No OneTemporary

File Metadata

Created
Sun, Feb 15, 7:44 PM
diff --git a/cpp/src/compilation/targetinterpretation.cpp b/cpp/src/compilation/targetinterpretation.cpp
index f22ebc1..eef0aae 100644
--- a/cpp/src/compilation/targetinterpretation.cpp
+++ b/cpp/src/compilation/targetinterpretation.cpp
@@ -1,626 +1,626 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* File: targetinterpretation.cpp
* Author: pgess <v.melnychenko@xreate.org>
*
* Created on June 29, 2016, 6:45 PM
*/
/**
* \file targetinterpretation.h
* \brief Interpretation support. See more details on [Interpretation](/d/concepts/interpretation/)
*/
#include "compilation/targetinterpretation.h"
#include "pass/interpretationpass.h"
#include "analysis/typeinference.h"
#include "llvmlayer.h"
#include "compilation/scopedecorators.h"
#include "compilation/interpretation-instructions.h"
#include <boost/scoped_ptr.hpp>
#include <iostream>
#include <csignal>
using namespace std;
using namespace xreate::compilation;
namespace xreate{
namespace interpretation{
const Expression EXPRESSION_FALSE = Expression(Atom<Number_t>(0));
const Expression EXPRESSION_TRUE = Expression(Atom<Number_t>(1));
CodeScope*
InterpretationScope::processOperatorIf(const Expression& expression) {
const Expression& exprCondition = process(expression.getOperands()[0]);
if (exprCondition == EXPRESSION_TRUE) {
return expression.blocks.front();
}
return expression.blocks.back();
}
CodeScope*
InterpretationScope::processOperatorSwitch(const Expression& expression) {
const Expression& exprCondition = process(expression.operands[0]);
bool flagHasDefault = expression.operands[1].op == Operator::CASE_DEFAULT;
//TODO check that one and only one case variant is appropriate
for (size_t size = expression.operands.size(), i = flagHasDefault ? 2 : 1; i < size; ++i) {
const Expression& exprCase = process(expression.operands[i]);
if (function->getScope((const CodeScope*) exprCase.blocks.front())->processScope() == exprCondition) {
return exprCase.blocks.back();
}
}
if (flagHasDefault) {
const Expression& exprCaseDefault = expression.operands[1];
return exprCaseDefault.blocks.front();
}
assert(false && "Switch has no appropriate variant");
return nullptr;
}
CodeScope*
InterpretationScope::processOperatorSwitchVariant(const Expression& expression) {
const Expression& condition = process(expression.operands.at(0));
assert(condition.op == Operator::VARIANT);
const string& identCondition = expression.bindings.front();
Expression opExpected(Atom<Number_t>(condition.getValueDouble()));
auto itFoundValue = std::find(++expression.operands.begin(), expression.operands.end(), opExpected);
assert(itFoundValue != expression.operands.end());
int indexBlock = itFoundValue - expression.operands.begin() - 1;
auto blockFound = expression.blocks.begin();
std::advance(blockFound, indexBlock);
InterpretationScope* scopeI12n = function->getScope(*blockFound);
if(condition.operands.size()) {
const Expression& value = condition.operands.at(0);
scopeI12n->overrideBindings({
{value, identCondition}
});
}
return *blockFound;
}
llvm::Value*
InterpretationScope::processLate(const InterpretationOperator& op, const Expression& expression, const Context& context) {
switch(op) {
case IF_INTERPRET_CONDITION:
{
CodeScope* scopeResult = processOperatorIf(expression);
llvm::Value* result = context.function->getScopeUnit(scopeResult)->compile();
return result;
}
case SWITCH_INTERPRET_CONDITION:
{
CodeScope* scopeResult = processOperatorSwitch(expression);
llvm::Value* result = context.function->getScopeUnit(scopeResult)->compile();
return result;
}
case SWITCH_VARIANT:
{
CodeScope* scopeResult = processOperatorSwitchVariant(expression);
const Expression& condition = expression.operands.at(0);
const Expression& valueCondition = process(condition);
const string identCondition = expression.bindings.front();
auto scopeCompilation = Decorators<CachedScopeDecoratorTag>::getInterface(context.function->getScopeUnit(scopeResult));
if(valueCondition.operands.size()) {
//override value
Symbol symbCondition{ScopedSymbol{scopeResult->__identifiers.at(identCondition), versions::VERSION_NONE}, scopeResult};
scopeCompilation->overrideDeclarations({
{symbCondition, Expression(valueCondition.operands.at(0))}}
);
//set correct type for binding:
TypeAnnotation typeVariant = typeinference::getType(condition, *function->man->ast);
int conditionIndex = valueCondition.getValueDouble();
ScopedSymbol symbolInternal = scopeResult->getSymbol(identCondition);
scopeResult->__declarations[symbolInternal].bindType(typeVariant.__operands.at(conditionIndex));
}
llvm::Value* result = context.function->getScopeUnit(scopeResult)->compile();
return result;
}
case SWITCH_LATE:
{
latereasoning::LateReasoningCompiler compiler(dynamic_cast<InterpretationFunction*>(this->function), context);
return compiler.processSwitchLateStatement(expression, "");
}
case FOLD_INTERPRET_INPUT:
{
//initialization
const Expression& exprInput = process(expression.getOperands()[0]);
assert(exprInput.op == Operator::LIST);
CodeScope* scopeBody = expression.blocks.front();
const string& nameEl = expression.bindings[0];
Symbol symbEl{ScopedSymbol{scopeBody->__identifiers.at(nameEl), versions::VERSION_NONE}, scopeBody};
const std::string& idAccum = expression.bindings[1];
llvm::Value* rawAccum = context.scope->process(expression.getOperands()[1]);
InterpretationScope* intrBody = function->getScope(scopeBody);
auto unitBody = Decorators<CachedScopeDecoratorTag>::getInterface(context.function->getScopeUnit(scopeBody));
const std::vector<Expression> elementsInput = exprInput.getOperands();
for(size_t i = 0; i < elementsInput.size(); ++i) {
const Expression& exprElement = elementsInput[i];
intrBody->overrideBindings({
{exprElement, nameEl}
});
unitBody->overrideDeclarations({
{symbEl, exprElement}
}); //resets unitBody
unitBody->bindArg(rawAccum, string(idAccum));
rawAccum = unitBody->compile();
}
return rawAccum;
}
// case FOLD_INF_INTERPRET_INOUT:
// {
// }
//TODO refactor as InterpretationCallStatement class
case CALL_INTERPRET_PARTIAL:
{
const std::string &calleeName = expression.getValueString();
ICodeScopeUnit* scopeUnitSelf = context.scope;
ManagedFnPtr callee = this->function->man->ast->findFunction(calleeName);
const FunctionInterpretationData& calleeData = FunctionInterpretationHelper::getSignature(callee);
std::vector<llvm::Value *> argsActual;
PIFSignature sig;
sig.declaration = callee;
for(size_t no = 0, size = expression.operands.size(); no < size; ++no) {
const Expression& op = expression.operands[no];
if (calleeData.signature.at(no) == INTR_ONLY) {
sig.bindings.push_back(process(op));
continue;
}
argsActual.push_back(scopeUnitSelf->process(op));
}
TargetInterpretation* man = dynamic_cast<TargetInterpretation*> (this->function->man);
PIFunction* pifunction = man->getFunction(move(sig));
llvm::Function* raw = pifunction->compile();
boost::scoped_ptr<BruteFnInvocation> statement(new BruteFnInvocation(raw, man->pass->man->llvm));
return (*statement)(move(argsActual));
}
case QUERY_LATE:
{
return IntrinsicQueryInstruction(
dynamic_cast<InterpretationFunction*>(this->function))
.processLate(expression, context);
}
default: break;
}
assert(false && "Unknown late interpretation operator");
return nullptr;
}
llvm::Value*
InterpretationScope::compile(const Expression& expression, const Context& context) {
const InterpretationData& data = Attachments::get<InterpretationData>(expression);
if (data.op != InterpretationOperator::NONE) {
return processLate(data.op, expression, context);
}
Expression result = process(expression);
return context.scope->process(result);
}
Expression
InterpretationScope::process(const Expression& expression) {
#ifndef NDEBUG
if (expression.tags.count("bpoint")) {
std::raise(SIGINT);
}
#endif
PassManager* man = (static_cast<TargetInterpretation*> (function->man))->pass->man;
switch (expression.__state) {
case Expression::INVALID:
assert(false);
case Expression::NUMBER:
case Expression::STRING:
return expression;
case Expression::IDENT:
{
Symbol s = Attachments::get<IdentifierSymbol>(expression);
return Parent::processSymbol(s);
}
case Expression::COMPOUND:
break;
default: assert(false);
}
switch (expression.op) {
case Operator::EQU:
{
const Expression& left = process(expression.operands[0]);
const Expression& right = process(expression.operands[1]);
if (left == right) return EXPRESSION_TRUE;
return EXPRESSION_FALSE;
}
case Operator::NE:
{
const Expression& left = process(expression.operands[0]);
const Expression& right = process(expression.operands[1]);
if (left == right) return EXPRESSION_FALSE;
return EXPRESSION_TRUE;
}
case Operator::LOGIC_AND:
{
assert(expression.operands.size() == 1);
return process (expression.operands[0]);
}
// case Operator::LOGIC_OR:
case Operator::CALL:
{
const std::string &fnName = expression.getValueString();
ManagedFnPtr fnAst = this->function->man->ast->findFunction(fnName);
InterpretationFunction* fnUnit = this->function->man->getFunction(fnAst);
vector<Expression> args;
args.reserve(expression.getOperands().size());
for(size_t i = 0, size = expression.getOperands().size(); i < size; ++i) {
args.push_back(process(expression.getOperands()[i]));
}
return fnUnit->process(args);
}
case Operator::CALL_INTRINSIC:
{
assert(false && "Unknown intrinsic");
}
case Operator::QUERY:
{
return IntrinsicQueryInstruction(dynamic_cast<InterpretationFunction*>(this->function))
.process(expression);
}
case Operator::QUERY_LATE:
{
assert(false && "Can't be interpretated");
return Expression();
}
case Operator::IF:
{
CodeScope* scopeResult = processOperatorIf(expression);
return function->getScope(scopeResult)->processScope();
}
case Operator::SWITCH:
{
CodeScope* scopeResult = processOperatorSwitch(expression);
return function->getScope(scopeResult)->processScope();
}
case Operator::SWITCH_VARIANT:
{
CodeScope* scopeResult = processOperatorSwitchVariant(expression);
return function->getScope(scopeResult)->processScope();
}
case Operator::VARIANT:
{
if(!expression.operands.size()) return expression;
Expression variantData = process(expression.operands[0]);
Expression result{Operator::VARIANT, {variantData}};
result.setValueDouble(expression.getValueDouble());
return result;
}
case Operator::INDEX:
{
Expression exprData = process(expression.operands[0]);
for (size_t keyId = 1; keyId < expression.operands.size(); ++keyId) {
const Expression& exprKey = process(expression.operands[keyId]);
if (exprKey.__state == Expression::STRING) {
const string& key = exprKey.getValueString();
assert(exprData.__indexBindings.count(key));
size_t idxKey = exprData.__indexBindings.at(key);
exprData = Expression(exprData.operands.at(idxKey));
continue;
}
if (exprKey.__state == Expression::NUMBER) {
int key = exprKey.getValueDouble();
exprData = Expression(exprData.operands[key]);
continue;
}
assert(false && "Inappropriate key");
}
return exprData;
}
case Operator::FOLD:
{
const Expression& exprInput = process(expression.getOperands()[0]);
const Expression& exprInit = process(expression.getOperands()[1]);
const std::string& argEl = expression.bindings[0];
const std::string& argAccum = expression.bindings[1];
InterpretationScope* body = function->getScope(expression.blocks.front());
Expression accum = exprInit;
for(size_t size = exprInput.getOperands().size(), i = 0; i < size; ++i) {
body->overrideBindings({
{exprInput.getOperands()[i], argEl},
{accum, argAccum}
});
accum = body->processScope();
}
return accum;
}
case Operator::LIST:
case Operator::LIST_RANGE:
{
Expression result(expression.op,{});
result.operands.resize(expression.operands.size());
result.bindings = expression.bindings;
result.__indexBindings = expression.__indexBindings;
int keyId = 0;
for(const Expression& opCurrent : expression.operands) {
result.operands[keyId++] = process(opCurrent);
}
return result;
}
// case Operator::MAP: {
// break;
// }
default: break;
}
return expression;
}
InterpretationFunction*
TargetInterpretation::getFunction(IFunctionUnit* unit) {
if (__dictFunctionsByUnit.count(unit)) {
return __dictFunctionsByUnit.at(unit);
}
InterpretationFunction* f = new InterpretationFunction(unit->function, this);
__dictFunctionsByUnit.emplace(unit, f);
assert(__functions.emplace(unit->function.id(), f).second);
return f;
}
PIFunction*
TargetInterpretation::getFunction(PIFSignature&& sig) {
auto f = __pifunctions.find(sig);
if (f != __pifunctions.end()) {
return f->second;
}
PIFunction* result = new PIFunction(PIFSignature(sig), __pifunctions.size(), this);
__pifunctions.emplace(move(sig), result);
assert(__dictFunctionsByUnit.emplace(result->functionUnit, result).second);
return result;
}
InterpretationScope*
TargetInterpretation::transformContext(const Context& c) {
return this->getFunction(c.function)->getScope(c.scope->scope);
}
llvm::Value*
TargetInterpretation::compile(const Expression& expression, const Context& ctx) {
return transformContext(ctx)->compile(expression, ctx);
}
InterpretationFunction::InterpretationFunction(const ManagedFnPtr& function, Target<TargetInterpretation>* target)
: Function<TargetInterpretation>(function, target) { }
Expression
InterpretationFunction::process(const std::vector<Expression>& args) {
InterpretationScope* body = getScope(__function->__entry);
list<pair<Expression, string>> bindings;
for(size_t i = 0, size = args.size(); i < size; ++i) {
bindings.push_back(make_pair(args.at(i), body->scope->__bindings.at(i)));
}
body->overrideBindings(bindings);
return body->processScope();
}
// Partial function interpretation
typedef BasicFunctionUnit PIFunctionUnitParent;
class PIFunctionUnit : public PIFunctionUnitParent{
public:
PIFunctionUnit(ManagedFnPtr f, std::set<size_t>&& arguments, size_t id, CompilePass* p)
: PIFunctionUnitParent(f, p), argumentsActual(move(arguments)), __id(id) { }
protected:
std::vector<llvm::Type*>
prepareSignature() override {
LLVMLayer* llvm = PIFunctionUnitParent::pass->man->llvm;
AST* ast = PIFunctionUnitParent::pass->man->root;
CodeScope* entry = PIFunctionUnitParent::function->__entry;
std::vector<llvm::Type*> signature;
for(size_t no : argumentsActual) {
VNameId argId = entry->__identifiers.at(entry->__bindings.at(no));
ScopedSymbol arg{argId, versions::VERSION_NONE};
signature.push_back(llvm->toLLVMType(ast->expandType(entry->__declarations.at(arg).type)));
}
return signature;
}
llvm::Function::arg_iterator
prepareBindings() override{
CodeScope* entry = PIFunctionUnitParent::function->__entry;
ICodeScopeUnit* entryCompilation = PIFunctionUnitParent::getScopeUnit(entry);
llvm::Function::arg_iterator fargsI = PIFunctionUnitParent::raw->arg_begin();
for(size_t no : argumentsActual) {
ScopedSymbol arg{entry->__identifiers.at(entry->__bindings.at(no)), versions::VERSION_NONE};
entryCompilation->bindArg(&*fargsI, arg);
fargsI->setName(entry->__bindings.at(no));
++fargsI;
}
return fargsI;
}
virtual std::string
prepareName() override {
return PIFunctionUnitParent::prepareName() + "_" + std::to_string(__id);
}
private:
std::set<size_t> argumentsActual;
size_t __id;
} ;
PIFunction::PIFunction(PIFSignature&& sig, size_t id, TargetInterpretation* target)
: InterpretationFunction(sig.declaration, target), signatureInstance(move(sig)) {
const FunctionInterpretationData& functionData = FunctionInterpretationHelper::getSignature(signatureInstance.declaration);
std::set<size_t> argumentsActual;
for (size_t no = 0, size = functionData.signature.size(); no < size; ++no) {
if (functionData.signature.at(no) != INTR_ONLY) {
argumentsActual.insert(no);
}
}
functionUnit = new PIFunctionUnit(signatureInstance.declaration, move(argumentsActual), id, target->pass);
CodeScope* entry = signatureInstance.declaration->__entry;
auto entryUnit = Decorators<CachedScopeDecoratorTag>::getInterface<>(functionUnit->getEntry());
InterpretationScope* entryIntrp = InterpretationFunction::getScope(entry);
list<pair<Expression, std::string>> bindingsPartial;
list<pair<Symbol, Expression>> declsPartial;
for(size_t no = 0, sigNo = 0, size = entry->__bindings.size(); no < size; ++no) {
if(functionData.signature.at(no) == INTR_ONLY) {
bindingsPartial.push_back({signatureInstance.bindings[sigNo], entry->__bindings[no]});
VNameId argId = entry->__identifiers.at(entry->__bindings[no]);
Symbol argSymbol{ScopedSymbol
{argId, versions::VERSION_NONE}, entry};
declsPartial.push_back({argSymbol, signatureInstance.bindings[sigNo]});
++sigNo;
}
}
entryIntrp->overrideBindings(bindingsPartial);
entryUnit->overrideDeclarations(declsPartial);
}
llvm::Function*
PIFunction::compile() {
llvm::Function* raw = functionUnit->compile();
return raw;
}
bool operator<(const PIFSignature& lhs, const PIFSignature& rhs) {
if (lhs.declaration.id() != rhs.declaration.id()) {
return lhs.declaration.id() < rhs.declaration.id();
}
return lhs.bindings < rhs.bindings;
}
bool operator<(const PIFSignature& lhs, PIFunction * const rhs) {
return lhs < rhs->signatureInstance;
}
bool operator<(PIFunction * const lhs, const PIFSignature& rhs) {
return lhs->signatureInstance < rhs;
}
}
}
/** \class xreate::interpretation::InterpretationFunction
*
* Holds list of xreate::interpretation::InterpretationScope 's focused on interpretation of individual code scopes
*
* There is particulat subclass PIFunction intended to represent partially interpreted functions.
- *\sa TargetInterpretation, [Interpretation Concept](/w/concepts/dfa)
+ *\sa TargetInterpretation, [Interpretation Concept](/d/concepts/interpretation/)
*/
/** \class xreate::interpretation::TargetInterpretation
*
* TargetInterpretation is executed during compilation and is intended to preprocess eligible for interpretation parts of a source code.
*
* Keeps a list of InterpretationFunction / PIFunction that represent interpretation for an individual functions.
*
* There is \ref InterpretationScopeDecorator that embeds interpretation to an overall compilation process.
* \sa InterpretationPass, compilation::Target, [Interpretation Concept](/d/concepts/interpretation/)
*
*/
diff --git a/cpp/src/query/containers.h b/cpp/src/query/containers.h
index e95cc7d..7765645 100644
--- a/cpp/src/query/containers.h
+++ b/cpp/src/query/containers.h
@@ -1,96 +1,96 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Author: pgess <v.melnychenko@xreate.org>
*
* containers.h
* Created on 3/14/15.
*/
/**
* \file query/containers.h
- * \brief Transcend solutions on [Containers](/w/concepts/containers) implementation details
+ * \brief Transcend solutions on [Containers](/d/concepts/containers/) implementation details
*/
#ifndef _XREATE_CONTAINERSQUERY_H_
#define _XREATE_CONTAINERSQUERY_H_
#include "xreatemanager.h"
#include "transcendlayer.h"
#include <boost/variant.hpp>
namespace xreate {
namespace containers {
enum ImplementationType {SOLID, ON_THE_FLY, LINKED_LIST};
template<ImplementationType I>
struct ImplementationRec;
template<>
struct ImplementationRec<SOLID> {
size_t size;
};
template<>
struct ImplementationRec<ON_THE_FLY>{
Symbol source;
};
struct Implementation;
struct ImplementationLinkedList {
bool flagIsValid;
std::string fieldPointer;
Expression terminator;
ImplementationLinkedList(const Symbol& source);
operator bool() const;
Implementation getImplementationData() const;
private:
Symbol s;
};
struct Implementation {
typedef boost::variant<ImplementationRec<SOLID>, ImplementationRec<ON_THE_FLY>> Variant;
ImplementationType impl;
Variant data;
static Implementation create(const Symbol &var);
static Implementation create(const Symbol& var, const std::string &implSerialized);
template<ImplementationType I>
const ImplementationRec<I>& extract() const{
const ImplementationRec<I>& rec = boost::get<ImplementationRec<I>>(data);
return rec;
}
};
/**
* \brief Queries Transcend solutions on containers implementation details
* \sa xreate::containers::Iterator
*/
class Query : public xreate::IQuery {
public:
static Implementation queryImplementation(xreate::Symbol const &s);
void init(TranscendLayer* transcend);
Query();
~Query(){}
private:
bool flagDataIsLoaded = false;
PassManager *man;
};
}
template<>
struct AttachmentsDict<containers::Implementation> {
typedef containers::Implementation Data;
static const unsigned int key = 1;
};
}
#endif //_XREATE_CONTAINERSQUERY_H_
diff --git a/documentation-api/namespaces.dox b/documentation-api/namespaces.dox
index 1de792c..9428052 100644
--- a/documentation-api/namespaces.dox
+++ b/documentation-api/namespaces.dox
@@ -1,44 +1,41 @@
/**
- * \namespace xreate
- * \brief Aww
- *
* \namespace xreate::cfa
* \brief The CFA(Control Flow Analysis) related functionality
*
* \namespace xreate::dfa
* \brief The DFA(Data Flow Analysis) related functionality
*
* \namespace xreate::interpretation
* \brief Interpretation support
*
* \namespace xreate::typeinference
* \brief Type inference support
*
* \namespace xreate::analysis
* \brief The analysis' internal routines
*
* \namespace xreate::pointerarithmetic
* \brief Pointer arithemitic support
*
* \namespace xreate::compilation
* \brief The compilation internals used by \ref CompilePass
*
* \namespace xreate::polymorph
* \brief Polymorphism support
*
* \namespace xreate::latex
* \brief Latex(Late Context) support
*
* \namespace xreate::latereasoning
* \brief Late Transcend support
*
* \namespace xreate::versions
* \brief Versioned variables support. See the [explanation](/d/concepts/versions/)
*
* \namespace xreate::containers
* \brief Containers support. See [the explanation](/d/concepts/containers/)
*
* \namespace xreate::modules
* \brief Modules support
*
*/

Event Timeline