_EQ(10, fnRange1());
}
{
FnNoArgs fnRange2 = (FnNoArgs) man->getExteriorFn("fn-Range2");
ASSERT_EQ(20, fnRange2());
}
}
+TEST(Containers, RetRange1){
+ FILE* code = fopen("scripts/containers/containers-tests.xreate", "r");
+ assert(code != nullptr);
+
+ std::unique_ptr<XreateManager> man(XreateManager::prepare(code));
+ man->options.requireEntryFn = false;
+ man->run();
+ {
+ FnNoArgs fnRange1 = (FnNoArgs) man->getExteriorFn("fn-RetRange1");
+ ASSERT_EQ(10, fnRange1());
+ }
+}
+
//TEST(Containers, ListAsArray2){
// XreateManager* man = XreateManager::prepare(
//
//R"Code(
// // CONTAINERS
// import raw("scripts/dfa/ast-attachments.lp").
// import raw("scripts/containers/containers.lp").
//
// main = function:: int;entry {
// a= {1, 2, 3}:: [int].
// b= loop map(a->el:: int):: [int]{
// 2 * el
// }.
//
// sum = loop fold(b->el:: int, 0->acc):: int {
// acc + el
// }.
//
// sum
// }
//)Code");
//
// void* mainPtr = man->run();
// FnNoArgs main = (FnNoArgs) mainPtr;
// ASSERT_EQ(12, main());
//
// delete man;
//}
//
//TEST(Containers, Doc_RecField1){
// string code_Variants1 = getDocumentationExampleById("documentation/Syntax/syntax.xml", "RecField1");
// XreateManager::prepare(move(code_Variants1));
//
// ASSERT_TRUE(true);
//}
//
//TEST(Containers, Doc_RecUpdate1){
// string code_Variants1 = getDocumentationExampleById("documentation/Syntax/syntax.xml", "RecUpdate1");
// XreateManager::prepare(move(code_Variants1));
//
// ASSERT_TRUE(true);
//}
//
//TEST(Containers, ContanierLinkedList1){
// FILE* input = fopen("scripts/containers/Containers_Implementation_LinkedList1.xreate","r");
// assert(input != nullptr);
//
// Scanner scanner(input);
// Parser parser(&scanner);
// parser.Parse();
//
// AST* ast = parser.root->finalize();
// CodeScope* body = ast->findFunction("test")->getEntryScope();
// const Symbol symb_chilrenRaw{body->findSymbolByAlias("childrenRaw"), body};
//
// containers::ImplementationLinkedList iLL(symb_chilrenRaw);
//
// ASSERT_EQ(true, static_cast<bool>(iLL));
// ASSERT_EQ("next", iLL.fieldPointer);
//
// Implementation impl = Implementation::create(symb_chilrenRaw);
// ASSERT_NO_FATAL_FAILURE(impl.extract<ON_THE_FLY>());
//
// ImplementationRec<ON_THE_FLY> recOnthefly = impl.extract<ON_THE_FLY>();
// ASSERT_EQ(symb_chilrenRaw, recOnthefly.source);
//}
//
//TEST(Containers, Implementation_LinkedListFull){
// FILE* input = fopen("scripts/containers/Containers_Implementation_LinkedList1.xreate","r");
// assert(input != nullptr);
//
// std::unique_ptr<XreateManager> program(XreateManager::prepare(input));
// void* mainPtr = program->run();
// int (*main)() = (int (*)())(intptr_t)mainPtr;
//
// intmax_t answer = main();
// ASSERT_EQ(17, answer);
//
// fclose(input);
//}
//
//TEST(Containers, Doc_Intr_1){
// string example = R"Code(
// import raw("scripts/containers/containers.lp").
//
// test = function:: int; entry
// {
// <BODY>
// x
// }
// )Code";
// string body = getDocumentationExampleById("documentation/Concepts/containers.xml", "Intr_1");
// replace(example, "<BODY>", body);
//
// XreateManager* xreate = XreateManager::prepare(move(example));
// FnNoArgs program = (FnNoArgs) xreate->run();
//
// intmax_t result = program();
// ASSERT_EQ(1, result);
//}
//
//TEST(Containers, Doc_OpAccessSeq_1){
// string example = getDocumentationExampleById("documentation/Concepts/containers.xml", "OpAccessSeq_1");
// XreateManager* xreate = XreateManager::prepare(move(example));
// FnNoArgs program = (FnNoArgs) xreate->run();
//
// intmax_t result = program();
// ASSERT_EQ(15, result);
//}
//
//TEST(Containers, Doc_OpAccessRand_1){
// string example = getDocumentationExampleById("documentation/Concepts/containers.xml", "OpAccessRand_1");
// XreateManager* xreate = XreateManager::prepare(move(example));
// FnNoArgs program = (FnNoArgs) xreate->run();
//
// intmax_t result = program();
// ASSERT_EQ(2, result);
//}
//
//TEST(Containers, Doc_ASTAttach_1){
// string example = getDocumentationExampleById("documentation/Concepts/containers.xml", "ASTAttach_1");
// string outputExpected = "containers_impl(s(1,-2,0),onthefly)";
// XreateManager* xreate = XreateManager::prepare(move(example));
//
// testing::internal::CaptureStdout();
// xreate->run();
// std::string outputActual = testing::internal::GetCapturedStdout();
//
// ASSERT_NE(std::string::npos, outputActual.find(outputExpected));
//}
//
//TEST(Containers, IntrinsicArrInit1){
// XreateManager* man = XreateManager::prepare(
//
//R"Code(
//FnAnns = type predicate {
// entry
//}
//
//main = function(x:: int):: int; entry() {
// a{0} = intrinsic array_init(16):: [int].
// a{1} = a{0} + {15: 12}
//}
//)Code");
//}
diff --git a/scripts/containers/containers-tests.assembly.lp b/scripts/containers/containers-tests.assembly.lp
index 4618171..a9e3d97 100644
--- a/scripts/containers/containers-tests.assembly.lp
+++ b/scripts/containers/containers-tests.assembly.lp
@@ -1,9 +1,9 @@
select(test(common)).
-%select(function("fn-Range2")).
+%select(function("fn-RetRange1")).
bind_func(Fn, exterior):-
select(test(Template));
bind_func(Fn, test(Template)).
bind_func(FnName, exterior):-
select(function(FnName)).
diff --git a/scripts/containers/containers-tests.xreate b/scripts/containers/containers-tests.xreate
index 7196d06..79bc100 100644
--- a/scripts/containers/containers-tests.xreate
+++ b/scripts/containers/containers-tests.xreate
@@ -1,79 +1,88 @@
import raw ("scripts/containers/containers-tests.assembly.lp").
Test = type predicate{
common
}.
FnAnns = type predicate{
test(kind:: Test)
}
min = function(x:: [int]; csize(5)):: int
{
loop fold((x:: [int]; csize(5))->el:: int, 1000->min):: int
{
if (el < min):: int { el } else { min }
}
}
min2 = function(x:: [int]; fly(csize(5))):: int
{
loop fold((x:: [int]; fly(csize(5)))->el:: int, 1000->min):: int
{
if (el < min):: int { el } else { min }
}
}
fn-ArrayArg1 = function:: int; test(common())
{
a = {3, 2, 1, 4, 5}:: [int]; csize(5).
min(a)
}
fn-FlyArg1 = function:: int; test(common())
{
a = {3, 2, 1, 4, 5}:: [int]; csize(5).
b = loop map(a->x:: int):: [int]; fly(csize(5))
{
8 * x :: int
}.
min2(b)
}
fn-Range1 = function:: int; test(common())
{
range = [1..5]:: [int]; range().
loop fold(range->x:: int, 0->sum):: int {sum + x}
}
fn-Range2 = function:: int; test(common())
{
range1 = [1..5]:: [int]; range().
range2 = loop map (range1->x:: int):: [int]; fly(range()) {2 * x:: int}.
loop fold(range2->x:: int, 0->sum):: int {sum + x}
}
+fn-GenRange1 = function:: [int]; range()
+{
+ [1..5]:: [int]; range()
+}
+
+fn-RetRange1 = function:: int; test(common())
+{
+ loop fold((fn-GenRange1()::[int]; range()) -> x:: int, 0->sum):: int
+ { sum + x }
+}
+
/*
reorder = function(aggrSrc:: [int], idxs::[int]):: [int]
{
loop map(idxs->idx)::[int]
{
aggrSrc[idx])
}
}
reverse = function(aggrSrc::[int])::[int]
{
sizeDst = 5:: int.
- idxsDst = [0..sizeDst - 1]:: [int].
+ idxsDst = intrinsic keys(aggrSrc):: [int].
idxsTnsf = loop map(idxsDst-> idx:: int):: [int]
{
- sizeDstClone = 5:: int.
-
- sizeDstClone - idx - 1
+ sizeDst - idx - 1
}
reorder(aggrSrc, idxsTnsf)
}
*/
Event Timeline
Log In to Comment