Page Menu
Home
Xreate
Search
Configure Global Search
Log In
Docs
Questions
Repository
Issues
Patches
Internal API
Files
F2718203
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Feb 15, 5:14 PM
Size
114 KB
Mime Type
text/x-diff
Expires
Tue, Feb 17, 5:14 PM (1 d, 15 h)
Engine
blob
Format
Raw Data
Handle
237798
Attached To
rXR Xreate
View Options
diff --git a/cpp/src/analysis/typehints.cpp b/cpp/src/analysis/typehints.cpp
index 5c9c1e7..f504d2d 100644
--- a/cpp/src/analysis/typehints.cpp
+++ b/cpp/src/analysis/typehints.cpp
@@ -1,68 +1,68 @@
//
// Created by pgess on 24/03/2020.
//
#include "analysis/typehints.h"
#include "analysis/predefinedanns.h"
#include "analysis/utils.h"
+#include "aux/expressions.h"
namespace xreate{namespace typehints{
namespace impl {
template<class Hint>
inline Hint getHint(const Expression& e, const Hint& def, unsigned annId, const ExpandedType& hintT){
- std::list<Expression> hintsL;
+ const std::list<Expression>& hintsL = getAnnotations(e);
auto predefined = analysis::PredefinedAnns::instance();
- for(const auto& tag: e.tags){hintsL.push_back(tag.second);}
const Expression& hintActual = analysis::findAnnById(annId, hintT, hintsL);
if (!hintActual.isValid()){
return def;
}
return parse<Hint>(hintActual);
}
}
template<> IntBits
parse(const Expression& e){
return {(unsigned) e.operands.at(0).getValueDouble()};
}
template<> ArrayHint
parse(const Expression& e){
return {(unsigned) e.operands.at(0).getValueDouble()};
}
template<> FlyHint
parse(const Expression& e){
return {e.operands.at(0)};
}
template<> IntBits
find(const Expression& e, const IntBits& def){
auto predefined = analysis::PredefinedAnns::instance();
return impl::getHint<IntBits>(e, def,
(unsigned) analysis::PredefinedAnns::IntHints::SIZE,
ExpandedType(predefined.hintsIntT)
);
}
template<> ArrayHint
find(const Expression& e, const ArrayHint& def){
auto predefined = analysis::PredefinedAnns::instance();
return impl::getHint<ArrayHint>(e, def,
(unsigned) analysis::PredefinedAnns::ContHints::ARRAY,
ExpandedType(predefined.hintsContT)
);
}
template<> FlyHint
find(const Expression& e, const FlyHint& def){
auto predefined = analysis::PredefinedAnns::instance();
return impl::getHint<FlyHint>(e, def,
(unsigned) analysis::PredefinedAnns::ContHints::FLY,
ExpandedType(predefined.hintsContT));
}
}}
\ No newline at end of file
diff --git a/cpp/src/aux/expressions.cpp b/cpp/src/aux/expressions.cpp
index 67428a6..aae6182 100644
--- a/cpp/src/aux/expressions.cpp
+++ b/cpp/src/aux/expressions.cpp
@@ -1,60 +1,67 @@
#include "expressions.h"
namespace xreate{
Expression
getVariantData(const Expression &variantE, ExpandedType variantT){
Expression result(Operator::LIST, {});
TypeAnnotation variantDataT(variantT->__operands.at(variantE.getValueDouble()));
if(!variantDataT.isValid()) return Expression();
assert(variantDataT.__operator == TypeOperator::RECORD);
result.operands = variantE.operands;
result.bindings = variantDataT.fields;
result.type = variantDataT;
return result;
}
ListDictionary
reprListAsDict(const Expression &e){
ListDictionary result;
assert(e.__state == Expression::COMPOUND);
switch(e.op){
case Operator::LIST:{
Expression keyE;
int lastPos = 0;
for(size_t i = 0; i < e.operands.size(); ++i){
const Expression &valueE = e.operands.at(i);
const std::string &keyS = e.bindings.at(i);
if(keyS.empty()){
keyE = Expression(Atom<Number_t>(lastPos++));
} else{
keyE = Expression(Atom<String_t>(std::string(keyS)));
}
result.emplace(keyE, valueE);
}
break;
}
case Operator::LIST_INDEX:{
auto opI = e.operands.cbegin();
while(opI != e.operands.cend()){
const Expression &keysListE = *(opI++);
const Expression &valueE = *(opI++);
assert(keysListE.operands.size() == 1);
result.emplace(keysListE.operands.at(0), valueE);
}
break;
}
default:
assert(false);
}
return result;
}
+std::list<Expression>
+getAnnotations(const Expression& e){
+ std::list<Expression> result;
+ for(const auto& tag: e.tags){result.push_back(tag.second);}
+
+ return result;
+}
}
\ No newline at end of file
diff --git a/cpp/src/aux/expressions.h b/cpp/src/aux/expressions.h
index 4be22b8..1d33ea8 100644
--- a/cpp/src/aux/expressions.h
+++ b/cpp/src/aux/expressions.h
@@ -1,15 +1,16 @@
//
// Created by pgess on 31/01/2020.
//
#ifndef XREATE_EXPRESSIONS_H
#define XREATE_EXPRESSIONS_H
#include "ast.h"
namespace xreate{
typedef std::map<Expression, Expression> ListDictionary;
Expression getVariantData(const Expression& variantE, ExpandedType variantT);
ListDictionary reprListAsDict(const Expression& e);
+ std::list<Expression> getAnnotations(const Expression& e);
}
#endif //XREATE_EXPRESSIONS_H
diff --git a/cpp/src/compilation/containers.cpp b/cpp/src/compilation/containers.cpp
index c6e7140..c5f5438 100644
--- a/cpp/src/compilation/containers.cpp
+++ b/cpp/src/compilation/containers.cpp
@@ -1,236 +1,287 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* File: containers.cpp
* Author: pgess <v.melnychenko@xreate.org>
*/
/**
* \file compilation/containers.h
* \brief Containers compilation support. See [Containers](/d/concepts/containers/) in the Xreate's documentation.
*/
#include "compilation/containers.h"
#include "compilation/targetinterpretation.h"
#include "aux/expressions.h"
#include "compilation/containers/arrays.h"
#include "compilation/lambdas.h"
#include "analysis/predefinedanns.h"
#include "analysis/utils.h"
using namespace std;
namespace xreate { namespace containers{
ImplementationType
IContainersIR::getImplementation(const Expression& aggrE, AST* ast){
auto manPredefined = analysis::PredefinedAnns::instance();
const Expression& hintE = analysis::findAnnByType(aggrE, ExpandedType(manPredefined.hintsContT), ast);
assert(hintE.isValid());
return (ImplementationType ) hintE.getValueDouble();
}
IContainersIR *
IContainersIR::create(const Expression &aggrE, const TypeAnnotation &expectedT, const compilation::Context &context){
ExpandedType aggrT = context.pass->man->root->getType(aggrE, expectedT);
Expression aggr2E;
if (aggrE.__state == Expression::IDENT && !aggrE.tags.size()){
Symbol aggrS = Attachments::get<IdentifierSymbol>(aggrE);
aggr2E = CodeScope::getDefinition(aggrS);
} else {
aggr2E = aggrE;
}
switch(aggr2E.op){
case Operator::LIST:{
typehints::ArrayHint aggrHint = typehints::find(
- aggr2E, typehints::ArrayHint{aggr2E.operands.size()}
+ aggr2E, typehints::ArrayHint{aggr2E.operands.size()}
);
return new ArrayIR(aggrT, aggrHint, context);
}
default:
typehints::ArrayHint aggrHint = typehints::find(
- aggr2E, typehints::ArrayHint{0}
+ aggr2E, typehints::ArrayHint{0}
);
assert(aggrHint.size != 0);
return new ArrayIR(aggrT, aggrHint, context);
}
assert(false);
return nullptr;
}
+llvm::Type*
+IContainersIR::getRawType(const Expression& aggrE, const ExpandedType& aggrT, LLVMLayer* llvm){
+ auto manPredefined = analysis::PredefinedAnns::instance();
+ const Expression& hintE = analysis::findAnnByType(aggrE, ExpandedType(manPredefined.hintsContT), llvm->ast);
+ assert(hintE.isValid());
+
+ return getRawTypeByHint(hintE, aggrT, llvm);
+}
+
+llvm::Type*
+IContainersIR::getRawTypeByHint(const Expression& hintE, const ExpandedType& aggrT, LLVMLayer* llvm) {
+ ImplementationType hintImpl = (ImplementationType ) hintE.getValueDouble();
+ switch (hintImpl){
+ case SOLID: {
+ typehints::ArrayHint hint = typehints::parse<typehints::ArrayHint>(hintE);
+ return ArrayIR::getRawType(aggrT, hint, llvm);
+ }
+
+ case ON_THE_FLY:{
+ typehints::FlyHint hint = typehints::parse<typehints::FlyHint>(hintE);
+ return FlyIR::getRawType(aggrT, hint, llvm);
+ }
+
+ default: break;
+ }
+
+ assert(false);
+ return nullptr;
+}
+
llvm::Value *
RecordIR::init(llvm::StructType *tyAggr){
return llvm::UndefValue::get(tyAggr);
}
llvm::Value*
RecordIR::init(std::forward_list<llvm::Type*> fields){
std::vector<llvm::Type*> fieldsVec(fields.begin(), fields.end());
llvm::ArrayRef<llvm::Type *> fieldsArr(fieldsVec);
llvm::StructType* resultTR = llvm::StructType::get(__context.pass->man->llvm->llvmContext, fieldsArr, false);
return init(resultTR);
}
llvm::Value *
RecordIR::update(llvm::Value *aggrRaw, const ExpandedType &aggrT, const Expression &updE){
interpretation::InterpretationScope *scopeI12n =
__context.pass->targetInterpretation->transformContext(__context);
TypesHelper helper(__context.pass->man->llvm);
const auto &fields = helper.getRecordFields(aggrT);
std::map<std::string, size_t> indexFields;
for(size_t i = 0, size = fields.size(); i < size; ++i){
indexFields.emplace(fields[i], i);
}
for(const auto &entry: reprListAsDict(updE)){
unsigned keyId;
std::string keyHint;
const Expression keyE = scopeI12n->process(entry.first);
switch(keyE.__state){
case Expression::STRING:
keyId = indexFields.at(keyE.getValueString());
keyHint = keyE.getValueString();
break;
case Expression::NUMBER:
keyId = keyE.getValueDouble();
keyHint = aggrT->fields.at(keyId);
break;
default:
assert(false);
break;
}
const TypeAnnotation &valueT = aggrT->__operands.at(keyId);
llvm::Value *valueRaw = __context.scope->process(entry.second, keyHint, valueT);
aggrRaw = __context.pass->man->llvm->irBuilder.CreateInsertValue(
aggrRaw,
valueRaw,
keyId);
}
return aggrRaw;
}
llvm::Value*
FlyIR::create(llvm::Value* sourceRaw, CodeScope* body, const std::string& hintAlias){
RecordIR recordIR(__context);
compilation::LambdaIR lambdaIR(__context.pass);
llvm::Function* fnTransform = lambdaIR.compile(body, hintAlias);
llvm::Value* resultRaw = recordIR.init({
sourceRaw->getType(),
fnTransform->getFunctionType()->getPointerTo()
});
resultRaw = __context.pass->man->llvm->irBuilder.CreateInsertValue(
resultRaw, sourceRaw, 0);
resultRaw = __context.pass->man->llvm->irBuilder.CreateInsertValue(
resultRaw, fnTransform, 1);
return resultRaw;
}
+llvm::Type*
+FlyIR::getRawType(const ExpandedType& aggrT, const typehints::FlyHint& hint, LLVMLayer* llvm){
+ assert(aggrT->__operator == TypeOperator::ARRAY);
+ TypesHelper types(llvm);
+
+ llvm::Type* sourceTRaw = IContainersIR::getRawTypeByHint(hint.hintSrc, aggrT, llvm);
+ llvm::Type* elTRaw = llvm->toLLVMType(ExpandedType(aggrT->__operands.at(0)));
+ llvm::Type* resultTRaw = types.getPreferredIntTy();
+
+ llvm::Type* fnTnsfTRaw = llvm::FunctionType::get(resultTRaw, llvm::ArrayRef<llvm::Type*>(elTRaw), false);
+ std::vector<llvm::Type*> fieldsVec = {
+ sourceTRaw,
+ fnTnsfTRaw->getPointerTo()
+ };
+ llvm::ArrayRef<llvm::Type *> fieldsArr(fieldsVec);
+ llvm::StructType* resultTR = llvm::StructType::get(llvm->llvmContext, fieldsArr, false);
+
+ return resultTR;
+}
+
llvm::Value*
FlyIR::getTransformFn(llvm::Value* aggrRaw){
LLVMLayer* llvm = __context.pass->man->llvm;
llvm::Value* fnRaw = llvm->irBuilder.CreateExtractValue(aggrRaw, llvm::ArrayRef<unsigned>{1});
return fnRaw;
}
-llvm::Value* FlyIR::getSourceAggr(llvm::Value* aggrRaw){
+llvm::Value*
+FlyIR::getSourceAggr(llvm::Value* aggrRaw){
LLVMLayer* llvm = __context.pass->man->llvm;
return llvm->irBuilder.CreateExtractValue(aggrRaw, llvm::ArrayRef<unsigned>{0});
}
llvm::Value*
FlyIR::operatorMap(const Expression& expr, const std::string& hintAlias){
const Expression& sourceE = expr.getOperands().at(0);
llvm::Value* sourceRaw = __context.scope->process(sourceE);
CodeScope* loopS = expr.blocks.front();
return create(sourceRaw, loopS, hintAlias);
}
FlyIR::FlyIR(typehints::FlyHint hint, compilation::Context context)
: __hint(hint), __context(context){}
IFwdIteratorIR*
IFwdIteratorIR::createByHint(const Expression& hintE, const ExpandedType& aggrT, const compilation::Context& context){
ImplementationType hintType = (ImplementationType) hintE.getValueDouble();
switch(hintType){
case SOLID:{
ArrayIR compiler(aggrT, typehints::parse<typehints::ArrayHint>(hintE), context);
return new FwdIteratorIR<SOLID>(compiler);
}
case ON_THE_FLY:{
return new FwdIteratorIR<ON_THE_FLY>(typehints::parse<typehints::FlyHint>(hintE), aggrT, context);
}
default: break;
}
assert(false);
return nullptr;
}
IFwdIteratorIR*
IFwdIteratorIR::create(const Expression& aggrE, const ExpandedType& aggrT, const compilation::Context& context){
auto manPredefined = analysis::PredefinedAnns::instance();
const Expression& hintE = analysis::findAnnByType(
aggrE,
ExpandedType(manPredefined.hintsContT),
context.pass->man->root
);
assert(hintE.isValid());
return createByHint(hintE, aggrT, context);
}
llvm::Value*
FwdIteratorIR<ON_THE_FLY>::begin() {
std::unique_ptr<IFwdIteratorIR> itSrcIR(IFwdIteratorIR::createByHint(__hint.hintSrc, __aggrT, __context));
return itSrcIR->begin();
}
llvm::Value*
FwdIteratorIR<ON_THE_FLY>::end() {
std::unique_ptr<IFwdIteratorIR> itSrcIR(IFwdIteratorIR::createByHint(__hint.hintSrc, __aggrT, __context));
return itSrcIR->end();
}
llvm::Value*
FwdIteratorIR<ON_THE_FLY>::advance(llvm::Value* idxRaw, const std::string& hintAlias){
std::unique_ptr<IFwdIteratorIR> itSrcIR(IFwdIteratorIR::createByHint(__hint.hintSrc, __aggrT, __context));
return itSrcIR->advance(idxRaw, hintAlias);
}
llvm::Value*
FwdIteratorIR<ON_THE_FLY>::get(llvm::Value* aggrRaw, llvm::Value *idxRaw, const std::string &hintAlias){
std::unique_ptr<IFwdIteratorIR> srcIterIR(IFwdIteratorIR::createByHint(__hint.hintSrc, __aggrT, __context));
FlyIR compilerFly(__hint, __context);
llvm::Value* aggrSrcRaw = compilerFly.getSourceAggr(aggrRaw);
llvm::Value* valueSrcRaw = srcIterIR->get(aggrSrcRaw, idxRaw);
FlyIR flyIR(__hint, __context);
llvm::Value* fnTnsfRaw = flyIR.getTransformFn(aggrRaw);
llvm::Type* fnTnsfTRawRaw = llvm::cast<llvm::PointerType>(fnTnsfRaw->getType())->getElementType();
llvm::FunctionType* fnTnsfTRaw = llvm::cast<llvm::FunctionType>(fnTnsfTRawRaw);
compilation::BruteFnInvocation fnTnsfInvoc(fnTnsfRaw, fnTnsfTRaw, __context.pass->man->llvm);
return fnTnsfInvoc({valueSrcRaw}, hintAlias);
}
}} //end of xreate::containers
diff --git a/cpp/src/compilation/containers.h b/cpp/src/compilation/containers.h
index 8c953f3..6ec9f12 100644
--- a/cpp/src/compilation/containers.h
+++ b/cpp/src/compilation/containers.h
@@ -1,108 +1,111 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* File: containers.h
* Author: pgess <v.melnychenko@xreate.org>
*/
#ifndef CODEINSTRUCTIONS_H
#define CODEINSTRUCTIONS_H
#include "ast.h"
#include "llvmlayer.h"
#include "pass/compilepass.h"
#include "compilation/control.h"
#include "query/containers.h"
#include "analysis/typehints.h"
namespace xreate { namespace containers {
class IFwdIteratorIR;
class IContainersIR{
public:
static IContainersIR *create(
const Expression &aggrE,
const TypeAnnotation &expectedT,
const compilation::Context &context);
static ImplementationType getImplementation(const Expression& aggrE, AST* ast);
-
+ static llvm::Type* getRawType(const Expression& aggrE, const ExpandedType& aggrT, LLVMLayer* llvm);
+ static llvm::Type* getRawTypeByHint(const Expression& hintE, const ExpandedType& aggrT, LLVMLayer* llvm);
virtual llvm::Value *init(const std::string &hintAlias = "") = 0;
virtual llvm::Value *update(llvm::Value *aggrRaw, const Expression &updE, const std::string &hintAlias) = 0;
virtual IFwdIteratorIR* getFwdIterator() = 0;
+
virtual ~IContainersIR(){}
};
class RecordIR{
public:
RecordIR(const compilation::Context& context): __context(context){}
llvm::Value* init(llvm::StructType* tyAggr);
llvm::Value* init(std::forward_list<llvm::Type*> fields);
llvm::Value* update(llvm::Value* aggrRaw, const ExpandedType& aggrT, const Expression& updE);
private:
compilation::Context __context;
};
class FlyIR{
public:
FlyIR(typehints::FlyHint hint, compilation::Context context);
llvm::Value* create(llvm::Value* sourceRaw, CodeScope* body, const std::string& hintAlias);
llvm::Value* getSourceAggr(llvm::Value* aggrRaw);
llvm::Value* getTransformFn(llvm::Value* aggrRaw);
llvm::Value* operatorMap(const Expression& expr, const std::string& hintAlias);
+ static llvm::Type *getRawType(const ExpandedType& aggrT, const typehints::FlyHint& hint, LLVMLayer* llvm);
private:
typehints::FlyHint __hint;
compilation::Context __context;
};
/**
* \brief A factory to create a concrete iterator based on the solution provided by xreate::containers::Query
* \sa xreate::containers::Query
*/
class IFwdIteratorIR{
public :
virtual ~IFwdIteratorIR(){};
virtual llvm::Value* begin() = 0;
virtual llvm::Value* end() = 0;
virtual llvm::Value* get(llvm::Value* aggrRaw, llvm::Value *idxRaw, const std::string &hintAlias="") = 0;
virtual llvm::Value* advance(llvm::Value* idxRaw, const std::string& hintAlias="") = 0;
static IFwdIteratorIR* create(const Expression& aggrE, const ExpandedType& aggrT, const compilation::Context& context);
static IFwdIteratorIR* createByHint(const Expression& hintE, const ExpandedType& aggrT, const compilation::Context& context);
};
template<ImplementationType I>
class FwdIteratorIR;
/** \brief The lazy container implementation.
*
* Represents computation on the fly.
* \sa xreate::containers::IFwdIteratorIR, \sa xreate::containers::Query
*/
template<>
class FwdIteratorIR<ON_THE_FLY> : public IFwdIteratorIR {
public:
FwdIteratorIR<ON_THE_FLY>(typehints::FlyHint hint, const ExpandedType &aggrT, compilation::Context context)
: __aggrT(aggrT), __hint(hint), __context(context){}
virtual llvm::Value* begin() override;
virtual llvm::Value* end() override;
virtual llvm::Value* get(llvm::Value* aggrRaw, llvm::Value *idxRaw, const std::string &hintAlias="") override;
virtual llvm::Value* advance(llvm::Value* idxRaw, const std::string& hintAlias="") override;
private:
ExpandedType __aggrT;
typehints::FlyHint __hint;
compilation::Context __context;
};
}}
#endif //CODEINSTRUCTIONS_H
diff --git a/cpp/src/compilation/containers/arrays.cpp b/cpp/src/compilation/containers/arrays.cpp
index d57ff02..78f2abc 100644
--- a/cpp/src/compilation/containers/arrays.cpp
+++ b/cpp/src/compilation/containers/arrays.cpp
@@ -1,169 +1,167 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* File: arrays.cpp
* Author: pgess <v.melnychenko@xreate.org>
*
* Created in March 2020.
*/
#include "compilation/containers/arrays.h"
#include "aux/expressions.h"
using namespace std;
using namespace llvm;
namespace xreate { namespace containers{
-llvm::ArrayType*
-ArrayIR::getRawT(){
- assert(__aggrT->__operator == TypeOperator::ARRAY);
- assert(__aggrT->__operands.size() == 1);
+llvm::PointerType*
+ArrayIR::getRawType(const ExpandedType& aggrT, const typehints::ArrayHint& hint, LLVMLayer* llvm){
+ assert(aggrT->__operator == TypeOperator::ARRAY);
+ assert(aggrT->__operands.size() == 1);
+ llvm::Type* elRawT = llvm->toLLVMType(ExpandedType(aggrT->__operands.at(0)));
- LLVMLayer* llvm = __context.pass->man->llvm;
- llvm::Type* elRawT = llvm->toLLVMType(ExpandedType(__aggrT->__operands.at(0)));
-
- return llvm::ArrayType::get(elRawT, __hints.size);
+ return llvm::ArrayType::get(elRawT, hint.size)->getPointerTo();
}
llvm::Value*
ArrayIR::init(const string& hintAlias){
LLVMLayer* llvm = __context.pass->man->llvm;
TypesHelper helper(llvm);
- llvm::ArrayType* aggrRawT = getRawT();
+ llvm::PointerType* aggrRawT = getRawType(__aggrT, __hint, __context.pass->man->llvm);
//llvm::Value* aggrLengthRaw = ConstantInt::get(helper.getPreferredIntTy(), aggrInfo.size);
- llvm::Value* aggrRaw = llvm->irBuilder.CreateAlloca(aggrRawT, nullptr, hintAlias);
+ llvm::Value* aggrRaw = llvm->irBuilder.CreateAlloca(aggrRawT->getElementType(), nullptr, hintAlias);
return aggrRaw;
}
llvm::Value*
ArrayIR::update(llvm::Value* aggrRaw, const Expression& updE, const std::string& hintAlias) {
LLVMLayer* llvm = __context.pass->man->llvm;
TypesHelper helper(llvm);
llvm::IntegerType* intT = helper.getPreferredIntTy();
llvm::Value* idxZeroRaw = ConstantInt::get(intT, 0);
- llvm::ArrayType* aggrRawT = getRawT();
+ llvm::PointerType* aggrRawT = getRawType(__aggrT, __hint, __context.pass->man->llvm);
const TypeAnnotation& elT = __aggrT->__operands.at(0);
//llvm::Type* elTRaw = llvm->toLLVMType(ExpandedType(aggrT->__operands.at(0)));
for (const auto& entry: reprListAsDict(updE)){
llvm::Value* keyRaw = __context.scope->process(entry.first);
llvm::Value* elRaw = __context.scope->process(entry.second, "", elT);
llvm::Value* elLoc = llvm->irBuilder.CreateGEP(
- aggrRawT, aggrRaw, ArrayRef<llvm::Value*>(std::vector<Value*>{idxZeroRaw, keyRaw}));
+ aggrRawT->getElementType(), aggrRaw, ArrayRef<llvm::Value*>(std::vector<Value*>{idxZeroRaw, keyRaw}));
llvm->irBuilder.CreateStore(elRaw, elLoc) ;
}
return aggrRaw;
}
llvm::Value*
ArrayIR::get(llvm::Value* aggrRaw, std::vector<llvm::Value *> idxL, const std::string& hintAlias) {
LLVMLayer* llvm = __context.pass->man->llvm;
TypesHelper helper(llvm);
llvm::IntegerType* intT = helper.getPreferredIntTy();
llvm::Value* zeroRaw = ConstantInt::get(intT, 0);
idxL.insert(idxL.begin(), zeroRaw);
llvm::Value *pEl = llvm->irBuilder.CreateGEP(aggrRaw, llvm::ArrayRef<llvm::Value *>(idxL));
return llvm->irBuilder.CreateLoad(pEl, hintAlias);
}
llvm::Value*
ArrayIR::operatorMap(const Expression& expr, const std::string& hintAlias) {
assert(false); return nullptr;
//EXPAND_CONTEXT UNUSED(scope);
// //initializationcompileListAsSolidArray
// Symbol symbolIn = Attachments::get<IdentifierSymbol>(expr.getOperands()[0]);
//
// ImplementationRec<SOLID> implIn = containers::Query::queryImplementation(symbolIn).extract<SOLID>(); // impl of input list
// size_t size = implIn.size;
// CodeScope* scopeLoop = expr.blocks.front();
// std::string varEl = scopeLoop->__bindings[0];
//
// IFwdIteratorIR* it = IFwdIteratorIR::create(context, symbolIn);
// llvm::Value *rangeFrom = it->begin();
// llvm::Value *rangeTo = it->end();
//
// //definitions
// ArrayType* tyNumArray = nullptr; //(ArrayType*) (llvm->toLLVMType(ExpandedType(TypeAnnotation(tag_array, TypePrimitive::Int, size))));
// llvm::IRBuilder<> &builder = llvm->irBuilder;
//
// llvm::BasicBlock *blockLoop = llvm::BasicBlock::Create(llvm->llvmContext, "loop", function->raw);
// llvm::BasicBlock *blockBeforeLoop = builder.GetInsertBlock();
// llvm::BasicBlock *blockAfterLoop = llvm::BasicBlock::Create(llvm->llvmContext, "postloop", function->raw);
// Value* dataOut = llvm->irBuilder.CreateAlloca(tyNumArray, ConstantInt::get(tyNum, size), NAME("map"));
//
// // * initial check
// Value* condBefore = builder.CreateICmpSLE(rangeFrom, rangeTo);
// builder.CreateCondBr(condBefore, blockLoop, blockAfterLoop);
//
// // create PHI:
// builder.SetInsertPoint(blockLoop);
// llvm::PHINode *stateLoop = builder.CreatePHI(tyNum, 2, "mapIt");
// stateLoop->addIncoming(rangeFrom, blockBeforeLoop);
//
// // loop body:
// Value* elIn = it->get(stateLoop, varEl);
// compilation::IBruteScope* scopeLoopUnit = function->getScopeUnit(scopeLoop);
// scopeLoopUnit->bindArg(elIn, move(varEl));
// Value* elOut = scopeLoopUnit->compile();
// Value *pElOut = builder.CreateGEP(dataOut, ArrayRef<Value *>(std::vector<Value*>{ConstantInt::get(tyNum, 0), stateLoop}));
// builder.CreateStore(elOut, pElOut);
//
// //next iteration preparing
// Value *stateLoopNext = builder.CreateAdd(stateLoop, llvm::ConstantInt::get(tyNum, 1));
// stateLoop->addIncoming(stateLoopNext, builder.GetInsertBlock());
//
// //next iteration checks:
// Value* condAfter = builder.CreateICmpSLE(stateLoopNext, rangeTo);
// builder.CreateCondBr(condAfter, blockLoop, blockAfterLoop);
//
// //finalization:
// builder.SetInsertPoint(blockAfterLoop);
//
// return dataOut;
}
IFwdIteratorIR* ArrayIR::getFwdIterator(){
return new FwdIteratorIR<SOLID>(*this);
}
llvm::Value *
FwdIteratorIR<SOLID>::begin(){
TypesHelper helper(__compiler.__context.pass->man->llvm);
llvm::IntegerType* intT = helper.getPreferredIntTy();
return llvm::ConstantInt::get(intT, 0);
}
llvm::Value *
FwdIteratorIR<SOLID>::end(){
TypesHelper helper(__compiler.__context.pass->man->llvm);
llvm::IntegerType* intT = helper.getPreferredIntTy();
- size_t size = __compiler.__hints.size;
+ size_t size = __compiler.__hint.size;
return llvm::ConstantInt::get(intT, size);
}
llvm::Value *
FwdIteratorIR<SOLID>::get(llvm::Value* aggrRaw, llvm::Value *idxRaw, const std::string &hintAlias){
return __compiler.get(aggrRaw, {idxRaw}, hintAlias);
}
llvm::Value *
FwdIteratorIR<SOLID>::advance(llvm::Value *idxRaw, const std::string &hintAlias){
LLVMLayer* llvm = __compiler.__context.pass->man->llvm;
TypesHelper helper(llvm);
llvm::IntegerType* intT = helper.getPreferredIntTy();
llvm::Value* cnstOneRaw = llvm::ConstantInt::get(intT, 1);
return llvm->irBuilder.CreateAdd(idxRaw, cnstOneRaw, hintAlias);
}
}} //xreate::containers
\ No newline at end of file
diff --git a/cpp/src/compilation/containers/arrays.h b/cpp/src/compilation/containers/arrays.h
index 8951d9d..5b378be 100644
--- a/cpp/src/compilation/containers/arrays.h
+++ b/cpp/src/compilation/containers/arrays.h
@@ -1,63 +1,63 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* File: arrays.h
* Author: pgess <v.melnychenko@xreate.org>
*
* Created in March 2020.
*/
-ifndef XREATE_ARRAYSIR_H
+#ifndef XREATE_ARRAYSIR_H
#define XREATE_ARRAYSIR_H
#include "compilation/containers.h"
namespace xreate { namespace containers{
class IFwdIteratorIR;
/** \brief The contiguous container implementation.
*
* Represents contiguous in memory(array) implementation.
* \sa xreate::containers::IFwdIteratorIR, \sa xreate::containers::Query
*/
class ArrayIR : public IContainersIR{
friend class FwdIteratorIR<SOLID>;
public:
ArrayIR(const ExpandedType &aggrT, const typehints::ArrayHint &hints, const compilation::Context &context)
- : __context(context), __aggrT(aggrT), __hints(hints){}
+ : __context(context), __aggrT(aggrT), __hint(hints){}
virtual llvm::Value *init(const std::string &hintAlias = "") override;
virtual llvm::Value *update(llvm::Value *aggrRaw, const Expression &updE, const std::string &hintAlias) override;
virtual IFwdIteratorIR* getFwdIterator() override;
llvm::Value *get(llvm::Value *aggrRaw, std::vector<llvm::Value *> idxL, const std::string &hintAlias);
- llvm::ArrayType *getRawT();
+ static llvm::PointerType *getRawType(const ExpandedType& aggrT, const typehints::ArrayHint& hint, LLVMLayer* llvm);
/** \brief `loop map` statement compilation*/
llvm::Value* operatorMap(const Expression& expr, const std::string& hintAlias);
private:
compilation::Context __context;
ExpandedType __aggrT;
- typehints::ArrayHint __hints;
+ typehints::ArrayHint __hint;
};
template<>
class FwdIteratorIR<SOLID>: public IFwdIteratorIR {
public:
FwdIteratorIR(const ArrayIR& arraysIR): __compiler(arraysIR) {};
virtual llvm::Value* begin() override;
virtual llvm::Value* end() override;
virtual llvm::Value* get(llvm::Value* aggrRaw, llvm::Value *idxRaw, const std::string &hintAlias="") override;
virtual llvm::Value* advance(llvm::Value* idxRaw, const std::string& hintAlias="") override;
private:
ArrayIR __compiler;
};
}} // xreate::containers
#endif //XREATE_ARRAYSIR_H
diff --git a/cpp/src/compilation/decorators.h b/cpp/src/compilation/decorators.h
index 87d4934..422d7cd 100644
--- a/cpp/src/compilation/decorators.h
+++ b/cpp/src/compilation/decorators.h
@@ -1,237 +1,237 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* File: scopedecorators.h
* Author: pgess <v.melnychenko@xreate.org>
*
* Created on February 24, 2017, 11:35 AM
*/
/**
* \file scopedecorators.h
* \brief Basic code block compilation xreate::compilation::IBruteScope decorators
*/
#ifndef SCOPEDECORATORS_H
#define SCOPEDECORATORS_H
#include "ast.h"
#include "compilation/transformations.h"
#include "analysis/typeinference.h"
#include "compilation/demand.h"
#include "compilation/polymorph.h"
#include "compilation/targetinterpretation.h"
#ifndef XREATE_CONFIG_MIN
#include "compilation/versions.h"
#include "compilation/polymorph.h"
#endif
#include <list>
namespace xreate {
class CompilePass;
namespace compilation {
class IBruteScope;
class IBruteFunction;
/**\brief Provides caching ability for code scope compilation
* \extends xreate::compilation::IBruteScope
*/
template<class Parent>
class CachedScopeDecorator: public Parent{
typedef CachedScopeDecorator<Parent> SELF;
public:
CachedScopeDecorator(const CodeScope* const codeScope, IBruteFunction* f, CompilePass* compilePass): Parent(codeScope, f, compilePass){}
Symbol bindArg(llvm::Value* value, std::string&& alias)
{
//ensure existence of an alias
assert(Parent::scope->__identifiers.count(alias));
//memorize new value for an alias
ScopedSymbol id{Parent::scope->__identifiers.at(alias), versions::VERSION_NONE};
__rawVars[id] = value;
return Symbol{id, Parent::scope};
}
void bindArg(llvm::Value* value, const ScopedSymbol& s) {
__rawVars[s] = value;
}
llvm::Value* compile(const std::string& aliasBlock="") override{
if (__rawVars.count(ScopedSymbol::RetSymbol)){
return __rawVars[ScopedSymbol::RetSymbol];
}
return Parent::compile(aliasBlock);
}
llvm::Value*
processSymbol(const Symbol& s, std::string hintRetVar) override{
const CodeScope* scope = s.scope;
SELF* self = dynamic_cast<SELF*>(Parent::function->getScopeUnit(scope));
if (self->__rawVars.count(s.identifier)){
return self->__rawVars[s.identifier];
}
//Declaration could be overriden
/*
Expression declaration = CodeScope::getDefinition(s, true);
if (!declaration.isDefined()){
assert(__declarationsOverriden.count(s.identifier));
declaration = __declarationsOverriden[s.identifier];
} else {
(false); //in case of binding there should be raws provided.
}
}
*/
llvm::Value* resultRaw = Parent::processSymbol(s, hintRetVar);
self->__rawVars.emplace(s.identifier, resultRaw);
return resultRaw;
}
void
overrideDeclarations(std::list<std::pair<Symbol, Expression>> bindings){
reset();
for (auto entry: bindings){
SELF* self = dynamic_cast<SELF*>(Parent::function->getScopeUnit(entry.first.scope));
assert(self == this);
self->__declarationsOverriden.emplace(entry.first.identifier, entry.second);
}
}
void registerChildScope(std::shared_ptr<IBruteScope> scope){
__childScopes.push_back(scope);
}
void reset(){
__rawVars.clear();
__declarationsOverriden.clear();
__childScopes.clear();
}
private:
std::unordered_map<ScopedSymbol, Expression> __declarationsOverriden;
std::unordered_map<ScopedSymbol,llvm::Value*> __rawVars;
std::list<std::shared_ptr<IBruteScope>> __childScopes;
};
/** \brief Provides automatic type conversion
* \extends xreate::compilation::IBruteScope
*/
template<class Parent>
class TypeConversionScopeDecorator: public Parent {
public:
TypeConversionScopeDecorator(const CodeScope* const codeScope, IBruteFunction* f, CompilePass* compilePass): Parent(codeScope, f, compilePass){}
llvm::Value* process(const Expression& expr, const std::string& hintVarDecl="", const TypeAnnotation& expectedT = TypeAnnotation()) override {
llvm::Value* resultR = Parent::process(expr, hintVarDecl, expectedT);
if(!expr.type.isValid()) {
return resultR;
}
ExpandedType exprT = Parent::pass->man->root->getType(expr);
- llvm::Type* exprTR = Parent::pass->man->llvm->toLLVMType(exprT);
+ llvm::Type* exprTR = Parent::pass->man->llvm->toLLVMType(exprT, expr);
return typeinference::doAutomaticTypeConversion(resultR, exprTR, Parent::pass->man->llvm->irBuilder);
}
};
#ifndef XREATE_CONFIG_MIN
/**\brief The default code scope compilation implementation
* \extends xreate::compilation::IBruteScope
*/
typedef
CachedScopeDecorator<
TypeConversionScopeDecorator<
latex::LatexBruteScopeDecorator<
polymorph::PolymorphBruteScopeDecorator<
compilation::TransformationsScopeDecorator<
interpretation::InterpretationScopeDecorator<
versions::VersionsScopeDecorator<
compilation::BasicBruteScope
>>>>>>>
DefaultCodeScopeUnit;
} //end of compilation namespace
struct CachedScopeDecoratorTag;
struct VersionsScopeDecoratorTag;
template<>
struct DecoratorsDict<CachedScopeDecoratorTag>{
typedef compilation::CachedScopeDecorator<
compilation::TypeConversionScopeDecorator<
latex::LatexBruteScopeDecorator<
polymorph::PolymorphBruteScopeDecorator<
compilation::TransformationsScopeDecorator<
interpretation::InterpretationScopeDecorator<
versions::VersionsScopeDecorator<
compilation::BasicBruteScope
>>>>>>>
result;
};
template<>
struct DecoratorsDict<VersionsScopeDecoratorTag>{
typedef
versions::VersionsScopeDecorator<
compilation::BasicBruteScope
>
result;
};
#else
/**\brief The default code scope compilation implementation
* \extends xreate::compilation::IBruteScope
*/
typedef
CachedScopeDecorator<
TypeConversionScopeDecorator<
interpretation::InterpretationScopeDecorator<
demand::DemandBruteScopeDecorator<
polymorph::PolymorphBruteScopeDecorator<
compilation::BasicBruteScope
>>>>>
DefaultCodeScopeUnit;
} //end of compilation namespacef
struct CachedScopeDecoratorTag;
template<>
struct DecoratorsDict<CachedScopeDecoratorTag>{
typedef compilation::CachedScopeDecorator<
compilation::TypeConversionScopeDecorator<
interpretation::InterpretationScopeDecorator<
demand::DemandBruteScopeDecorator<
polymorph::PolymorphBruteScopeDecorator<
compilation::BasicBruteScope
>>>>>
result;
};
typedef
demand::DemandBruteFnDecorator<
//polymorph::PolymorphBruteFnDecorator<
compilation::BasicBruteFunction
> BruteFunctionDefault;
#endif
} //end of xreate
#endif /* SCOPEDECORATORS_H */
diff --git a/cpp/src/compilation/targetinterpretation.cpp b/cpp/src/compilation/targetinterpretation.cpp
index 02d4b9d..6b9c084 100644
--- a/cpp/src/compilation/targetinterpretation.cpp
+++ b/cpp/src/compilation/targetinterpretation.cpp
@@ -1,648 +1,645 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* File: targetinterpretation.cpp
* Author: pgess <v.melnychenko@xreate.org>
*
* Created on June 29, 2016, 6:45 PM
*/
/**
* \file targetinterpretation.h
* \brief Interpretation support. See more details on [Interpretation](/d/concepts/interpretation/)
*/
#include "compilation/targetinterpretation.h"
#include "pass/interpretationpass.h"
#include "analysis/typeinference.h"
#include "llvmlayer.h"
#include "compilation/decorators.h"
#include "compilation/i12ninst.h"
#include "compilation/intrinsics.h"
#include <boost/scoped_ptr.hpp>
#include <iostream>
#include <csignal>
using namespace std;
using namespace xreate::compilation;
namespace xreate{
namespace interpretation{
const Expression EXPRESSION_FALSE = Expression(Atom<Number_t>(0));
const Expression EXPRESSION_TRUE = Expression(Atom<Number_t>(1));
CodeScope*
InterpretationScope::processOperatorIf(const Expression& expression) {
const Expression& exprCondition = process(expression.getOperands()[0]);
if (exprCondition == EXPRESSION_TRUE) {
return expression.blocks.front();
}
return expression.blocks.back();
}
CodeScope*
InterpretationScope::processOperatorSwitch(const Expression& expression) {
const Expression& exprCondition = process(expression.operands[0]);
bool flagHasDefault = expression.operands[1].op == Operator::CASE_DEFAULT;
//TODO check that one and only one case variant is appropriate
for (size_t size = expression.operands.size(), i = flagHasDefault ? 2 : 1; i < size; ++i) {
const Expression& exprCase = process(expression.operands[i]);
if (function->getScope((const CodeScope*) exprCase.blocks.front())->processScope() == exprCondition) {
return exprCase.blocks.back();
}
}
if (flagHasDefault) {
const Expression& exprCaseDefault = expression.operands[1];
return exprCaseDefault.blocks.front();
}
assert(false && "Switch has no appropriate variant");
return nullptr;
}
CodeScope*
InterpretationScope::processOperatorSwitchVariant(const Expression& expression) {
const ExpandedType& conditionT = function->__pass->man->root->getType(expression.operands.at(0));
const Expression& conditionE = process(expression.operands.at(0));
assert(conditionE.op == Operator::VARIANT);
const string& aliasS = expression.bindings.front();
unsigned caseExpectedId = (int) conditionE.getValueDouble();
auto itFoundValue = std::find_if(++expression.operands.begin(), expression.operands.end(), [caseExpectedId](const auto& caseActualE){
return (unsigned) caseActualE.getValueDouble() == caseExpectedId;
});
assert(itFoundValue != expression.operands.end());
int caseScopeId = itFoundValue - expression.operands.begin() - 1;
auto caseScopeRef = expression.blocks.begin();
std::advance(caseScopeRef, caseScopeId);
InterpretationScope* scopeI12n = function->getScope(*caseScopeRef);
if(conditionE.operands.size()) {
Expression valueE(Operator::LIST, {});
valueE.operands = conditionE.operands;
valueE.bindings = conditionT->__operands.at(caseExpectedId).fields;
scopeI12n->overrideBindings({
{valueE, aliasS}
});
};
return *caseScopeRef;
}
llvm::Value*
InterpretationScope::processLate(const InterpretationOperator& op, const Expression& expression, const Context& context, const std::string& hintAlias) {
switch(op) {
case IF_INTERPRET_CONDITION:
{
CodeScope* scopeResult = processOperatorIf(expression);
llvm::Value* result = context.function->getScopeUnit(scopeResult)->compile();
return result;
}
case SWITCH_INTERPRET_CONDITION:
{
CodeScope* scopeResult = processOperatorSwitch(expression);
llvm::Value* result = context.function->getScopeUnit(scopeResult)->compile();
return result;
}
case SWITCH_VARIANT:
{
CodeScope* scopeResult = processOperatorSwitchVariant(expression);
const Expression& condCrudeE = expression.operands.at(0);
const Expression& condE = process(condCrudeE);
const string identCondition = expression.bindings.front();
auto scopeCompilation = Decorators<CachedScopeDecoratorTag>::getInterface(context.function->getScopeUnit(scopeResult));
if(condE.operands.size()) {
//override value
Symbol symbCondition{ScopedSymbol{scopeResult->__identifiers.at(identCondition), versions::VERSION_NONE}, scopeResult};
scopeCompilation->overrideDeclarations({
{symbCondition, Expression(condE.operands.at(0))}}
);
//set correct type for binding:
const ExpandedType& typeVariant = function->__pass->man->root->getType(condCrudeE);
int conditionIndex = condE.getValueDouble();
ScopedSymbol symbolInternal = scopeResult->getSymbol(identCondition);
scopeResult->__declarations[symbolInternal].bindType(typeVariant->__operands.at(conditionIndex));
}
llvm::Value* result = context.function->getScopeUnit(scopeResult)->compile();
return result;
}
case SWITCH_LATE:
{
return nullptr;
// latereasoning::LateReasoningCompiler compiler(dynamic_cast<InterpretationFunction*>(this->function), context);
// return compiler.processSwitchLateStatement(expression, "");
}
case FOLD_INTERPRET_INPUT:
{
//initialization
const Expression& containerE = process(expression.getOperands().at(0));
const TypeAnnotation& accumT = expression.type;
assert(containerE.op == Operator::LIST);
CodeScope* bodyScope = expression.blocks.front();
const string& elAlias = expression.bindings[0];
Symbol elS{ScopedSymbol{bodyScope->__identifiers.at(elAlias), versions::VERSION_NONE}, bodyScope};
const std::string& accumAlias = expression.bindings[1];
llvm::Value* accumRaw = context.scope->process(expression.getOperands().at(1), accumAlias, accumT);
InterpretationScope* bodyI12n = function->getScope(bodyScope);
auto bodyBrute = Decorators<CachedScopeDecoratorTag>::getInterface(context.function->getScopeUnit(bodyScope));
const std::vector<Expression>& containerVec = containerE.getOperands();
for(size_t i = 0; i < containerVec.size(); ++i) {
const Expression& elE = containerVec[i];
bodyI12n->overrideBindings({
{elE, elAlias}
});
bodyBrute->overrideDeclarations({
{elS, elE}
}); //resets bodyBrute
bodyBrute->bindArg(accumRaw, string(accumAlias));
-
accumRaw = bodyBrute->compile();
- accumRaw->getType()->print(llvm::outs());
- llvm::outs() << "\n\n";
}
return accumRaw;
}
// case FOLD_INF_INTERPRET_INOUT:
// {
// }
//TODO refactor as InterpretationCallStatement class
case CALL_INTERPRET_PARTIAL:
{
const std::string &calleeName = expression.getValueString();
IBruteScope* scopeUnitSelf = context.scope;
ManagedFnPtr callee = this->function->__pass->man->root->findFunction(calleeName);
const I12nFunctionSpec& calleeData = FunctionInterpretationHelper::getSignature(callee);
std::vector<llvm::Value *> argsActual;
PIFnSignature sig;
sig.declaration = callee;
for(size_t no = 0, size = expression.operands.size(); no < size; ++no) {
const Expression& op = expression.operands[no];
if (calleeData.signature.at(no) == INTR_ONLY) {
sig.bindings.push_back(process(op));
continue;
}
argsActual.push_back(scopeUnitSelf->process(op));
}
TargetInterpretation* man = dynamic_cast<TargetInterpretation*> (this->function->__pass);
PIFunction* pifunction = man->getFunction(move(sig));
llvm::Function* raw = pifunction->compile();
boost::scoped_ptr<BruteFnInvocation> statement(new BruteFnInvocation(raw, man->pass->man->llvm));
return (*statement)(move(argsActual));
}
case QUERY_LATE:
{
return nullptr;
// return IntrinsicQueryInstruction(
// dynamic_cast<InterpretationFunction*>(this->function))
// .processLate(expression, context);
}
default: break;
}
assert(false && "Unknown late interpretation operator");
return nullptr;
}
llvm::Value*
InterpretationScope::compile(const Expression& expression, const Context& context, const std::string& hintAlias) {
const InterpretationData& data = Attachments::get<InterpretationData>(expression);
if (data.op != InterpretationOperator::NONE) {
return processLate(data.op, expression, context, hintAlias);
}
Expression result = process(expression);
return context.scope->process(result, hintAlias);
}
Expression
InterpretationScope::process(const Expression& expression) {
#ifndef NDEBUG
if (expression.tags.count("bpoint")) {
std::raise(SIGINT);
}
#endif
PassManager* man = function->__pass->man;
switch (expression.__state) {
case Expression::INVALID:
assert(false);
case Expression::NUMBER:
case Expression::STRING:
return expression;
case Expression::IDENT:
{
Symbol s = Attachments::get<IdentifierSymbol>(expression);
return Parent::processSymbol(s);
}
case Expression::COMPOUND:
break;
default: assert(false);
}
switch (expression.op) {
case Operator::EQU:
{
const Expression& left = process(expression.operands[0]);
const Expression& right = process(expression.operands[1]);
if (left == right) return EXPRESSION_TRUE;
return EXPRESSION_FALSE;
}
case Operator::NE:
{
const Expression& left = process(expression.operands[0]);
const Expression& right = process(expression.operands[1]);
if (left == right) return EXPRESSION_FALSE;
return EXPRESSION_TRUE;
}
case Operator::LOGIC_AND:
{
assert(expression.operands.size() == 1);
return process (expression.operands[0]);
}
// case Operator::LOGIC_OR:
case Operator::CALL:
{
const std::string &fnName = expression.getValueString();
ManagedFnPtr fnAst = man->root->findFunction(fnName);
InterpretationFunction* fnUnit = this->function->__pass->getFunction(fnAst);
vector<Expression> args;
args.reserve(expression.getOperands().size());
for(size_t i = 0, size = expression.getOperands().size(); i < size; ++i) {
args.push_back(process(expression.getOperands()[i]));
}
return fnUnit->process(args);
}
case Operator::CALL_INTRINSIC:
{
const Expression& opCallIntrCrude = expression;
vector<Expression> argsActual;
argsActual.reserve(opCallIntrCrude.getOperands().size());
for(const auto& op: opCallIntrCrude.getOperands()) {
argsActual.push_back(process(op));
}
Expression opCallIntr(Operator::CALL_INTRINSIC, {});
opCallIntr.setValueDouble(opCallIntrCrude.getValueDouble());
opCallIntr.operands = argsActual;
compilation::IntrinsicCompiler compiler(man);
return compiler.interpret(opCallIntr);
}
case Operator::QUERY:
{
return Expression();
// return IntrinsicQueryInstruction(dynamic_cast<InterpretationFunction*>(this->function))
// .process(expression);
}
case Operator::QUERY_LATE:
{
assert(false && "Can't be interpretated");
return Expression();
}
case Operator::IF:
{
CodeScope* scopeResult = processOperatorIf(expression);
return function->getScope(scopeResult)->processScope();
}
case Operator::SWITCH:
{
CodeScope* scopeResult = processOperatorSwitch(expression);
return function->getScope(scopeResult)->processScope();
}
case Operator::SWITCH_VARIANT:
{
CodeScope* scopeResult = processOperatorSwitchVariant(expression);
return function->getScope(scopeResult)->processScope();
}
case Operator::VARIANT:
{
Expression result{Operator::VARIANT, {}};
result.setValueDouble(expression.getValueDouble());
for(const Expression& op: expression.operands){
result.operands.push_back(process(op));
}
return result;
}
case Operator::INDEX:
{
Expression aggrE = process(expression.operands[0]);
for (size_t keyId = 1; keyId < expression.operands.size(); ++keyId) {
const Expression& keyE = process(expression.operands[keyId]);
if (keyE.__state == Expression::STRING) {
const string& fieldExpectedS = keyE.getValueString();
unsigned fieldId;
for(fieldId = 0; fieldId < aggrE.bindings.size(); ++fieldId){
if (aggrE.bindings.at(fieldId) == fieldExpectedS){break;}
}
assert(fieldId < aggrE.bindings.size());
aggrE = Expression(aggrE.operands.at(fieldId));
continue;
}
if (keyE.__state == Expression::NUMBER) {
int opId = keyE.getValueDouble();
aggrE = Expression(aggrE.operands.at(opId));
continue;
}
assert(false && "Inappropriate key");
}
return aggrE;
}
case Operator::FOLD:
{
const Expression& exprInput = process(expression.getOperands()[0]);
const Expression& exprInit = process(expression.getOperands()[1]);
const std::string& argEl = expression.bindings[0];
const std::string& argAccum = expression.bindings[1];
InterpretationScope* body = function->getScope(expression.blocks.front());
Expression accum = exprInit;
for(size_t size = exprInput.getOperands().size(), i = 0; i < size; ++i) {
body->overrideBindings({
{exprInput.getOperands()[i], argEl},
{accum, argAccum}
});
accum = body->processScope();
}
return accum;
}
case Operator::LIST:
case Operator::LIST_RANGE:
{
Expression result(expression.op,{});
result.operands.resize(expression.operands.size());
result.bindings = expression.bindings;
int keyId = 0;
for(const Expression& opCurrent : expression.operands) {
result.operands[keyId++] = process(opCurrent);
}
return result;
}
// case Operator::MAP: {
// break;
// }
default: break;
}
return expression;
}
InterpretationFunction*
TargetInterpretation::getFunction(IBruteFunction* unit) {
if (__dictFunctionsByUnit.count(unit)) {
return __dictFunctionsByUnit.at(unit);
}
InterpretationFunction* f = new InterpretationFunction(unit->getASTFn(), this);
__dictFunctionsByUnit.emplace(unit, f);
assert(__functions.emplace(unit->getASTFn().id(), f).second);
return f;
}
PIFunction*
TargetInterpretation::getFunction(PIFnSignature&& sig) {
auto f = __pifunctions.find(sig);
if (f != __pifunctions.end()) {
return f->second;
}
PIFunction* result = new PIFunction(PIFnSignature(sig), __pifunctions.size(), this);
__pifunctions.emplace(move(sig), result);
assert(__dictFunctionsByUnit.emplace(result->fnRaw, result).second);
return result;
}
InterpretationScope*
TargetInterpretation::transformContext(const Context& c) {
return this->getFunction(c.function)->getScope(c.scope->scope);
}
llvm::Value*
TargetInterpretation::compile(const Expression& expression, const Context& ctx, const std::string& hintAlias) {
return transformContext(ctx)->compile(expression, ctx, hintAlias);
}
InterpretationFunction::InterpretationFunction(const ManagedFnPtr& function, Target<TargetInterpretation>* target)
: Function<TargetInterpretation>(function, target) { }
Expression
InterpretationFunction::process(const std::vector<Expression>& args) {
InterpretationScope* body = getScope(__function->__entry);
list<pair<Expression, string>> bindings;
for(size_t i = 0, size = args.size(); i < size; ++i) {
bindings.push_back(make_pair(args.at(i), body->scope->__bindings.at(i)));
}
body->overrideBindings(bindings);
return body->processScope();
}
// Partial function interpretation
typedef BasicBruteFunction BruteFunction;
class PIBruteFunction : public BruteFunction{
public:
PIBruteFunction(ManagedFnPtr f, std::set<size_t>&& arguments, size_t id, CompilePass* p)
: BruteFunction(f, p), argumentsActual(move(arguments)), __id(id) { }
protected:
std::vector<llvm::Type*>
prepareSignature() override {
LLVMLayer* llvm = BruteFunction::pass->man->llvm;
AST* ast = BruteFunction::pass->man->root;
CodeScope* entry = IBruteFunction::__entry;
std::vector<llvm::Type*> signature;
for(size_t no : argumentsActual) {
VNameId argId = entry->__identifiers.at(entry->__bindings.at(no));
ScopedSymbol arg{argId, versions::VERSION_NONE};
signature.push_back(llvm->toLLVMType(ast->expandType(entry->__declarations.at(arg).type)));
}
return signature;
}
llvm::Function::arg_iterator
prepareBindings() override{
CodeScope* entry = IBruteFunction::__entry;
IBruteScope* entryCompilation = BruteFunction::getScopeUnit(entry);
llvm::Function::arg_iterator fargsI = BruteFunction::raw->arg_begin();
for(size_t no : argumentsActual) {
ScopedSymbol arg{entry->__identifiers.at(entry->__bindings.at(no)), versions::VERSION_NONE};
entryCompilation->bindArg(&*fargsI, arg);
fargsI->setName(entry->__bindings.at(no));
++fargsI;
}
return fargsI;
}
virtual std::string
prepareName() override {
return BruteFunction::prepareName() + "_" + std::to_string(__id);
}
private:
std::set<size_t> argumentsActual;
size_t __id;
} ;
PIFunction::PIFunction(PIFnSignature&& sig, size_t id, TargetInterpretation* target)
: InterpretationFunction(sig.declaration, target), instance(move(sig)) {
const I12nFunctionSpec& functionData = FunctionInterpretationHelper::getSignature(instance.declaration);
std::set<size_t> argumentsActual;
for (size_t no = 0, size = functionData.signature.size(); no < size; ++no) {
if (functionData.signature.at(no) != INTR_ONLY) {
argumentsActual.insert(no);
}
}
fnRaw = new PIBruteFunction(instance.declaration, move(argumentsActual), id, target->pass);
CodeScope* entry = instance.declaration->__entry;
auto entryUnit = Decorators<CachedScopeDecoratorTag>::getInterface<>(fnRaw->getEntry());
InterpretationScope* entryIntrp = InterpretationFunction::getScope(entry);
list<pair<Expression, std::string>> bindingsPartial;
list<pair<Symbol, Expression>> declsPartial;
for(size_t no = 0, sigNo = 0, size = entry->__bindings.size(); no < size; ++no) {
if(functionData.signature.at(no) == INTR_ONLY) {
bindingsPartial.push_back({instance.bindings[sigNo], entry->__bindings[no]});
VNameId argId = entry->__identifiers.at(entry->__bindings[no]);
Symbol argSymbol{ScopedSymbol
{argId, versions::VERSION_NONE}, entry};
declsPartial.push_back({argSymbol, instance.bindings[sigNo]});
++sigNo;
}
}
entryIntrp->overrideBindings(bindingsPartial);
entryUnit->overrideDeclarations(declsPartial);
}
llvm::Function*
PIFunction::compile() {
llvm::Function* raw = fnRaw->compile();
return raw;
}
bool operator<(const PIFnSignature& lhs, const PIFnSignature& rhs) {
if (lhs.declaration.id() != rhs.declaration.id()) {
return lhs.declaration.id() < rhs.declaration.id();
}
return lhs.bindings < rhs.bindings;
}
bool operator<(const PIFnSignature& lhs, PIFunction * const rhs) {
return lhs < rhs->instance;
}
bool operator<(PIFunction * const lhs, const PIFnSignature& rhs) {
return lhs->instance < rhs;
}
}
}
/** \class xreate::interpretation::InterpretationFunction
*
* Holds list of xreate::interpretation::InterpretationScope 's focused on interpretation of individual code scopes
*
* There is particulat subclass PIFunction intended to represent partially interpreted functions.
*\sa TargetInterpretation, [Interpretation Concept](/d/concepts/interpretation/)
*/
/** \class xreate::interpretation::TargetInterpretation
*
* TargetInterpretation is executed during compilation and is intended to preprocess eligible for interpretation parts of a source code.
*
* Keeps a list of InterpretationFunction / PIFunction that represent interpretation for an individual functions.
*
* There is \ref InterpretationScopeDecorator that embeds interpretation to an overall compilation process.
* \sa InterpretationPass, compilation::Target, [Interpretation Concept](/d/concepts/interpretation/)
*
*/
diff --git a/cpp/src/llvmlayer.cpp b/cpp/src/llvmlayer.cpp
index ac179d8..1474b50 100644
--- a/cpp/src/llvmlayer.cpp
+++ b/cpp/src/llvmlayer.cpp
@@ -1,283 +1,295 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* llvmlayer.cpp
*
* Author: pgess <v.melnychenko@xreate.org>
*/
/**
* \file llvmlayer.h
* \brief Bytecode generation
*/
#include "ast.h"
#include "llvmlayer.h"
#include "analysis/typehints.h"
#ifdef XREATE_ENABLE_EXTERN
#include "ExternLayer.h"
#endif
+#include <compilation/containers.h>
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Verifier.h"
+#include "llvm/IR/IRPrintingPasses.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/MCJIT.h"
#include "llvm/Support/TargetSelect.h"
#include <iostream>
#include <cmath>
+
using namespace llvm;
using namespace xreate;
using namespace xreate::typehints;
using namespace std;
LLVMLayer::LLVMLayer(AST *root)
: llvmContext(),
irBuilder(llvmContext),
ast(root),
module(new llvm::Module(root->getModuleName(), llvmContext)){
llvm::InitializeNativeTarget();
llvm::InitializeNativeTargetAsmPrinter();
llvm::EngineBuilder builder;
TargetMachine *target = builder.selectTarget();
module->setDataLayout(target->createDataLayout());
#ifdef XREATE_ENABLE_EXTERN
layerExtern = new ExternLayer(this);
layerExtern->init(root);
#endif
}
void *
LLVMLayer::getFunctionPointer(llvm::Function *function){
uint64_t entryAddr = jit->getFunctionAddress(function->getName().str());
return (void *) entryAddr;
}
void
LLVMLayer::initJit(){
std::string ErrStr;
llvm::EngineBuilder builder(std::unique_ptr<llvm::Module>(module.release()));
jit.reset(builder
.setEngineKind(llvm::EngineKind::JIT)
+ .setTargetOptions(optsTarget)
+ .setOptLevel(optsLevel)
.setErrorStr(&ErrStr)
.setVerifyModules(true)
.create()
);
}
void
LLVMLayer::print(){
llvm::PassManager<llvm::Module> PM;
PM.addPass(llvm::PrintModulePass(llvm::outs(), "banner"));
llvm::AnalysisManager<llvm::Module> aman;
PM.run(*module.get(), aman);
}
void
LLVMLayer::moveToGarbage(void *o){
__garbage.push_back(o);
}
llvm::Type*
-LLVMLayer::toLLVMType(const ExpandedType &ty) const{
+LLVMLayer::toLLVMType(const ExpandedType &ty, const Expression& expr){
TypeAnnotation t = ty.get();
switch(t.__operator){
case TypeOperator::ARRAY:{
- //see ArrayIR::getRawT()
- return nullptr;
+ if (expr.tags.size() == 0) return nullptr; //TODO shouldn't be invalid
+
+ return containers::IContainersIR::getRawType(expr, ty, this);
}
case TypeOperator::RECORD:{
std::vector<llvm::Type *> packVec;
packVec.reserve(t.__operands.size());
std::transform(t.__operands.begin(), t.__operands.end(), std::inserter(packVec, packVec.end()),
[this](const TypeAnnotation &t){
return toLLVMType(ExpandedType(TypeAnnotation(t)));
});
llvm::ArrayRef<llvm::Type *> packArr(packVec);
return llvm::StructType::get(llvmContext, packArr, false);
};
case TypeOperator::REF:{
TypeAnnotation tyRef = t.__operands.at(0);
assert(tyRef.__operator == TypeOperator::ALIAS);
llvm::StructType *tyOpaqRaw = llvm::StructType::create(llvmContext, tyRef.__valueCustom);
llvm::PointerType *tyRefRaw = llvm::PointerType::get(tyOpaqRaw, 0);
return tyRefRaw;
};
case TypeOperator::ALIAS:{
#ifdef XREATE_ENABLE_EXTERN
//Look in extern types
clang::QualType qt = layerExtern->lookupType(t.__valueCustom);
return layerExtern->toLLVMType(qt);
#else
assert(false);
#endif
};
//DEBT omit ID field in case of single variant.
case TypeOperator::VARIANT:{
/* Variant Type Layout:
* {
* id :: i8, Holds stored variant id
* storage:: type of biggest variant
* }
*/
uint64_t sizeStorage = 0;
llvm::Type *typStorageRaw = llvm::Type::getVoidTy(llvmContext);
for(const TypeAnnotation &subtype : t.__operands){
llvm::Type *subtypeRaw = toLLVMType(ExpandedType(subtype));
if(subtypeRaw->isVoidTy()) continue;
uint64_t sizeSubtype = module->getDataLayout().getTypeStoreSize(subtypeRaw);
if(sizeSubtype > sizeStorage){
sizeStorage = sizeSubtype;
typStorageRaw = subtypeRaw;
}
}
std::vector<llvm::Type *> layout;
layout.push_back(llvm::Type::getInt8Ty(llvmContext)); //id
const bool flagHoldsData = sizeStorage > 0;
if(flagHoldsData){
layout.push_back(typStorageRaw); //storage
}
return llvm::StructType::get(llvmContext, llvm::ArrayRef<llvm::Type *>(layout));
}
case TypeOperator::NONE:{
switch(t.__value){
case TypePrimitive::Bool:
return llvm::Type::getInt1Ty(llvmContext);
case TypePrimitive::I8:
return llvm::Type::getInt8Ty(llvmContext);
case TypePrimitive::I32:
return llvm::Type::getInt32Ty(llvmContext);
case TypePrimitive::I64:
return llvm::Type::getInt64Ty(llvmContext);
case TypePrimitive::Int: {
// IntBits hintSize;
// if (existsSize(hintSize)){
// return llvm::IntegerType::getIntNTy(llvmContext, hintSize.n);
// }
TypesHelper helper(this);
return helper.getPreferredIntTy();
}
case TypePrimitive::Float:
return llvm::Type::getDoubleTy(llvmContext);
case TypePrimitive::String:
return llvm::Type::getInt8PtrTy(llvmContext);
case TypePrimitive::Invalid:
return llvm::Type::getVoidTy(llvmContext);
default:
assert(false);
}
}
default:
assert(false);
}
assert(false);
return nullptr;
}
bool
TypesHelper::isRecordT(const ExpandedType &ty){
const TypeAnnotation &t = ty.get();
if(t.__operator == TypeOperator::RECORD){
return true;
}
if(t.__operator != TypeOperator::ALIAS){
return false;
}
#ifdef XREATE_ENABLE_EXTERN
clang::QualType tqual = llvm->layerExtern->lookupType(t.__valueCustom);
const clang::Type * raw = tqual.getTypePtr();
// TODO skip ALL the pointers until non-pointer type found
if (raw->isStructureType()) return true;
if (!raw->isAnyPointerType()) return false;
clang::QualType pointee = raw->getPointeeType();
return pointee->isStructureType();
#else
assert(false);
return false;
#endif
}
bool
TypesHelper::isArrayT(const Expanded<TypeAnnotation>& ty){
const TypeAnnotation &t = ty.get();
if(t.__operator == TypeOperator::ARRAY){
return true;
}
return false;
}
bool
TypesHelper::isPointerT(const ExpandedType &ty){
if(ty.get().__operator != TypeOperator::ALIAS) return false;
#ifdef XREATE_ENABLE_EXTERN
clang::QualType qt = llvm->layerExtern->lookupType(ty.get().__valueCustom);
return llvm->layerExtern->isPointer(qt);
#else
assert(false);
return false;
#endif
}
bool
TypesHelper::isIntegerT(const Expanded<TypeAnnotation>& ty){
return
(ty->__operator == TypeOperator::NONE) &&
((ty->__value == TypePrimitive::Bool) ||
(ty->__value == TypePrimitive::I8) ||
(ty->__value == TypePrimitive::I32) ||
(ty->__value == TypePrimitive::I64) ||
(ty->__value == TypePrimitive::Int));
}
std::vector<std::string>
TypesHelper::getRecordFields(const ExpandedType &t){
#ifdef XREATE_ENABLE_EXTERN
return (t.get().__operator == TypeOperator::RECORD)
? t.get().fields
: llvm->layerExtern->getStructFields(
llvm->layerExtern->lookupType(t.get().__valueCustom));
#else
assert(t.get().__operator == TypeOperator::RECORD);
return t.get().fields;
#endif
}
llvm::IntegerType *
TypesHelper::getPreferredIntTy() const{
unsigned sizePreferred = llvm->module->getDataLayout().getLargestLegalIntTypeSizeInBits();
return llvm::IntegerType::getIntNTy(llvm->llvmContext, sizePreferred);
}
\ No newline at end of file
diff --git a/cpp/src/llvmlayer.h b/cpp/src/llvmlayer.h
index 410cb25..7ea03b3 100644
--- a/cpp/src/llvmlayer.h
+++ b/cpp/src/llvmlayer.h
@@ -1,71 +1,70 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* llvmlayer.h
*
* Author: pgess <v.melnychenko@xreate.org>
*/
#ifndef LLVMLAYER_H
#define LLVMLAYER_H
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/PassManager.h"
-#include "llvm/IR/CallingConv.h"
-#include "llvm/IR/Verifier.h"
-#include "llvm/IR/IRPrintingPasses.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "ast.h"
#include "utils.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/Target/TargetOptions.h"
+
+namespace llvm {
+ class ExecutionEngine;
+}
+
namespace xreate {
-class AST;
class ExternLayer;
-class TypeAnnotation;
/** \brief A wrapper over LLVM toolchain to generate and execute bytecode */
class LLVMLayer {
public:
LLVMLayer(AST* rootAST);
mutable llvm::LLVMContext llvmContext;
llvm::IRBuilder<> irBuilder;
AST *ast = 0;
ExternLayer *layerExtern =0;
std::unique_ptr<llvm::Module> module;
std::unique_ptr<llvm::ExecutionEngine> jit;
+ llvm::TargetOptions optsTarget;
+ llvm::CodeGenOpt::Level optsLevel = llvm::CodeGenOpt::None;
void moveToGarbage(void *o);
- llvm::Type* toLLVMType(const Expanded<TypeAnnotation>& ty) const;
+ llvm::Type* toLLVMType(const Expanded<TypeAnnotation>& ty, const Expression& expr = Expression());
void print();
void* getFunctionPointer(llvm::Function* function);
void initJit();
private:
llvm::Type* toLLVMType(const Expanded<TypeAnnotation>& ty, std::map<int, llvm::StructType*>& conjunctions) const;
std::vector<void *> __garbage;
};
class TypesHelper {
public:
bool isArrayT(const Expanded<TypeAnnotation>& ty);
bool isRecordT(const Expanded<TypeAnnotation>& ty);
bool isPointerT(const Expanded<TypeAnnotation>& ty);
bool isIntegerT(const Expanded<TypeAnnotation>& ty);
llvm::IntegerType* getPreferredIntTy() const;
std::vector<std::string> getRecordFields(const Expanded<TypeAnnotation>& t);
TypesHelper(const LLVMLayer* llvmlayer): llvm(llvmlayer){}
private:
const LLVMLayer* llvm;
};
}
#endif // LLVMLAYER_H
diff --git a/cpp/src/pass/compilepass.cpp b/cpp/src/pass/compilepass.cpp
index e3a6fc4..012b38c 100644
--- a/cpp/src/pass/compilepass.cpp
+++ b/cpp/src/pass/compilepass.cpp
@@ -1,879 +1,886 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Author: pgess <v.melnychenko@xreate.org>
*
* compilepass.cpp
*/
/**
* \file compilepass.h
* \brief Main compilation routine. See \ref xreate::CompilePass
*/
#include "compilepass.h"
#include "transcendlayer.h"
#include "ast.h"
#include "llvmlayer.h"
#include "compilation/decorators.h"
#include "compilation/pointers.h"
#include "analysis/typeinference.h"
#include "compilation/control.h"
#include "compilation/demand.h"
#include "analysis/resources.h"
#ifdef XREATE_ENABLE_EXTERN
#include "ExternLayer.h"
#endif
#include "compilation/containers.h"
#include "compilation/containers/arrays.h"
#ifndef XREATE_CONFIG_MIN
#include "query/containers.h"
#include "pass/versionspass.h"
#include "compilation/targetinterpretation.h"
#endif
#include <boost/optional.hpp>
#include <memory>
using namespace std;
using namespace llvm;
using namespace xreate::typehints;
using namespace xreate::containers;
namespace xreate{
namespace compilation{
#define DEFAULT(x) (hintAlias.empty()? x: hintAlias)
std::string
BasicBruteFunction::prepareName() {
AST* ast = IBruteFunction::pass->man->root;
string name = ast->getFnSpecializations(__function->__name).size() > 1 ?
__function->__name + std::to_string(__function.id()) :
__function->__name;
return name;
}
std::vector<llvm::Type*>
BasicBruteFunction::prepareSignature() {
CodeScope* entry = __function->__entry;
return getScopeSignature(entry);
}
llvm::Type*
BasicBruteFunction::prepareResult() {
LLVMLayer* llvm = IBruteFunction::pass->man->llvm;
AST* ast = IBruteFunction::pass->man->root;
CodeScope* entry = __function->__entry;
return llvm->toLLVMType(ast->expandType(entry->__declarations.at(ScopedSymbol::RetSymbol).type));
}
llvm::Function::arg_iterator
BasicBruteFunction::prepareBindings() {
CodeScope* entry = __function->__entry;
IBruteScope* entryCompilation = IBruteFunction::getScopeUnit(entry);
llvm::Function::arg_iterator fargsI = IBruteFunction::raw->arg_begin();
for (std::string &arg : entry->__bindings) {
ScopedSymbol argid{entry->__identifiers[arg], versions::VERSION_NONE};
entryCompilation->bindArg(&*fargsI, argid);
fargsI->setName(arg);
++fargsI;
}
return fargsI;
}
void
BasicBruteFunction::applyAttributes(){}
IBruteScope::IBruteScope(const CodeScope * const codeScope, IBruteFunction* f, CompilePass* compilePass)
: pass(compilePass), function(f), scope(codeScope), lastBlockRaw(nullptr) { }
llvm::Value*
BruteFnInvocation::operator()(std::vector<llvm::Value *>&& args, const std::string& hintDecl) {
if (__calleeTy) {
auto argsFormalT = __calleeTy->params();
size_t sizeArgsF = __calleeTy->getNumParams();
assert(args.size() >= sizeArgsF);
assert(__calleeTy->isVarArg() || args.size() == sizeArgsF);
auto argFormalT = argsFormalT.begin();
for(size_t argId = 0; argId < args.size(); ++argId){
if(argFormalT != argsFormalT.end()){
args[argId] = typeinference::doAutomaticTypeConversion(
args.at(argId), *argFormalT, llvm->irBuilder);
++argFormalT;
}
}
}
//Do not name function call that returns Void.
std::string hintName = (!__calleeTy->getReturnType()->isVoidTy()) ? hintDecl : "";
return llvm->irBuilder.CreateCall(__calleeTy, __callee, args, hintName);
}
llvm::Value*
HiddenArgsFnInvocation::operator() (std::vector<llvm::Value *>&& args, const std::string& hintDecl) {
args.insert(args.end(), __args.begin(), __args.end());
return __parent->operator ()(std::move(args), hintDecl);
}
class CallStatementInline : public IFnInvocation{
public:
CallStatementInline(IBruteFunction* caller, IBruteFunction* callee, LLVMLayer* l)
: __caller(caller), __callee(callee), llvm(l) { }
llvm::Value* operator()(std::vector<llvm::Value *>&& args, const std::string& hintDecl) {
return nullptr;
}
private:
IBruteFunction* __caller;
IBruteFunction* __callee;
LLVMLayer* llvm;
bool
isInline() {
// Symbol ret = Symbol{0, function->__entry};
// bool flagOnTheFly = SymbolAttachments::get<IsImplementationOnTheFly>(ret, false);
//TODO consider inlining
return false;
}
} ;
BasicBruteScope::BasicBruteScope(const CodeScope * const codeScope, IBruteFunction* f, CompilePass* compilePass)
: IBruteScope(codeScope, f, compilePass) { }
llvm::Value*
BasicBruteScope::processSymbol(const Symbol& s, std::string hintRetVar) {
Expression declaration = CodeScope::getDefinition(s);
const CodeScope* scopeExternal = s.scope;
IBruteScope* scopeBruteExternal = IBruteScope::function->getScopeUnit(scopeExternal);
assert(scopeBruteExternal->lastBlockRaw);
llvm::Value* resultRaw;
llvm::BasicBlock* blockOwn = pass->man->llvm->irBuilder.GetInsertBlock();
if (scopeBruteExternal->lastBlockRaw == blockOwn) {
resultRaw = scopeBruteExternal->process(declaration, hintRetVar);
scopeBruteExternal->lastBlockRaw = lastBlockRaw =
pass->man->llvm->irBuilder.GetInsertBlock();
} else {
pass->man->llvm->irBuilder.SetInsertPoint(scopeBruteExternal->lastBlockRaw);
resultRaw = scopeBruteExternal->processSymbol(s, hintRetVar);
pass->man->llvm->irBuilder.SetInsertPoint(blockOwn);
}
return resultRaw;
}
IFnInvocation*
BasicBruteScope::findFunction(const Expression& opCall) {
const std::string& calleeName = opCall.getValueString();
LLVMLayer* llvm = pass->man->llvm;
const std::list<ManagedFnPtr>& specializations = pass->man->root->getFnSpecializations(calleeName);
#ifdef XREATE_ENABLE_EXTERN
//if no specializations registered - check external function
if (specializations.size() == 0) {
llvm::Function* external = llvm->layerExtern->lookupFunction(calleeName);
llvm::outs() << "Debug/External function: " << calleeName;
external->getType()->print(llvm::outs(), true);
llvm::outs() << "\n";
return new BruteFnInvocation(external, llvm);
}
#endif
//There should be only one specialization without any valid guards at this point
return new BruteFnInvocation(pass->getFunctionUnit(
pass->man->root->findFunction(calleeName))->compile(),
llvm);
}
//DISABLEDFEATURE transformations
// if (pass->transformations->isAcceptable(expr)){
// return pass->transformations->transform(expr, result, ctx);
// }
llvm::Value*
BasicBruteScope::process(const Expression& expr, const std::string& hintAlias, const TypeAnnotation& expectedT) {
llvm::Value *leftRaw;
llvm::Value *rightRaw;
LLVMLayer& l = *pass->man->llvm;
Context ctx{this, function, pass};
xreate::compilation::ControlIR controlIR = xreate::compilation::ControlIR({this, function, pass});
switch (expr.op) {
case Operator::ADD:
case Operator::SUB: case Operator::MUL: case Operator::MOD:
case Operator::DIV: case Operator::EQU: case Operator::LSS:
case Operator::GTR: case Operator::NE: case Operator::LSE:
case Operator::GTE:
assert(expr.__state == Expression::COMPOUND);
assert(expr.operands.size() == 2);
leftRaw = process(expr.operands.at(0));
rightRaw = process(expr.operands.at(1));
break;
default:;
}
switch (expr.op) {
case Operator::AND:
{
assert(expr.operands.size());
- llvm::Value* resultRaw = process(expr.operands[0]);
+ llvm::Value* resultRaw = process(expr.operands.at(0));
+ if (expr.operands.size() == 1) return resultRaw;
+
for(size_t i=1; i< expr.operands.size()-1; ++i){
resultRaw = l.irBuilder.CreateAnd(resultRaw, process(expr.operands.at(i)));
}
return l.irBuilder.CreateAnd(resultRaw, process(expr.operands.at(expr.operands.size()-1)), hintAlias);
}
case Operator::OR:
{
assert(expr.operands.size());
- llvm::Value* resultRaw = process(expr.operands[0]);
+ llvm::Value* resultRaw = process(expr.operands.at(0));
+ if (expr.operands.size() == 1) return resultRaw;
+
for(size_t i=1; i< expr.operands.size()-1; ++i){
resultRaw = l.irBuilder.CreateOr(resultRaw, process(expr.operands.at(i)));
}
return l.irBuilder.CreateOr(resultRaw, process(expr.operands.at(expr.operands.size()-1)), hintAlias);
}
case Operator::ADD:
{
return l.irBuilder.CreateAdd(leftRaw, rightRaw, DEFAULT("addv"));
}
case Operator::SUB:
return l.irBuilder.CreateSub(leftRaw, rightRaw, DEFAULT("tmp_sub"));
break;
case Operator::MUL:
return l.irBuilder.CreateMul(leftRaw, rightRaw, DEFAULT("tmp_mul"));
break;
case Operator::DIV:
if (leftRaw->getType()->isIntegerTy()) return l.irBuilder.CreateSDiv(leftRaw, rightRaw, DEFAULT("tmp_div"));
if (leftRaw->getType()->isFloatingPointTy()) return l.irBuilder.CreateFDiv(leftRaw, rightRaw, DEFAULT("tmp_div"));
break;
case Operator::MOD:{
return l.irBuilder.CreateSRem(leftRaw, rightRaw, hintAlias);
}
case Operator::EQU: {
if (leftRaw->getType()->isIntegerTy()) return l.irBuilder.CreateICmpEQ(leftRaw, rightRaw, DEFAULT("tmp_equ"));
if (leftRaw->getType()->isFloatingPointTy()) return l.irBuilder.CreateFCmpOEQ(leftRaw, rightRaw, DEFAULT("tmp_equ"));
const ExpandedType& leftT = pass->man->root->getType(expr.operands[0]);
const ExpandedType& rightT = pass->man->root->getType(expr.operands[1]);
if(leftT->__operator == TypeOperator::VARIANT && rightT->__operator == TypeOperator::VARIANT){
llvm::Type* selectorT = llvm::cast<llvm::StructType>(leftRaw->getType())->getElementType(0);
llvm::Value* leftUnwapped = typeinference::doAutomaticTypeConversion(leftRaw, selectorT, l.irBuilder);
llvm::Value* rightUnwapped = typeinference::doAutomaticTypeConversion(rightRaw, selectorT, l.irBuilder);
return l.irBuilder.CreateICmpEQ(leftUnwapped, rightUnwapped, DEFAULT("tmp_equ"));
}
break;
}
case Operator::NE:
return l.irBuilder.CreateICmpNE(leftRaw, rightRaw, DEFAULT("tmp_ne"));
break;
case Operator::LSS:
return l.irBuilder.CreateICmpSLT(leftRaw, rightRaw, DEFAULT("tmp_lss"));
break;
case Operator::LSE:
return l.irBuilder.CreateICmpSLE(leftRaw, rightRaw, DEFAULT("tmp_lse"));
break;
case Operator::GTR:
return l.irBuilder.CreateICmpSGT(leftRaw, rightRaw, DEFAULT("tmp_gtr"));
break;
case Operator::GTE:
return l.irBuilder.CreateICmpSGE(leftRaw, rightRaw, DEFAULT("tmp_gte"));
break;
case Operator::NEG:
{
leftRaw = process(expr.operands[0]);
ExpandedType leftTy = pass->man->root->getType(expr.operands[0]);
if (leftTy->__value == TypePrimitive::Bool){
return l.irBuilder.CreateNot(leftRaw, hintAlias);
} else {
return l.irBuilder.CreateNeg(leftRaw, hintAlias);
}
break;
}
case Operator::CALL:
{
assert(expr.__state == Expression::COMPOUND);
shared_ptr<IFnInvocation> callee(findFunction(expr));
const std::string& nameCallee = expr.getValueString();
//prepare arguments
std::vector<llvm::Value *> args;
args.reserve(expr.operands.size());
std::transform(expr.operands.begin(), expr.operands.end(), std::inserter(args, args.end()),
[this](const Expression & operand) {
return process(operand);
}
);
return (*callee)(move(args), DEFAULT("res_" + nameCallee));
}
case Operator::IF:
{
return controlIR.compileIf(expr, DEFAULT("tmp_if"));
}
case Operator::SWITCH:
{
return controlIR.compileSwitch(expr, DEFAULT("tmp_switch"));
}
case Operator::LOGIC_AND:
{
assert(expr.operands.size() == 1);
return process(expr.operands[0]);
}
case Operator::LIST: //init record or array
{
ExpandedType exprT = l.ast->getType(expr, expectedT);
TypesHelper helper(pass->man->llvm);
enum {RECORD, ARRAY} kind;
if (helper.isArrayT(exprT)){
kind = ARRAY;
} else if (helper.isRecordT(exprT)){
kind = RECORD;
} else {
assert(false && "Inapproriate type");
}
#ifdef XREATE_ENABLE_EXTERN
if (exprT->__operator == TypeOperator::ALIAS){
if (l.layerExtern->isArrayType(exprT->__valueCustom)){
flagIsArray = true;
break;
}
if (l.layerExtern->isRecordType(exprT->__valueCustom)){
flagIsArray = false;
break;
}
assert(false && "Inapproriate external type");
}
#endif
switch(kind){
case RECORD:{
const std::vector<string> fieldsFormal = helper.getRecordFields(exprT);
containers::RecordIR irRecords(ctx);
llvm::StructType *recordTRaw = llvm::cast<llvm::StructType>(l.toLLVMType(exprT));
llvm::Value *resultRaw = irRecords.init(recordTRaw);
return irRecords.update(resultRaw, exprT, expr);
}
case ARRAY: {
std::unique_ptr<containers::IContainersIR> containerIR(
containers::IContainersIR::create(expr, expectedT, ctx));
llvm::Value* aggrRaw = containerIR->init(hintAlias);
return containerIR->update(aggrRaw, expr, hintAlias);
}
}
break;
};
case Operator::LIST_RANGE:
{
assert(false); //no compilation phase for a range list
// return InstructionList(this).compileConstantArray(expr, l, hintRetVar);
};
case Operator::MAP:
{
assert(expr.blocks.size());
containers::ImplementationType implType = containers::IContainersIR::getImplementation(expr, pass->man->root);
switch(implType){
case containers::ImplementationType::SOLID: {
ExpandedType exprT = pass->man->root->getType(expr, expectedT);
ArrayHint hint = find(expr, ArrayHint{});
containers::ArrayIR compiler(exprT, hint, ctx);
return compiler.operatorMap(expr, DEFAULT("map"));
}
case containers::ImplementationType::ON_THE_FLY:{
FlyHint hint = find<FlyHint>(expr, {});
containers::FlyIR compiler(hint, ctx);
return compiler.operatorMap(expr, DEFAULT("map"));
}
default:
break;
}
assert(false && "Operator MAP does not support this container impl");
return nullptr;
};
case Operator::FOLD:
{
return controlIR.compileFold(expr, DEFAULT("fold"));
};
case Operator::FOLD_INF:
{
return controlIR.compileFoldInf(expr, DEFAULT("fold"));
};
case Operator::INDEX:
{
assert(expr.operands.size() > 1);
const Expression& aggrE = expr.operands[0];
const ExpandedType& aggrT = pass->man->root->getType(aggrE);
llvm::Value* aggrRaw = process(aggrE);
switch (aggrT->__operator) {
case TypeOperator::RECORD:
{
list<string> fieldsList;
for(auto opIt = ++expr.operands.begin(); opIt!=expr.operands.end(); ++opIt){
fieldsList.push_back(getIndexStr(*opIt));
}
return controlIR.compileStructIndex(aggrRaw, aggrT, fieldsList);
};
case TypeOperator::ARRAY:
{
std::vector<llvm::Value*> indexes;
std::transform(++expr.operands.begin(), expr.operands.end(), std::inserter(indexes, indexes.end()),
[this] (const Expression & op) {
return process(op);
}
);
std::unique_ptr<containers::IContainersIR> containersIR(
containers::IContainersIR::create(aggrE, expectedT, ctx)
);
containers::ArrayIR* arraysIR = static_cast<containers::ArrayIR*>(containersIR.get());
return arraysIR->get(aggrRaw, indexes, hintAlias);
};
default:
assert(false);
}
};
case Operator::CALL_INTRINSIC:
{
// const std::string op = expr.getValueString();
//
// if (op == "copy") {
// llvm::Value* result = process(expr.getOperands().at(0));
//
// auto decoratorVersions = Decorators<VersionsScopeDecoratorTag>::getInterface(this);
// llvm::Value* storage = decoratorVersions->processIntrinsicInit(result->getType());
// decoratorVersions->processIntrinsicCopy(result, storage);
//
// return l.irBuilder.CreateLoad(storage, hintAlias);
// }
assert(false && "undefined intrinsic");
}
case Operator::QUERY:
case Operator::QUERY_LATE:
{
assert(false && "Should be processed by interpretation");
}
case Operator::VARIANT:
{
const ExpandedType& typResult = pass->man->root->getType(expr);
llvm::Type* typResultRaw = l.toLLVMType(typResult);
llvm::Type* typIdRaw = llvm::cast<llvm::StructType>(typResultRaw)->getElementType(0);
uint64_t id = expr.getValueDouble();
llvm::Value* resultRaw = llvm::UndefValue::get(typResultRaw);
resultRaw = l.irBuilder.CreateInsertValue(resultRaw, llvm::ConstantInt::get(typIdRaw, id), llvm::ArrayRef<unsigned>({0}));
const ExpandedType& typVariant = ExpandedType(typResult->__operands.at(id));
llvm::Type* typVariantRaw = l.toLLVMType(typVariant);
llvm::Value* variantRaw = llvm::UndefValue::get(typVariantRaw);
assert(expr.operands.size() == typVariant->__operands.size() && "Wrong variant arguments count");
if (!typVariant->__operands.size()) return resultRaw;
for (unsigned int fieldId = 0; fieldId < expr.operands.size(); ++fieldId) {
const ExpandedType& typField = ExpandedType(typVariant->__operands.at(fieldId));
Attachments::put<TypeInferred>(expr.operands.at(fieldId), typField);
llvm::Value* fieldRaw = process(expr.operands.at(fieldId));
assert(fieldRaw);
variantRaw = l.irBuilder.CreateInsertValue(variantRaw, fieldRaw, llvm::ArrayRef<unsigned>({fieldId}));
}
llvm::Type* typStorageRaw = llvm::cast<llvm::StructType>(typResultRaw)->getElementType(1);
llvm::Value* addrAsStorage = l.irBuilder.CreateAlloca(typStorageRaw);
llvm::Value* addrAsVariant = l.irBuilder.CreateBitOrPointerCast(addrAsStorage, typVariantRaw->getPointerTo());
l.irBuilder.CreateStore(variantRaw, addrAsVariant);
llvm::Value* storageRaw = l.irBuilder.CreateLoad(typStorageRaw, addrAsStorage);
resultRaw = l.irBuilder.CreateInsertValue(resultRaw, storageRaw, llvm::ArrayRef<unsigned>({1}));
return resultRaw;
}
case Operator::SWITCH_VARIANT:
{
return controlIR.compileSwitchVariant(expr, DEFAULT("tmpswitch"));
}
case Operator::SWITCH_LATE:
{
assert(false && "Instruction's compilation should've been redirected to interpretation");
return nullptr;
}
case Operator::SEQUENCE:
{
return controlIR.compileSequence(expr);
}
case Operator::UNDEF:
{
llvm::Type* typExprUndef = l.toLLVMType(pass->man->root->getType(expr, expectedT));
return llvm::UndefValue::get(typExprUndef);
}
case Operator::UPDATE:
{
TypesHelper helper(pass->man->llvm);
containers::RecordIR irRecords(ctx);
const Expression& aggrE = expr.operands.at(0);
const Expression& updE = expr.operands.at(1);
const ExpandedType& aggrT = pass->man->root->getType(aggrE);
llvm::Value* aggrRaw = process(aggrE);
if (helper.isRecordT(aggrT)){
return irRecords.update(aggrRaw, aggrT, updE);
}
if (helper.isArrayT(aggrT)){
if (updE.op == Operator::LIST_INDEX){
std::unique_ptr<containers::IContainersIR> containersIR(
containers::IContainersIR::create(aggrE, TypeAnnotation(), ctx
));
return containersIR->update(aggrRaw, updE, hintAlias);
}
}
assert(false);
return nullptr;
}
case Operator::INVALID:
assert(expr.__state != Expression::COMPOUND);
switch (expr.__state) {
case Expression::IDENT:
{
Symbol s = Attachments::get<IdentifierSymbol>(expr);
return processSymbol(s, expr.getValueString());
}
case Expression::NUMBER:
{
llvm::Type* typConst = l.toLLVMType(pass->man->root->getType(expr, expectedT));
int literal = expr.getValueDouble();
if (typConst->isFloatingPointTy()) return llvm::ConstantFP::get(typConst, literal);
if (typConst->isIntegerTy()) return llvm::ConstantInt::get(typConst, literal);
assert(false && "Can't compile literal");
}
case Expression::STRING:
{
return controlIR.compileConstantStringAsPChar(expr.getValueString(), DEFAULT("tmp_str"));
};
default:
{
break;
}
};
break;
default: break;
}
assert(false && "Can't compile expression");
return 0;
}
llvm::Value*
BasicBruteScope::compile(const std::string& hintBlockDecl) {
LLVMLayer* llvm = pass->man->llvm;
if (!hintBlockDecl.empty()) {
llvm::BasicBlock *block = llvm::BasicBlock::Create(llvm->llvmContext, hintBlockDecl, function->raw);
pass->man->llvm->irBuilder.SetInsertPoint(block);
}
lastBlockRaw = pass->man->llvm->irBuilder.GetInsertBlock();
Symbol symbScope = Symbol{ScopedSymbol::RetSymbol, scope};
return processSymbol(symbScope);
}
IBruteScope::~IBruteScope() { }
IBruteFunction::~IBruteFunction() { }
llvm::Function*
IBruteFunction::compile() {
if (raw != nullptr) return raw;
LLVMLayer* llvm = pass->man->llvm;
llvm::IRBuilder<>& builder = llvm->irBuilder;
string&& functionName = prepareName();
std::vector<llvm::Type*>&& types = prepareSignature();
llvm::Type* expectedResultType = prepareResult();
llvm::FunctionType *ft = llvm::FunctionType::get(expectedResultType, types, false);
raw = llvm::cast<llvm::Function>(llvm->module->getOrInsertFunction(functionName, ft));
prepareBindings();
applyAttributes();
const std::string& blockName = "entry";
llvm::BasicBlock* blockCurrent = builder.GetInsertBlock();
llvm::Value* result = getScopeUnit(__entry)->compile(blockName);
assert(result);
//SECTIONTAG types/convert function ret value
builder.CreateRet(typeinference::doAutomaticTypeConversion(result, expectedResultType, llvm->irBuilder));
if (blockCurrent) {
builder.SetInsertPoint(blockCurrent);
}
llvm->moveToGarbage(ft);
return raw;
}
IBruteScope*
IBruteFunction::getScopeUnit(const CodeScope * const scope) {
if (__scopes.count(scope)) {
auto result = __scopes.at(scope).lock();
if (result) {
return result.get();
}
}
std::shared_ptr<IBruteScope> unit(pass->buildCodeScopeUnit(scope, this));
if (scope->__parent != nullptr) {
auto parentUnit = Decorators<CachedScopeDecoratorTag>::getInterface(getScopeUnit(scope->__parent));
parentUnit->registerChildScope(unit);
} else {
__orphanedScopes.push_back(unit);
}
if (!__scopes.emplace(scope, unit).second) {
__scopes[scope] = unit;
}
return unit.get();
}
IBruteScope*
IBruteFunction::getScopeUnit(ManagedScpPtr scope) {
return getScopeUnit(&*scope);
}
IBruteScope*
IBruteFunction::getEntry() {
return getScopeUnit(__entry);
}
std::vector<llvm::Type*>
IBruteFunction::getScopeSignature(CodeScope* scope){
LLVMLayer* llvm = IBruteFunction::pass->man->llvm;
AST* ast = IBruteFunction::pass->man->root;
std::vector<llvm::Type*> result;
std::transform(scope->__bindings.begin(), scope->__bindings.end(), std::inserter(result, result.end()),
- [llvm, ast, scope](const std::string & arg)->llvm::Type* {
- assert(scope->__identifiers.count(arg));
+ [llvm, ast, scope](const std::string & argAlias)->llvm::Type* {
+ assert(scope->__identifiers.count(argAlias));
+
+ ScopedSymbol argS{scope->__identifiers.at(argAlias), versions::VERSION_NONE};
+ const Expression& argE = scope->__declarations.at(argS);
+ const ExpandedType& argT = ast->expandType(argE.type);
- ScopedSymbol argid{scope->__identifiers.at(arg), versions::VERSION_NONE};
- return llvm->toLLVMType(ast->expandType(scope->__declarations.at(argid).type));
+ return llvm->toLLVMType(argT, argE);
});
return result;
}
template<>
compilation::IBruteFunction*
CompilePassCustomDecorators<void, void>
::buildFunctionUnit(const ManagedFnPtr& function) {
return new BruteFunctionDefault(function, this);
}
template<>
compilation::IBruteScope*
CompilePassCustomDecorators<void, void>
::buildCodeScopeUnit(const CodeScope * const scope, IBruteFunction* function) {
return new DefaultCodeScopeUnit(scope, function, this);
}
std::string
BasicBruteScope::getIndexStr(const Expression& index){
switch(index.__state){
//named struct field
case Expression::STRING:
return index.getValueString();
break;
//anonymous struct field
case Expression::NUMBER:
return to_string((int) index.getValueDouble());
break;
default:
assert(false && "Wrong index for a struct");
}
return "";
}
} // end of compilation
compilation::IBruteFunction*
CompilePass::getFunctionUnit(const ManagedFnPtr& function) {
unsigned int id = function.id();
if (!functions.count(id)) {
compilation::IBruteFunction* unit = buildFunctionUnit(function);
functions.emplace(id, unit);
return unit;
}
return functions.at(id);
}
void
CompilePass::prepare(){
//Initialization:
#ifndef XREATE_CONFIG_MIN
#endif
managerTransformations = new xreate::compilation::TransformationsManager();
targetInterpretation = new interpretation::TargetInterpretation(man, this);
}
void
CompilePass::run() {
prepare();
//Determine entry function:
StaticModel model = man->transcend->query(analysis::FN_ENTRY_PREDICATE);
assert(model.size() && "Error: No entry function found");
assert(model.size() == 1 && "Error: Ambiguous entry function");
string nameMain = std::get<0>(TranscendLayer::parse<std::string>(model.begin()->second));
compilation::IBruteFunction* unitMain = getFunctionUnit(man->root->findFunction(nameMain));
//Compilation itself:
entry = unitMain->compile();
}
llvm::Function*
CompilePass::getEntryFunction() {
assert(entry);
return entry;
}
void
CompilePass::prepareQueries(TranscendLayer* transcend) {
#ifndef XREATE_CONFIG_MIN
transcend->registerQuery(new latex::LatexQuery(), QueryId::LatexQuery);
#endif
transcend->registerQuery(new containers::Query(), QueryId::ContainersQuery);
transcend->registerQuery(new demand::DemandQuery(), QueryId::DemandQuery);
transcend->registerQuery(new polymorph::PolymorphQuery(), QueryId::PolymorphQuery);
}
} //end of namespace xreate
/**
* \class xreate::CompilePass
* \brief The owner of the compilation process. Performs fundamental compilation activities along with the xreate::compilation's routines
*
* xreate::CompilePass traverses over xreate::AST tree and produces executable code.
* The pass performs compilation using the following data sources:
* - %Attachments: the data gathered by the previous passes. See \ref xreate::Attachments.
* - Transcend solutions accessible via queries. See \ref xreate::IQuery, \ref xreate::TranscendLayer.
*
* The pass generates a bytecode by employing \ref xreate::LLVMLayer(wrapper over LLVM toolchain).
* Many compilation activities are delegated to more specific routines. Most notable delegated compilation aspects are:
* - Containers support. See \ref xreate::containers.
* - Latex compilation. See \ref xreate::latex.
* - Interpretation support. See \ref xreate::interpretation.
* - Loop saturation support. See \ref xreate::compilation::TransformationsScopeDecorator.
* - External code interaction support. See \ref xreate::ExternLayer (wrapper over Clang library).
*
* \section adaptability_sect Adaptability
* xreate::CompilePass's behaviour can be adapted in several ways:
* - %Function Decorators to alter function-level compilation. See \ref xreate::compilation::IBruteFunction
* - Code Block Decorators to alter code block level compilation. See \ref xreate::compilation::ICodeScopeUnit.
* Default functionality defined by \ref xreate::compilation::DefaultCodeScopeUnit
* - Targets to allow more versitile extensions.
* Currently only xreate::interpretation::TargetInterpretation use Targets infrastructure. See \ref xreate::compilation::Target.
* - Altering %function invocation. See \ref xreate::compilation::IFnInvocation.
*
* Clients are free to construct a compiler instantiation with the desired decorators by using \ref xreate::compilation::CompilePassCustomDecorators.
* As a handy alias, `CompilePassCustomDecorators<void, void>` constructs the default compiler.
*
*/
diff --git a/cpp/tests/compilation.cpp b/cpp/tests/compilation.cpp
index 367e8de..34b7216 100644
--- a/cpp/tests/compilation.cpp
+++ b/cpp/tests/compilation.cpp
@@ -1,304 +1,331 @@
/* Any copyright is dedicated to the Public Domain.
* http://creativecommons.org/publicdomain/zero/1.0/
*
* compilation.cpp
*
* Created on: -
* Author: pgess <v.melnychenko@xreate.org>
*/
#include "xreatemanager.h"
#include "supplemental/basics.h"
#include "llvmlayer.h"
#include "pass/compilepass.h"
#include "compilation/lambdas.h"
#include "gtest/gtest.h"
using namespace xreate;
using namespace xreate::compilation;
using namespace std;
//DEBT implement no pkgconfig ways to link libs
//TOTEST FunctionUnit::compileInline
TEST(Compilation, functionEntry1){
std::unique_ptr<XreateManager> program(XreateManager::prepare(
"func1 = function(a:: int):: int {a+8} \
func2 = function::int; entry {12 + func1(4)} \
"));
void* entryPtr = program->run();
int (*entry)() = (int (*)())(intptr_t)entryPtr;
int answer = entry();
ASSERT_EQ(24, answer);
}
TEST(Compilation, full_IFStatementWithVariantType){
XreateManager* man = XreateManager::prepare(
"Color = type variant {RED, BLUE, GREEN}.\n"
"\n"
" main = function(x::int):: bool; entry {\n"
" color = if (x == 0 )::Color {RED()} else {BLUE()}.\n"
" if (color == BLUE())::bool {true} else {false}\n"
" }"
);
bool (*main)(int) = (bool (*)(int)) man->run();
ASSERT_FALSE(main(0));
ASSERT_TRUE(main(1));
}
TEST(Compilation, full_Variant1){
XreateManager* man = XreateManager::prepare(R"Code(
global = type predicate {
entry
}
Command= type variant{
Add(x::int, y::int),
Dec(x::int)
}.
main = function::Command; entry() {
Dec(2) ::Command
}
)Code");
void (*main)() = (void (*)()) man->run();
}
TEST(Compilation, full_SwitchVariant1){
XreateManager* man = XreateManager::prepare(R"Code(
Command= type variant{
Add(x::int, y::int),
Dec(x::int)
}.
main = function::int; entry {
command = Add(3, 5):: Command.
switch variant(command)::int
case(Add){command["x"] + command["y"]}
case(Dec){command["x"]}
}
)Code");
int (*mainFn)() = (int (*)()) man->run();
int result = mainFn();
ASSERT_EQ(8, result);
}
TEST(Compilation, full_SwitchVariantNoArguments2){
XreateManager* man = XreateManager::prepare(R"Code(
Command= type variant{Add, Dec}.
main = function::int; entry {
command = Dec():: Command.
switch variant(command)::int
case(Add){0}
case(Dec){1}
}
)Code");
int (*mainFn)() = (int (*)()) man->run();
int result = mainFn();
ASSERT_EQ(1, result);
}
TEST(Compilation, full_SwitchVariantMixedArguments3){
XreateManager* man = XreateManager::prepare(R"Code(
Command= type variant{
Add(x::int, y::int),
Dec
}.
main = function(arg::int):: int; entry {
command = if (arg > 0)::Command {Dec()} else {Add(1, 2)}.
switch variant(command)::int
case(Add){0}
case(Dec){1}
}
)Code");
int (*mainFn)(int) = (int (*)(int)) man->run();
int result = mainFn(5);
ASSERT_EQ(1, result);
}
TEST(Compilation, full_StructUpdate){
XreateManager* man = XreateManager::prepare(
R"Code(
Rec = type {
a :: int,
b:: int
}.
test= function:: int; entry {
a = {a = 18, b = 20}:: Rec.
b = a + {a = 11}:: Rec.
b["a"]
}
)Code");
int (*main)() = (int (*)()) man->run();
int result = main();
ASSERT_EQ(11, result);
}
TEST(Compilation, AnonymousStruct_init_index){
std::string code =
R"Code(
main = function:: int; entry {
x = {10, 15} :: {int, int}.
x[1]
}
)Code";
std::unique_ptr<XreateManager> man(XreateManager::prepare(move(code)));
int (*main)() = (int (*)()) man->run();
EXPECT_EQ(15, main());
}
TEST(Compilation, AnonymousStruct_init_update){
std::string code =
R"Code(
main = function:: int; entry {
x = {10, 15} :: {int, int}.
y = x + {6}:: {int, int}.
y[0]
}
)Code";
std::unique_ptr<XreateManager> man(XreateManager::prepare(move(code)));
int (*main)() = (int (*)()) man->run();
EXPECT_EQ(6, main());
}
TEST(Compilation, BugIncorrectScopes1){
std::string code =
R"Code(
init = function:: int {10}
main = function(cmd:: int):: int; entry {
x = init():: int.
if(cmd > 0):: int { x + 1 } else { x }
}
)Code";
std::unique_ptr<XreateManager> man(XreateManager::prepare(move(code)));
int (*mainFn)(int) = (int (*)(int)) man->run();
EXPECT_EQ(11, mainFn(1));
}
TEST(Compilation, Sequence1){
std::string code =
R"Code(
interface(extern-c){
libbsd = library:: pkgconfig("libbsd").
include {
libbsd = {"bsd/stdlib.h", "string.h"}
}.
}
start = function:: i32; entry {
seq {
nameNew = "TestingSequence":: string.
setprogname(nameNew)
} {strlen(getprogname())}::i32
}
)Code";
std::unique_ptr<XreateManager> man(XreateManager::prepare(move(code)));
int (*startFn)() = (int (*)()) man->run();
int nameNewLen = startFn();
ASSERT_EQ(15, nameNewLen);
}
TEST(Compilation, BoolInstructions1){
std::string code =
R"Code(
test = function (a:: bool, b:: bool):: bool; entry
{
-a
}
)Code";
std::unique_ptr<XreateManager> man(XreateManager::prepare(move(code)));
Fn2Args startFn = (Fn2Args) man->run();
}
TEST(Compilation, StructIndex1){
std::string code =
R"Code(
Anns = type predicate {
entry()
}
test = function:: int; entry()
{
x = {a = ({b = 3}::{b:: int})}:: {a:: {b:: int}}.
2 + x["a", "b"] + x["a"]["b"]
}
)Code";
std::unique_ptr<XreateManager> man(XreateManager::prepare(move(code)));
FnNoArgs startFn = (FnNoArgs) man->run();
int result = startFn();
ASSERT_EQ(2, result);
}
TEST(Compilation, PreferredInt1){
std::unique_ptr<XreateManager> man(XreateManager::prepare(""));
TypesHelper utils(man->llvm);
int bitwidth = utils.getPreferredIntTy()->getBitWidth();
ASSERT_EQ(64, bitwidth);
}
TEST(Compilation, PredPredicates1){
string code = R"(
my-fn = function:: int; entry() {0}
)";
auto man = XreateManager::prepare(move(code));
FnNoArgs startFn = (FnNoArgs) man->run();
int result = startFn();
ASSERT_EQ(0, result);
}
typedef intmax_t (*FnI_I)(intmax_t);
TEST(Compilation, Lambda1){
string code = R"(
myfn = function:: int {
a = [1..5]:: [int].
loop map(a->x:: int):: [int] { x + 10:: int}
}
)";
auto man = details::tier1::XreateManager::prepare(move(code));
LLVMLayer* llvm = man->llvm;
man->analyse();
std::unique_ptr<CompilePass> compiler(new compilation::CompilePassCustomDecorators<>(man));
compiler->prepare();
LambdaIR compilerLambda(compiler.get());
CodeScope* scopeLoop = man->root->findFunction("myfn")->getEntryScope()->getBody().blocks.front();
auto fnRaw = compilerLambda.compile(scopeLoop, "loop");
llvm->initJit();
FnI_I fn = (FnI_I)llvm->getFunctionPointer(fnRaw);
ASSERT_EQ(20, fn(10));
+}
+
+struct Tuple3 {intmax_t a; intmax_t b; intmax_t c; };
+typedef Tuple3 (*FnTuple3)();
+
+intmax_t fn_BUG_Triple(FnTuple3 callee){
+ Tuple3 result = callee();
+ return result.a+ result.b + result.c;
+}
+
+TEST(Compilation, BUG_Triple){
+ std::unique_ptr<XreateManager> man(XreateManager::prepare(R"(
+Tuple2 = type {int, int}.
+Tuple3 = type {int, int, int}.
+Tuple4 = type {int, int, int, int}.
+
+main = function:: Tuple3; entry()
+{
+ {1, 2, 3}
+}
+)"));
+ FnTuple3 mainFn = (FnTuple3) man->run();
+ intmax_t result = fn_BUG_Triple(mainFn);
+
+ ASSERT_EQ(6, result);
+// ASSERT_EQ(2, result.b);
+// ASSERT_EQ(3, result.c);
}
\ No newline at end of file
diff --git a/cpp/tests/containers.cpp b/cpp/tests/containers.cpp
index 8f3074a..949aa9f 100644
--- a/cpp/tests/containers.cpp
+++ b/cpp/tests/containers.cpp
@@ -1,321 +1,325 @@
/* Any copyright is dedicated to the Public Domain.
* http://creativecommons.org/publicdomain/zero/1.0/
*
* containers.cpp
*
* Created on: Jun 9, 2015
* Author: pgess <v.melnychenko@xreate.org>
*/
#include "xreatemanager.h"
#include "query/containers.h"
#include "main/Parser.h"
+#include "pass/compilepass.h"
+#include "llvmlayer.h"
#include "supplemental/docutils.h"
#include "supplemental/basics.h"
#include "gtest/gtest.h"
using namespace std;
using namespace xreate::grammar::main;
using namespace xreate::containers;
using namespace xreate;
struct Tuple2 {intmax_t a; intmax_t b;};
typedef Tuple2 (*FnTuple2)();
-struct Tuple3 {intmax_t a; intmax_t b; intmax_t c; };
-typedef Tuple3 (*FnTuple3)();
-
struct Tuple4 {intmax_t a; intmax_t b; intmax_t c; intmax_t d;};
typedef Tuple4 (*FnTuple4)();
TEST(Containers, RecInitByList1){
string code = R"(
Rec = type {x:: int, y:: int}.
test = function(a:: int, b::int):: Rec; entry() {
{x = a + b, y = 2}
}
)";
auto man = XreateManager::prepare(move(code));
man->run();
}
TEST(Containers, RecInitByList2){
string code = R"(
Rec = type {x:: int, y:: int}.
test = function(a:: int, b::int):: Rec; entry() {
{a + b, y = 2}
}
)";
auto man = XreateManager::prepare(move(code));
man->run();
}
TEST(Containers, RecUpdateByList1){
string code = R"(
Rec = type {x:: int, y:: int}.
test = function(a:: int, b::int):: Rec; entry() {
r = {0, y = 2}:: Rec.
r : {a + b}
}
)";
auto man = XreateManager::prepare(move(code));
man->run();
}
TEST(Containers, RecUpdateByListIndex1){
string code = R"(
Rec = type {x:: int, y:: int}.
test = function(a:: int, b::int):: int; entry() {
r1 = undef:: Rec.
r2 = r1 : {[1] = b, [0] = a}:: Rec.
r2["x"]
}
)";
auto man = XreateManager::prepare(move(code));
Fn2Args program = (Fn2Args) man->run();
ASSERT_EQ(10, program(10, 11));
}
TEST(Containers, RecUpdateInLoop1){
FILE* code = fopen("scripts/containers/RecUpdateInLoop1.xreate", "r");
assert(code != nullptr);
auto man = XreateManager::prepare(code);
Fn1Args program = (Fn1Args) man->run();
ASSERT_EQ(11, program(10));
}
TEST(Containers, ArrayInit1){
XreateManager* man = XreateManager::prepare(
R"Code(
main = function(x:: int):: int; entry() {
a = {1, 2, 3}:: [int].
a[x]
}
)Code");
void* mainPtr = man->run();
Fn1Args main = (Fn1Args) mainPtr;
ASSERT_EQ(2, main(1));
delete man;
}
TEST(Containers, ArrayUpdate1){
XreateManager* man = XreateManager::prepare(R"(
main = function(x::int):: int; entry()
{
a = {1, 2, 3}:: [int]; csize(5).
b = a : {[1] = x}:: [int]; csize(5).
b[1]
}
)");
void* mainPtr = man->run();
Fn1Args main = (Fn1Args) mainPtr;
ASSERT_EQ(2, main(2));
delete man;
}
TEST(Containers, FlyMap1){
std::unique_ptr<XreateManager> man(XreateManager::prepare(R"(
main = function:: int; entry()
{
x = {1, 2, 3, 4}:: [int].
y = loop map(x->el::int)::[int]; fly(csize(4))
{2 * el:: int }.
loop fold((y::[int]; fly(csize(4)))->el:: int, 0->sum):: int {sum + el}-20
}
)"));
FnNoArgs mainFn = (FnNoArgs) man->run();
intmax_t valueMain = mainFn();
ASSERT_EQ(0, valueMain);
}
-intmax_t fn_BUG_Triple(FnTuple3 callee){
- Tuple3 result = callee();
- return result.a+ result.b + result.c;
-}
-TEST(Containers, BUG_Triple){
- std::unique_ptr<XreateManager> man(XreateManager::prepare(R"(
-Tuple2 = type {int, int}.
-Tuple3 = type {int, int, int}.
-Tuple4 = type {int, int, int, int}.
+TEST(Containers, ArrayArg1){
+ FILE* code = fopen("scripts/containers/containers-tests.xreate", "r");
+ assert(code != nullptr);
-main = function:: Tuple3; entry()
-{
- {1, 2, 3}
-}
-)"));
- FnTuple3 mainFn = (FnTuple3) man->run();
- intmax_t result = fn_BUG_Triple(mainFn);
+ auto man = details::tier1::XreateManager::prepare(code);
+ LLVMLayer* llvm = man->llvm;
+ man->analyse();
- ASSERT_EQ(6, result);
-// ASSERT_EQ(2, result.b);
-// ASSERT_EQ(3, result.c);
+ std::unique_ptr<CompilePass> compiler(new compilation::CompilePassCustomDecorators<>(man));
+ compiler->prepare();
+ llvm::Function* fnMainRaw = compiler->getFunctionUnit(man->root->findFunction("fn-ArrayArg1"))->compile();
+ llvm->print();
+ llvm->initJit();
+
+ FnNoArgs mainFn = (FnNoArgs) llvm->getFunctionPointer(fnMainRaw);
+ ASSERT_EQ(1, mainFn());
}
-TEST(Containers, ArrayArg1){
- FILE* code = fopen("scripts/containers/array_arg_1.xreate", "r");
+TEST(Containers, FlyArg1){
+ FILE* code = fopen("scripts/containers/containers-tests.xreate", "r");
assert(code != nullptr);
- std::unique_ptr<XreateManager> man (XreateManager::prepare(code));
- FnNoArgs mainFn = (FnNoArgs) man->run();
- ASSERT_EQ(0, mainFn());
-}
+ auto man = details::tier1::XreateManager::prepare(code);
+ LLVMLayer* llvm = man->llvm;
+ man->analyse();
+ std::unique_ptr<CompilePass> compiler(new compilation::CompilePassCustomDecorators<>(man));
+ compiler->prepare();
+ llvm::Function* fnTestedRaw = compiler->getFunctionUnit(man->root->findFunction("fn-FlyArg1"))->compile();
+ llvm->print();
+
+ llvm->optsLevel = llvm::CodeGenOpt::Aggressive;
+ llvm->initJit();
+
+ FnNoArgs fnTested = (FnNoArgs) llvm->getFunctionPointer(fnTestedRaw);
+ ASSERT_EQ(8, fnTested());
+}
//TEST(Containers, ListAsArray2){
// XreateManager* man = XreateManager::prepare(
//
//R"Code(
// // CONTAINERS
// import raw("scripts/dfa/ast-attachments.lp").
// import raw("scripts/containers/containers.lp").
//
// main = function:: int;entry {
// a= {1, 2, 3}:: [int].
// b= loop map(a->el:: int):: [int]{
// 2 * el
// }.
//
// sum = loop fold(b->el:: int, 0->acc):: int {
// acc + el
// }.
//
// sum
// }
//)Code");
//
// void* mainPtr = man->run();
// FnNoArgs main = (FnNoArgs) mainPtr;
// ASSERT_EQ(12, main());
//
// delete man;
//}
//
//TEST(Containers, Doc_RecField1){
// string code_Variants1 = getDocumentationExampleById("documentation/Syntax/syntax.xml", "RecField1");
// XreateManager::prepare(move(code_Variants1));
//
// ASSERT_TRUE(true);
//}
//
//TEST(Containers, Doc_RecUpdate1){
// string code_Variants1 = getDocumentationExampleById("documentation/Syntax/syntax.xml", "RecUpdate1");
// XreateManager::prepare(move(code_Variants1));
//
// ASSERT_TRUE(true);
//}
//
//TEST(Containers, ContanierLinkedList1){
// FILE* input = fopen("scripts/containers/Containers_Implementation_LinkedList1.xreate","r");
// assert(input != nullptr);
//
// Scanner scanner(input);
// Parser parser(&scanner);
// parser.Parse();
//
// AST* ast = parser.root->finalize();
// CodeScope* body = ast->findFunction("test")->getEntryScope();
// const Symbol symb_chilrenRaw{body->getSymbol("childrenRaw"), body};
//
// containers::ImplementationLinkedList iLL(symb_chilrenRaw);
//
// ASSERT_EQ(true, static_cast<bool>(iLL));
// ASSERT_EQ("next", iLL.fieldPointer);
//
// Implementation impl = Implementation::create(symb_chilrenRaw);
// ASSERT_NO_FATAL_FAILURE(impl.extract<ON_THE_FLY>());
//
// ImplementationRec<ON_THE_FLY> recOnthefly = impl.extract<ON_THE_FLY>();
// ASSERT_EQ(symb_chilrenRaw, recOnthefly.source);
//}
//
//TEST(Containers, Implementation_LinkedListFull){
// FILE* input = fopen("scripts/containers/Containers_Implementation_LinkedList1.xreate","r");
// assert(input != nullptr);
//
// std::unique_ptr<XreateManager> program(XreateManager::prepare(input));
// void* mainPtr = program->run();
// int (*main)() = (int (*)())(intptr_t)mainPtr;
//
// intmax_t answer = main();
// ASSERT_EQ(17, answer);
//
// fclose(input);
//}
//
//TEST(Containers, Doc_Intr_1){
// string example = R"Code(
// import raw("scripts/containers/containers.lp").
//
// test = function:: int; entry
// {
// <BODY>
// x
// }
// )Code";
// string body = getDocumentationExampleById("documentation/Concepts/containers.xml", "Intr_1");
// replace(example, "<BODY>", body);
//
// XreateManager* xreate = XreateManager::prepare(move(example));
// FnNoArgs program = (FnNoArgs) xreate->run();
//
// intmax_t result = program();
// ASSERT_EQ(1, result);
//}
//
//TEST(Containers, Doc_OpAccessSeq_1){
// string example = getDocumentationExampleById("documentation/Concepts/containers.xml", "OpAccessSeq_1");
// XreateManager* xreate = XreateManager::prepare(move(example));
// FnNoArgs program = (FnNoArgs) xreate->run();
//
// intmax_t result = program();
// ASSERT_EQ(15, result);
//}
//
//TEST(Containers, Doc_OpAccessRand_1){
// string example = getDocumentationExampleById("documentation/Concepts/containers.xml", "OpAccessRand_1");
// XreateManager* xreate = XreateManager::prepare(move(example));
// FnNoArgs program = (FnNoArgs) xreate->run();
//
// intmax_t result = program();
// ASSERT_EQ(2, result);
//}
//
//TEST(Containers, Doc_ASTAttach_1){
// string example = getDocumentationExampleById("documentation/Concepts/containers.xml", "ASTAttach_1");
// string outputExpected = "containers_impl(s(1,-2,0),onthefly)";
// XreateManager* xreate = XreateManager::prepare(move(example));
//
// testing::internal::CaptureStdout();
// xreate->run();
// std::string outputActual = testing::internal::GetCapturedStdout();
//
// ASSERT_NE(std::string::npos, outputActual.find(outputExpected));
//}
//
//TEST(Containers, IntrinsicArrInit1){
// XreateManager* man = XreateManager::prepare(
//
//R"Code(
//FnAnns = type predicate {
// entry
//}
//
//main = function(x:: int):: int; entry() {
// a{0} = intrinsic array_init(16):: [int].
// a{1} = a{0} + {15: 12}
//}
//)Code");
//}
Event Timeline
Log In to Comment