Page Menu
Home
Xreate
Search
Configure Global Search
Log In
Docs
Questions
Repository
Issues
Patches
Internal API
Files
F2718293
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Feb 15, 11:40 PM
Size
56 KB
Mime Type
text/x-diff
Expires
Tue, Feb 17, 11:40 PM (1 d, 17 h)
Engine
blob
Format
Raw Data
Handle
237835
Attached To
rXR Xreate
View Options
diff --git a/cpp/src/analysis/typeinference.cpp b/cpp/src/analysis/typeinference.cpp
index 564650c..53888e3 100644
--- a/cpp/src/analysis/typeinference.cpp
+++ b/cpp/src/analysis/typeinference.cpp
@@ -1,55 +1,55 @@
/*
* typeinference.cpp
*
* Author: pgess <v.melnychenko@xreate.org>
* Created on April 16, 2017, 10:13 AM
*/
#include "typeinference.h"
#include "llvmlayer.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/DerivedTypes.h"
-namespace xreate {namespace analysis {namespace typeinference {
+namespace xreate {namespace typeinference {
llvm::Value*
doAutomaticTypeConversion(llvm::Value* source, llvm::Type* tyTarget, llvm::IRBuilder<>& builder){
if (tyTarget->isIntegerTy() && source->getType()->isIntegerTy())
{
llvm::IntegerType* tyTargetInt = llvm::dyn_cast<llvm::IntegerType>(tyTarget);
llvm::IntegerType* tySourceInt = llvm::dyn_cast<llvm::IntegerType>(source->getType());
if (tyTargetInt->getBitWidth() < tySourceInt->getBitWidth()){
return builder.CreateCast(llvm::Instruction::Trunc, source, tyTarget);
}
if (tyTargetInt->getBitWidth() > tySourceInt->getBitWidth()){
return builder.CreateCast(llvm::Instruction::SExt, source, tyTarget);
}
}
if (source->getType()->isIntegerTy() && tyTarget->isFloatingPointTy()){
return builder.CreateCast(llvm::Instruction::SIToFP, source, tyTarget);
}
return source;
}
ExpandedType
getType(const Expression& expression, const AST& ast){
if (expression.type.isValid()){
return ast.expandType(expression.type);
}
if (expression.__state == Expression::IDENT){
Symbol s = Attachments::get<Symbol>(expression);
return getType(CodeScope::getDeclaration(s), ast);
}
assert(false && "Type can't be determined for an expression");
}
-} } }
\ No newline at end of file
+} } //end of namespace xreate::typeinference
\ No newline at end of file
diff --git a/cpp/src/analysis/typeinference.h b/cpp/src/analysis/typeinference.h
index 621a5a7..a35e33e 100644
--- a/cpp/src/analysis/typeinference.h
+++ b/cpp/src/analysis/typeinference.h
@@ -1,27 +1,27 @@
/*
* File: typeinference.h
* Author: pgess <v.melnychenko@xreate.org>
*
* Created on April 16, 2017, 10:17 AM
*/
#ifndef TYPEINFERENCE_H
#define TYPEINFERENCE_H
#include "ast.h"
#include "llvm/IR/IRBuilder.h"
namespace llvm {
class Value;
class Type;
};
-namespace xreate {namespace analysis {namespace typeinference {
+namespace xreate { namespace typeinference {
llvm::Value* doAutomaticTypeConversion(llvm::Value* source, llvm::Type* tyTarget, llvm::IRBuilder<>& builder);
ExpandedType getType(const Expression& expression, const AST& ast);
-} } } //namespace xreate
+} }//namespace xreate::typeinference
#endif /* TYPEINFERENCE_H */
diff --git a/cpp/src/ast.cpp b/cpp/src/ast.cpp
index d11b636..01b0842 100644
--- a/cpp/src/ast.cpp
+++ b/cpp/src/ast.cpp
@@ -1,926 +1,926 @@
#include "ast.h"
#include "ExternLayer.h"
#include "analysis/typeinference.h"
#include <stdexcept>
#include <iostream>
namespace std{
std::size_t
hash<xreate::ScopedSymbol>::operator()(xreate::ScopedSymbol const& s) const
{return s.id ^ (s.version << 2);}
bool
equal_to<xreate::ScopedSymbol>::operator()(const xreate::ScopedSymbol& __x, const xreate::ScopedSymbol& __y) const
{ return __x.id == __y.id && __x.version == __y.version; }
size_t
hash<xreate::Symbol>::operator()(xreate::Symbol const& s) const{
return hash<xreate::ScopedSymbol>()(s.identifier) ^ ((long int) s.scope << 1);
}
bool
equal_to<xreate::Symbol>::operator()(const xreate::Symbol& __x, const xreate::Symbol& __y) const{
return __x == __y;
};
}
using namespace std;
namespace xreate {
Atom<Identifier_t>::Atom(const std::wstring& value) {
__value = wstring_to_utf8(value);
}
Atom<Identifier_t>::Atom(std::string && name) : __value(name)
{}
const std::string&
Atom<Identifier_t>::get() const {
return __value;
}
Atom<Number_t>::Atom(wchar_t* value) {
//DEBT reconsider number literal recognition
__value = wcstol(value, 0, 10);
}
Atom<Number_t>::Atom(int value)
: __value(value) {
}
double
Atom<Number_t>::get()const {
return __value;
}
Atom<String_t>::Atom(const std::wstring& value) {
assert(value.size() >=2);
__value = wstring_to_utf8(value.substr(1, value.size() -2));
}
const std::string&
Atom<String_t>::get() const {
return __value;
}
class ExpressionHints {
public:
static bool
isStringValueValid(const Expression& e) {
switch (e.__state) {
case Expression::INVALID:
assert(false);
case Expression::IDENT:
case Expression::STRING:
return true;
case Expression::NUMBER:
case Expression::BINDING:
case Expression::VARIANT:
return false;
case Expression::COMPOUND:
{
switch (e.op) {
case Operator::CALL:
return true;
default: return false;
}
}
}
return false;
}
static bool
isDoubleValueValid(const Expression& e) {
switch (e.__state) {
case Expression::NUMBER:
case Expression::VARIANT:
return true;
case Expression::INVALID:
assert(false);
case Expression::IDENT:
case Expression::STRING:
case Expression::COMPOUND:
case Expression::BINDING:
return false;
}
return false;
}
};
class TypesResolver {
private:
const AST* ast;
std::map<std::string, TypeAnnotation> scope;
std::map<TypeAnnotation, int> signatures;
ExpandedType expandType(const TypeAnnotation &t, const std::vector<TypeAnnotation> &args = std::vector<TypeAnnotation>()) {
return TypesResolver(ast, scope, signatures)(t, args);
}
std::vector<TypeAnnotation>
expandOperands(const std::vector<TypeAnnotation>& operands) {
std::vector<TypeAnnotation> pack;
pack.reserve(operands.size());
std::transform(operands.begin(), operands.end(), std::inserter(pack, pack.end()),
[this](const TypeAnnotation & t) {
return expandType(t);
});
return pack;
}
public:
TypesResolver(const AST* root, const std::map<std::string, TypeAnnotation>& scopeOuter = std::map<std::string, TypeAnnotation>(),
std::map<TypeAnnotation, int> signaturesOuter = std::map<TypeAnnotation, int>())
: ast(root), scope(scopeOuter), signatures(signaturesOuter) {
}
ExpandedType
operator()(const TypeAnnotation &t, const std::vector<TypeAnnotation> &args = std::vector<TypeAnnotation>()) {
//assert(args.size() == t.bindings.size()); // invalid number of arguments
for (size_t i = 0; i < args.size(); ++i) {
scope[t.bindings.at(i)] = args.at(i);
}
switch (t.__operator) {
case TypeOperator::ARRAY:
{
assert(t.__operands.size() == 1);
Expanded<TypeAnnotation> elTy = expandType(t.__operands.at(0));
return ExpandedType(TypeAnnotation(tag_array, elTy, 0));
}
case TypeOperator::STRUCT:
{
assert(t.__operands.size());
std::vector<TypeAnnotation>&& packOperands = expandOperands(t.__operands);
auto typNew = TypeAnnotation(TypeOperator::STRUCT, move(packOperands));
typNew.fields = t.fields;
return ExpandedType(move(typNew));
};
case TypeOperator::CALL:
{
std::string alias = t.__valueCustom;
//find in local scope:
TypeAnnotation ty;
if (scope.count(alias)) {
ty = scope.at(alias);
} else if (ast->__indexTypeAliases.count(alias)) {
ty = ast->__indexTypeAliases.at(alias);
} else {
assert(false && "Undefined or external type");
}
std::vector<TypeAnnotation>&& operands = expandOperands(t.__operands);
TypeAnnotation signature(TypeOperator::CALL, move(operands));
signature.__valueCustom = alias;
if (signatures.count(signature)) {
auto link = TypeAnnotation(TypeOperator::LINK,{});
link.conjuctionId = signatures.at(signature);
return ExpandedType(move(link));
}
int cid = signatures.size();
signatures[signature] = cid;
TypeAnnotation tyResult = expandType(ty, operands);
tyResult.conjuctionId = cid;
return ExpandedType(move(tyResult));
};
case TypeOperator::CUSTOM:
{
std::string alias = t.__valueCustom;
/*
if (signatures.count(alias)) {
return ExpandedType(TypeAnnotation(TypeOperator::LINK, {t}));
}
signatures[alias].emplace(t);
*/
//find in local scope:
if (scope.count(alias)) {
return expandType(scope.at(alias));
}
// find in general scope:
if (ast->__indexTypeAliases.count(alias)) {
return expandType(ast->__indexTypeAliases.at(t.__valueCustom));
}
//if type is unknown keep it as is.
return ExpandedType(TypeAnnotation(t));
};
case TypeOperator::ACCESS:
{
std::string alias = t.__valueCustom;
ExpandedType tyAlias = ExpandedType(TypeAnnotation());
//find in local scope:
if (scope.count(alias)) {
tyAlias = expandType(scope.at(alias));
//find in global scope:
} else if ((ast->__indexTypeAliases.count(alias))) {
tyAlias = expandType(ast->__indexTypeAliases.at(alias));
} else {
assert(false && "Undefined or external type");
}
assert(tyAlias->__operator == TypeOperator::STRUCT);
for (const string& field : t.fields) {
auto fieldIt = std::find(tyAlias->fields.begin(), tyAlias->fields.end(), field);
assert(fieldIt != tyAlias->fields.end() && "unknown field");
int fieldId = fieldIt - tyAlias->fields.begin();
tyAlias = expandType(tyAlias->__operands.at(fieldId));
}
return tyAlias;
}
case TypeOperator::VARIANT:
{
return ExpandedType(TypeAnnotation(t));
}
case TypeOperator::NONE:
{
return ExpandedType(TypeAnnotation(t));
}
default:
assert(false);
}
assert(false);
return ExpandedType(TypeAnnotation());
}
};
TypeAnnotation::TypeAnnotation()
: __operator(TypeOperator::NONE), __value(TypePrimitive::Invalid)
{}
TypeAnnotation::TypeAnnotation(TypePrimitive typ)
: __value(typ) {
}
TypeAnnotation::TypeAnnotation(TypeOperator op, std::initializer_list<TypeAnnotation> operands)
: __operator(op), __operands(operands) {
}
TypeAnnotation::TypeAnnotation(TypeOperator op, std::vector<TypeAnnotation>&& operands)
: __operator(op), __operands(operands) {
}
TypeAnnotation::TypeAnnotation(llvm_array_tag, TypeAnnotation typ, int size)
: TypeAnnotation(TypeOperator::ARRAY,{typ}) {
__size = size;
}
bool
TypeAnnotation::isValid() const{
return !(__value == TypePrimitive::Invalid && __operator == TypeOperator::NONE);
}
bool
TypeAnnotation::operator<(const TypeAnnotation& t) const {
if (__operator != t.__operator) return __operator < t.__operator;
if (__operator == TypeOperator::NONE)
return __value < t.__value;
if (__operator == TypeOperator::CALL || __operator == TypeOperator::CUSTOM || __operator == TypeOperator::ACCESS) {
if (__valueCustom != t.__valueCustom)
return __valueCustom < t.__valueCustom;
}
return __operands < t.__operands;
}
/*
TypeAnnotation (struct_tag, std::initializer_list<TypeAnnotation>)
{}
*/
void
TypeAnnotation::addBindings(std::vector<Atom<Identifier_t>>&& params) {
bindings.reserve(bindings.size() + params.size());
std::transform(params.begin(), params.end(), std::inserter(bindings, bindings.end()),
[](const Atom<Identifier_t>& ident) {
return ident.get(); });
}
void
TypeAnnotation::addFields(std::vector<Atom<Identifier_t>>&& listFields) {
fields.reserve(fields.size() + listFields.size());
std::transform(listFields.begin(), listFields.end(), std::inserter(fields, fields.end()),
[](const Atom<Identifier_t>& ident) {
return ident.get(); });
}
unsigned int Expression::nextVacantId = 0;
Expression::Expression(const Atom<Number_t>& number)
: Expression() {
__state=NUMBER; op=Operator::NONE; __valueD=number.get();
}
Expression::Expression(const Atom<String_t>& a)
: Expression(){
__state=STRING; op=Operator::NONE; __valueS=a.get();
}
Expression::Expression(const Atom<Identifier_t> &ident)
: Expression() {
__state=IDENT; op=Operator::NONE; __valueS=ident.get();
}
Expression::Expression(const Operator &oprt, std::initializer_list<Expression> params)
: Expression() {
__state=COMPOUND; op=oprt;
if (op == Operator::CALL) {
assert(params.size() > 0);
Expression arg = *params.begin();
assert(arg.__state == Expression::IDENT);
__valueS = std::move(arg.__valueS);
operands.insert(operands.end(), params.begin() + 1, params.end());
return;
}
operands.insert(operands.end(), params.begin(), params.end());
}
void
Expression::setOp(Operator oprt) {
op = oprt;
switch (op) {
case Operator::NONE:
__state = INVALID;
break;
default:
__state = COMPOUND;
break;
}
}
void
Expression::addArg(Expression &&arg) {
operands.push_back(arg);
}
void
Expression::addTags(const std::list<Expression> tags) const{
std::transform(tags.begin(), tags.end(), std::inserter(this->tags, this->tags.end()),
[](const Expression& tag){
return make_pair(tag.getValueString(), tag);
});
}
void
Expression::addBindings(std::initializer_list<Atom<Identifier_t>> params) {
addBindings(params.begin(), params.end());
}
void
Expression::bindType(TypeAnnotation t) {
type = move(t);
}
void
Expression::addBlock(ManagedScpPtr scope) {
blocks.push_back(scope.operator->());
}
const std::vector<Expression>&
Expression::getOperands() const {
return operands;
}
double
Expression::getValueDouble() const {
return __valueD;
}
const std::string&
Expression::getValueString() const {
return __valueS;
}
void
Expression::setValue(const Atom<Identifier_t>&& v) {
__valueS = v.get();
}
void Expression::setValueDouble(double value) {
__valueD = value;
}
bool
Expression::isValid() const {
return (__state != INVALID);
}
bool
Expression::isDefined() const {
return (__state != BINDING);
}
Expression::Expression()
: __state(INVALID), op(Operator::NONE), id(nextVacantId++)
{ }
namespace details { namespace incomplete {
AST::AST() {
Attachments::init<VariableVersion>();
Attachments::init<Symbol>();
}
void
AST::addInterfaceData(const ASTInterface& interface, Expression&& data) {
__interfacesData.emplace(interface, move(data));
}
void
AST::addDFAData(Expression &&data) {
__dfadata.push_back(data);
}
void
AST::addExternData(ExternData &&data) {
__externdata.insert(__externdata.end(), data.entries.begin(), data.entries.end());
}
void
AST::add(Function* f) {
__functions.push_back(f);
__indexFunctions.emplace(f->getName(), __functions.size() - 1);
}
void
AST::add(MetaRuleAbstract *r) {
__rules.push_back(r);
}
void
AST::add(TypeAnnotation t, Atom<Identifier_t> alias) {
if (t.__operator == TypeOperator::VARIANT) {
for (int i = 0, size = t.fields.size(); i < size; ++i) {
__dictVariants.emplace(t.fields[i], make_pair(t, i));
}
}
__indexTypeAliases.emplace(alias.get(), move(t));
}
ManagedScpPtr
AST::add(CodeScope* scope) {
this->__scopes.push_back(scope);
return ManagedScpPtr(this->__scopes.size() - 1, &this->__scopes);
}
std::string
AST::getModuleName() {
const std::string name = "moduleTest";
return name;
}
ManagedPtr<Function>
AST::findFunction(const std::string& name) {
int count = __indexFunctions.count(name);
if (!count) {
return ManagedFnPtr::Invalid();
}
assert(count == 1);
auto range = __indexFunctions.equal_range(name);
return ManagedPtr<Function>(range.first->second, &this->__functions);
}
std::list<ManagedFnPtr>
AST::getAllFunctions() const {
const size_t size = __functions.size();
std::list<ManagedFnPtr> result;
for (size_t i = 0; i < size; ++i) {
result.push_back(ManagedFnPtr(i, &this->__functions));
}
return result;
}
//TASK select default specializations
std::list<ManagedFnPtr>
AST::getFunctionVariants(const std::string& name) const {
auto functions = __indexFunctions.equal_range(name);
std::list<ManagedFnPtr> result;
std::transform(functions.first, functions.second, inserter(result, result.end()),
[this](auto f) {
return ManagedFnPtr(f.second, &this->__functions);
});
return result;
}
template<>
ManagedPtr<Function>
AST::begin<Function>() {
return ManagedPtr<Function>(0, &this->__functions);
}
template<>
ManagedPtr<CodeScope>
AST::begin<CodeScope>() {
return ManagedPtr<CodeScope>(0, &this->__scopes);
}
template<>
ManagedPtr<MetaRuleAbstract>
AST::begin<MetaRuleAbstract>() {
return ManagedPtr<MetaRuleAbstract>(0, &this->__rules);
}
bool
AST::recognizeVariantIdentifier(Expression& identifier) {
assert(identifier.__state == Expression::IDENT);
std::string variant = identifier.getValueString();
if (!__dictVariants.count(variant)) {
return false;
}
auto record = __dictVariants.at(variant);
const TypeAnnotation& typ = record.first;
identifier.__state = Expression::VARIANT;
identifier.setValueDouble(record.second);
identifier.type = typ;
return true;
}
void
AST::postponeIdentifier(CodeScope* scope, const Expression& id) {
bucketUnrecognizedIdentifiers.emplace(scope, id);
}
void
AST::recognizePostponedIdentifiers() {
for(const auto& identifier: bucketUnrecognizedIdentifiers){
if (!identifier.first->recognizeIdentifier(identifier.second)){
//exception: Ident not found
std::cout << "Unknown symbol: "<< identifier.second.getValueString() << std::endl;
assert(false && "Symbol not found");
}
}
}
xreate::AST*
AST::finalize() {
//all finalization steps:
recognizePostponedIdentifiers();
return reinterpret_cast<xreate::AST*>(this);
}
}} //namespace details::incomplete
Expanded<TypeAnnotation>
AST::findType(const std::string& name) {
// find in general scope:
if (__indexTypeAliases.count(name))
return expandType(__indexTypeAliases.at(name));
//if type is unknown keep it as is.
TypeAnnotation t(TypeOperator::CUSTOM,{});
t.__valueCustom = name;
return ExpandedType(move(t));
}
Expanded<TypeAnnotation>
AST::expandType(const TypeAnnotation &t) const {
return TypesResolver(this)(t);
}
ExpandedType
AST::getType(const Expression& expression){
- return analysis::typeinference::getType(expression, *this);
+ return typeinference::getType(expression, *this);
}
Function::Function(const Atom<Identifier_t>& name)
: __entry(new CodeScope(0)) {
__name = name.get();
}
void
Function::addTag(Expression&& tag, const TagModifier mod) {
string name = tag.getValueString();
__tags.emplace(move(name), move(tag));
}
const std::map<std::string, Expression>&
Function::getTags() const {
return __tags;
}
CodeScope*
Function::getEntryScope() const {
return __entry;
}
void
Function::addBinding(Atom <Identifier_t>&& name, Expression&& argument) {
__entry->addBinding(move(name), move(argument));
}
const std::string&
Function::getName() const {
return __name;
}
ScopedSymbol
CodeScope::registerIdentifier(const Expression& identifier) {
VariableVersion version = Attachments::get<VariableVersion>(identifier, VERSION_NONE);
auto result = __identifiers.emplace(identifier.getValueString(), __vCounter);
if (result.second){
++__vCounter;
return {__vCounter-1, version};
}
return {result.first->second, version};
}
bool
CodeScope::recognizeIdentifier(const Expression& identifier) const{
VariableVersion version = Attachments::get<VariableVersion>(identifier, VERSION_NONE);
const std::string& name = identifier.getValueString();
//search identifier in the current block
if (__identifiers.count(name)){
VNameId id = __identifiers.at(name);
Symbol s;
s.identifier = ScopedSymbol{id, version};
s.scope = const_cast<CodeScope*>(this);
Attachments::put<Symbol>(identifier, s);
return true;
}
//search in the parent scope
if (__parent)
{
return __parent->recognizeIdentifier(identifier);
}
return false;
}
ScopedSymbol
CodeScope::getSymbol(const std::string& alias){
assert(__identifiers.count(alias));
VNameId id = __identifiers.at(alias);
return {id, VERSION_NONE};
}
void
CodeScope::addBinding(Expression&& var, Expression&& argument) {
argument.__state = Expression::BINDING;
__bindings.push_back(var.getValueString());
ScopedSymbol binding = registerIdentifier(var);
__declarations[binding] = move(argument);
}
void
CodeScope::addDeclaration(Expression&& var, Expression&& body) {
ScopedSymbol s = registerIdentifier(var);
__declarations[s] = move(body);
}
CodeScope::CodeScope(CodeScope* parent)
: __parent(parent) {
}
CodeScope::~CodeScope() {
}
void
CodeScope::setBody(const Expression &body) {
__declarations[ScopedSymbol::RetSymbol] = body;
}
Expression&
CodeScope::getBody() {
return __declarations[ScopedSymbol::RetSymbol];
}
const Expression&
CodeScope::getDeclaration(const Symbol& symbol) {
CodeScope* self = symbol.scope;
return self->getDeclaration(symbol.identifier);
}
const Expression&
CodeScope::getDeclaration(const ScopedSymbol& symbol){
assert(__declarations.count(symbol) && "Symbol's declaration not found");
return __declarations.at(symbol);
}
void
RuleArguments::add(const Atom<Identifier_t> &arg, DomainAnnotation typ) {
emplace_back(arg.get(), typ);
}
void
RuleGuards::add(Expression&& e) {
push_back(e);
}
MetaRuleAbstract::
MetaRuleAbstract(RuleArguments&& args, RuleGuards&& guards)
: __args(std::move(args)), __guards(std::move(guards)) {
}
MetaRuleAbstract::~MetaRuleAbstract() {
}
RuleWarning::
RuleWarning(RuleArguments&& args, RuleGuards&& guards, Expression&& condition, Atom<String_t>&& message)
: MetaRuleAbstract(std::move(args), std::move(guards)), __message(message.get()), __condition(condition) {
}
RuleWarning::~RuleWarning() {
}
void
RuleWarning::compile(ClaspLayer& layer) {
//TODO restore addRuleWarning
//layer.addRuleWarning(*this);
}
bool operator<(const ScopedSymbol& s1, const ScopedSymbol& s2) {
return (s1.id < s2.id) || (s1.id==s2.id && s1.version < s2.version);
}
bool operator==(const ScopedSymbol& s1, const ScopedSymbol& s2) {
return (s1.id == s2.id) && (s1.version == s2.version);
}
bool operator<(const Symbol& s1, const Symbol& s2) {
return (s1.scope < s2.scope) || (s1.scope == s2.scope && s1.identifier < s2.identifier);
}
bool operator==(const Symbol& s1, const Symbol& s2) {
return (s1.scope == s2.scope) && (s1.identifier == s2.identifier);
}
bool operator<(const Expression&a, const Expression&b) {
if (a.__state != b.__state) return a.__state < b.__state;
assert(a.__state != Expression::INVALID);
switch (a.__state) {
case Expression::IDENT:
case Expression::STRING:
case Expression::VARIANT:
return a.getValueString() < b.getValueString();
case Expression::NUMBER:
return a.getValueDouble() < b.getValueDouble();
case Expression::COMPOUND:
{
assert(a.blocks.size() == 0);
assert(b.blocks.size() == 0);
if (a.op != b.op){
return a.op < b.op;
}
bool flagAValid = ExpressionHints::isStringValueValid(a);
bool flagBValid = ExpressionHints::isStringValueValid(b);
if (flagAValid != flagBValid) {
return flagAValid < flagBValid;
}
if (flagAValid){
if (a.getValueString() != b.getValueString()) {
return a.getValueString() < b.getValueString();
}
}
flagAValid = ExpressionHints::isDoubleValueValid(a);
flagBValid = ExpressionHints::isDoubleValueValid(b);
if (flagAValid != flagBValid) {
return flagAValid < flagBValid;
}
if (flagAValid){
if (a.getValueDouble() != b.getValueDouble()) {
return a.getValueDouble() < b.getValueDouble();
}
}
if (a.operands.size() != b.operands.size()) {
return (a.operands.size() < b.operands.size());
}
for (size_t i = 0; i < a.operands.size(); ++i) {
bool result = a.operands[i] < b.operands[i];
if (result) return true;
}
return false;
}
case Expression::BINDING:
case Expression::INVALID:
assert(false);
}
return false;
}
bool
Expression::operator==(const Expression& other) const {
if (this->__state != other.__state) return false;
if (ExpressionHints::isStringValueValid(*this)) {
if (this->__valueS != other.__valueS) return false;
}
if (ExpressionHints::isDoubleValueValid(*this)) {
if (this->__valueD != other.__valueD) return false;
}
if (this->__state != Expression::COMPOUND) {
return true;
}
if (this->op != other.op) {
return false;
}
if (this->operands.size() != other.operands.size()) {
return false;
}
for (size_t i = 0; i<this->operands.size(); ++i) {
if (!(this->operands[i] == other.operands[i])) return false;
}
assert(!this->blocks.size());
assert(!other.blocks.size());
return true;
}
const ScopedSymbol
ScopedSymbol::RetSymbol = ScopedSymbol{0, VERSION_NONE};
}
diff --git a/cpp/src/pass/compilepass.cpp b/cpp/src/pass/compilepass.cpp
index b402cb2..c1655de 100644
--- a/cpp/src/pass/compilepass.cpp
+++ b/cpp/src/pass/compilepass.cpp
@@ -1,769 +1,769 @@
#include "compilepass.h"
#include "clasplayer.h"
#include <ast.h>
#include "llvmlayer.h"
#include "query/containers.h"
#include "query/context.h"
#include "compilation/containers.h"
#include "compilation/latecontextcompiler2.h"
#include "ExternLayer.h"
#include "pass/adhocpass.h"
#include "compilation/targetinterpretation.h"
#include "pass/versionspass.h"
#include "compilation/scopedecorators.h"
#include "compilation/adhocfunctiondecorator.h"
#include "compilation/operators.h"
#include "analysis/typeinference.h"
#include <boost/optional.hpp>
#include <memory>
#include <iostream>
using namespace std;
using namespace llvm;
//TODO use Scope<TargetLlvm>
//SECTIONTAG types/convert implementation
//TODO type conversion:
//a) automatically expand types int -> bigger int; int -> floating
//b) detect exact type of `num` based on max used numeral / function type
//c) warning if need to truncate (allow/dissalow based on annotations)
namespace xreate {
std::string
BasicFunctionDecorator::prepareName(){
AST* ast = FunctionUnit::pass->man->root;
string name = ast->getFunctionVariants(FunctionUnit::function->__name).size() > 1?
FunctionUnit::function->__name + std::to_string(FunctionUnit::function.id()) :
FunctionUnit::function->__name;
return name;
}
std::vector<llvm::Type*>
BasicFunctionDecorator::prepareArguments(){
LLVMLayer* llvm = FunctionUnit::pass->man->llvm;
AST* ast = FunctionUnit::pass->man->root;
CodeScope* entry = FunctionUnit::function->__entry;
std::vector<llvm::Type*> signature;
std::transform(entry->__bindings.begin(), entry->__bindings.end(), std::inserter(signature, signature.end()),
[llvm, ast, entry](const std::string &arg)->llvm::Type* {
assert(entry->__identifiers.count(arg));
ScopedSymbol argid{entry->__identifiers.at(arg), VERSION_NONE};
return llvm->toLLVMType(ast->expandType(entry->__declarations.at(argid).type));
});
return signature;
}
llvm::Type*
BasicFunctionDecorator::prepareResult(){
LLVMLayer* llvm = FunctionUnit::pass->man->llvm;
AST* ast = FunctionUnit::pass->man->root;
CodeScope* entry = FunctionUnit::function->__entry;
return llvm->toLLVMType(ast->expandType(entry->__declarations.at(ScopedSymbol::RetSymbol).type));
}
llvm::Function::arg_iterator
BasicFunctionDecorator::prepareBindings(){
CodeScope* entry = FunctionUnit::function->__entry;
AbstractCodeScopeUnit* entryCompilation = FunctionUnit::getScopeUnit(entry);
llvm::Function::arg_iterator fargsI = FunctionUnit::raw->arg_begin();
for (std::string &arg : entry->__bindings) {
ScopedSymbol argid{entry->__identifiers[arg], VERSION_NONE};
entryCompilation->bindArg(&*fargsI, argid);
fargsI->setName(arg);
++fargsI;
}
return fargsI;
}
//SECTIONTAG late-context FunctionDecorator
template<class Parent>
class LateContextFunctionDecorator: public Parent{
public:
LateContextFunctionDecorator(ManagedFnPtr f, CompilePass* p)
: Parent(f, p), contextCompiler(this, p)
{}
protected:
std::vector<llvm::Type*> prepareArguments(){
std::vector<llvm::Type*>&& arguments = Parent::prepareArguments();
size_t sizeLateContextDemand = contextCompiler.getFunctionDemandSize();
if (sizeLateContextDemand) {
llvm::Type* ty32 = llvm::Type::getInt32Ty(llvm::getGlobalContext());
llvm::Type* tyDemand = llvm::ArrayType::get(ty32, sizeLateContextDemand);
arguments.push_back(tyDemand);
}
return arguments;
}
llvm::Function::arg_iterator prepareBindings(){
llvm::Function::arg_iterator fargsI = Parent::prepareBindings();
size_t sizeLateContextDemand = contextCompiler.getFunctionDemandSize();
if (sizeLateContextDemand){
fargsI->setName("latecontext");
contextCompiler.rawContextArgument = &*fargsI;
++fargsI;
}
return fargsI;
}
public:
context::LateContextCompiler2 contextCompiler;
};
//DEBT compiler rigidly depends on exact definition of DefaultFunctionUnit
typedef LateContextFunctionDecorator<
adhoc::AdhocFunctionDecorator<
BasicFunctionDecorator>> DefaultFunctionUnit;
AbstractCodeScopeUnit::AbstractCodeScopeUnit(CodeScope* codeScope, FunctionUnit* f, CompilePass* compilePass)
: pass(compilePass), function(f), scope(codeScope)
{}
llvm::Value*
CallStatementRaw::operator() (std::vector<llvm::Value *>&& args, const std::string& hintDecl) {
llvm::Function* calleeInfo = dyn_cast<llvm::Function>(__callee);
if (calleeInfo){
auto argsFormal = calleeInfo->args();
int pos=0;
//SECTIONTAG types/convert function ret value
for (auto argFormal = argsFormal.begin(); argFormal!=argsFormal.end(); ++argFormal, ++pos){
- args[pos] = analysis::typeinference::doAutomaticTypeConversion(args[pos], argFormal->getType(), llvm->builder);
+ args[pos] = typeinference::doAutomaticTypeConversion(args[pos], argFormal->getType(), llvm->builder);
}
}
return llvm->builder.CreateCall(__calleeTy, __callee, args, hintDecl);
}
//DESABLEDFEATURE implement inlining
class CallStatementInline: public CallStatement{
public:
CallStatementInline(FunctionUnit* caller, FunctionUnit* callee, LLVMLayer* l)
: __caller(caller), __callee(callee), llvm(l) {}
llvm::Value* operator() (std::vector<llvm::Value *>&& args, const std::string& hintDecl) {
//TOTEST inlining
// CodeScopeUnit* entryCompilation = outer->getScopeUnit(function->__entry);
// for(int i=0, size = args.size(); i<size; ++i) {
// entryCompilation->bindArg(args.at(i), string(entryCompilation->scope->__bindings.at(i)));
// }
//
//
// return entryCompilation->compile();
return nullptr;
}
private:
FunctionUnit* __caller;
FunctionUnit* __callee;
LLVMLayer* llvm;
bool isInline(){
// Symbol ret = Symbol{0, function->__entry};
// bool flagOnTheFly = SymbolAttachments::get<IsImplementationOnTheFly>(ret, false);
//TODO consider inlining
return false;
}
};
BasicCodeScopeUnit::BasicCodeScopeUnit(CodeScope* codeScope, FunctionUnit* f, CompilePass* compilePass)
: AbstractCodeScopeUnit(codeScope, f, compilePass)
{}
llvm::Value*
BasicCodeScopeUnit::processSymbol(const Symbol& s, std::string hintRetVar){
Expression declaration = CodeScope::getDeclaration(s);
CodeScope* scope = s.scope;
AbstractCodeScopeUnit* self = AbstractCodeScopeUnit::function->getScopeUnit(scope);
return self->process(declaration, hintRetVar);
}
//SECTIONTAG late-context find callee function
//TOTEST static late context decisions
//TOTEST dynamic late context decisions
CallStatement*
BasicCodeScopeUnit::findFunction(const std::string& calleeName){
LLVMLayer* llvm = pass->man->llvm;
ClaspLayer* clasp = pass->man->clasp;
DefaultFunctionUnit* function = dynamic_cast<DefaultFunctionUnit*>(this->function);
context::ContextQuery* queryContext = pass->queryContext;
const std::list<ManagedFnPtr>& specializations = pass->man->root->getFunctionVariants(calleeName);
//if no specializations registered - check external function
if (specializations.size()==0){
llvm::Function* external = llvm->layerExtern->lookupFunction(calleeName);
llvm::outs() << "Debug/External function: " << calleeName;
external->getType()->print(llvm::outs(), true);
llvm::outs() << "\n";
return new CallStatementRaw(external, llvm);
}
//no decisions required
if (specializations.size()==1){
if (!specializations.front()->guardContext.isValid()) {
return new CallStatementRaw( pass->getFunctionUnit(specializations.front())->compile(), llvm);
}
}
//TODO move dictSpecialization over to a separate function in order to perform cache, etc.
//prepare specializations dictionary
std::map<Expression, ManagedFnPtr> dictSpecializations;
boost::optional<ManagedFnPtr> variantDefault;
boost::optional<ManagedFnPtr> variant;
for(const ManagedFnPtr& f: specializations){
const Expression& guard = f->guardContext;
//default case:
if (!guard.isValid()){
variantDefault = f;
continue;
}
assert(dictSpecializations.emplace(guard, f).second && "Found several identical specializations");
}
//check static context
ScopePacked scopeCaller = clasp->pack(this->scope);
const string atomSpecialization = "specialization";
const Expression topicSpecialization(Operator::CALL, {(Atom<Identifier_t>(string(atomSpecialization))), (Atom<Identifier_t>(string(calleeName))), (Atom<Number_t>(scopeCaller))});
const context::Decisions& decisions = queryContext->getFinalDecisions(scopeCaller);
if (decisions.count(topicSpecialization)){
variant = dictSpecializations.at(decisions.at(topicSpecialization));
}
//TODO check only demand for this particular topic.
size_t sizeDemand = function->contextCompiler.getFunctionDemandSize();
//decision made if static context found or no late context exists(and there is default variant)
bool flagHasStaticDecision = variant || (variantDefault && !sizeDemand);
//if no late context exists
if (flagHasStaticDecision) {
FunctionUnit* calleeUnit = pass->getFunctionUnit(variant? *variant: *variantDefault);
//inlining possible based on static decision only
// if (calleeUnit->isInline()) {
// return new CallStatementInline(function, calleeUnit);
// }
return new CallStatementRaw(calleeUnit->compile(), llvm);
}
//require default variant if no static decision made
assert(variantDefault);
llvm::Function* functionVariantDefault = this->pass->getFunctionUnit(*variantDefault)->compile();
llvm::Value* resultFn = function->contextCompiler.findFunction(calleeName, functionVariantDefault, scopeCaller);
llvm::PointerType *resultPTy = cast<llvm::PointerType>(resultFn->getType());
llvm::FunctionType *resultFTy = cast<llvm::FunctionType>(resultPTy->getElementType());
return new CallStatementRaw(resultFn, resultFTy, llvm);
}
//DISABLEDFEATURE transformations
// if (pass->transformations->isAcceptable(expr)){
// return pass->transformations->transform(expr, result, ctx);
// }
llvm::Value*
BasicCodeScopeUnit::process(const Expression& expr, const std::string& hintVarDecl){
#define DEFAULT(x) (hintVarDecl.empty()? x: hintVarDecl)
llvm::Value *left; llvm::Value *right;
LLVMLayer& l = *pass->man->llvm;
xreate::compilation::Advanced instructions = xreate::compilation::Advanced({this, function, pass});
switch (expr.op) {
case Operator::SUB: case Operator::MUL:
case Operator::DIV: case Operator::EQU: case Operator::LSS:
case Operator::GTR: case Operator::NE: case Operator::LSE:
case Operator::GTE:
assert(expr.__state == Expression::COMPOUND);
assert(expr.operands.size() == 2);
left = process(expr.operands[0]);
right = process(expr.operands[1]);
//SECTIONTAG types/convert binary operation
- right = analysis::typeinference::doAutomaticTypeConversion(right, left->getType(), l.builder);
+ right = typeinference::doAutomaticTypeConversion(right, left->getType(), l.builder);
break;
default:;
}
switch (expr.op) {
case Operator::ADD:{
left = process(expr.operands[0]);
Context context{this, function, pass};
llvm::Value* resultSU = StructUpdate::add(expr.operands[0], left, expr.operands[1], context, DEFAULT("tmp_add"));
if (resultSU) return resultSU;
right = process(expr.operands[1]);
llvm::Value* resultAddPA = pointerarithmetic::PointerArithmetic::add(left, right, context,DEFAULT("tmp_add"));
if (resultAddPA) {return resultAddPA;}
return l.builder.CreateAdd(left, right, DEFAULT("tmp_add"));
break;
}
case Operator::SUB:
return l.builder.CreateSub(left, right, DEFAULT("tmp_sub"));
break;
case Operator::MUL:
return l.builder.CreateMul(left, right, DEFAULT("tmp_mul"));
break;
case Operator::DIV:
return l.builder.CreateSDiv(left, right, DEFAULT("tmp_div"));
break;
case Operator::EQU:
if (left->getType()->isIntegerTy()) return l.builder.CreateICmpEQ(left, right, DEFAULT("tmp_equ"));
if (left->getType()->isFloatingPointTy()) return l.builder.CreateFCmpOEQ(left, right, DEFAULT("tmp_equ"));
break;
case Operator::NE:
return l.builder.CreateICmpNE(left, right, DEFAULT("tmp_ne"));
break;
case Operator::LSS:
return l.builder.CreateICmpSLT(left, right, DEFAULT("tmp_lss"));
break;
case Operator::LSE:
return l.builder.CreateICmpSLE(left, right, DEFAULT("tmp_lse"));
break;
case Operator::GTR:
return l.builder.CreateICmpSGT(left, right, DEFAULT("tmp_gtr"));
break;
case Operator::GTE:
return l.builder.CreateICmpSGE(left, right, DEFAULT("tmp_gte"));
break;
case Operator::NEG:
left = process(expr.operands[0]);
return l.builder.CreateNeg(left, DEFAULT("tmp_neg"));
break;
case Operator::CALL: {
assert(expr.__state == Expression::COMPOUND);
std::string nameCallee = expr.getValueString();
shared_ptr<CallStatement> callee(findFunction(nameCallee));
//prepare arguments
std::vector<llvm::Value *> args;
args.reserve(expr.operands.size());
std::transform(expr.operands.begin(), expr.operands.end(), std::inserter(args, args.end()),
[this](const Expression &operand) {
return process(operand);
}
);
ScopePacked outerScopeId = pass->man->clasp->pack(this->scope);
//TASK a) refactor CALL/ADHOC/find function
//SECTIONTAG late-context propagation arg
size_t calleeDemandSize = pass->queryContext->getFunctionDemand(nameCallee).size();
if (calleeDemandSize){
DefaultFunctionUnit* function = dynamic_cast<DefaultFunctionUnit*>(this->function);
llvm::Value* argLateContext = function->contextCompiler.compileContextArgument(nameCallee, outerScopeId);
args.push_back(argLateContext);
}
return (*callee)(move(args), DEFAULT("res_"+nameCallee));
}
case Operator::IF:
{
return instructions.compileIf(expr, DEFAULT("tmp_if"));
}
case Operator::SWITCH:
{
return instructions.compileSwitch(expr, DEFAULT("tmp_switch"));
}
case Operator::LOOP_CONTEXT:
{
assert(false);
return nullptr;
//return instructions.compileLoopContext(expr, DEFAULT("tmp_loop"));
}
case Operator::LOGIC_AND: {
assert(expr.operands.size() == 1);
return process (expr.operands[0]);
}
case Operator::LIST:
{
return instructions.compileListAsSolidArray(expr, DEFAULT("tmp_list"));
};
case Operator::LIST_RANGE:
{
assert(false); //no compilation phase for a range list
// return InstructionList(this).compileConstantArray(expr, l, hintRetVar);
};
case Operator::LIST_NAMED:
{
typedef Expanded<TypeAnnotation> ExpandedType;
ExpandedType tyStructLiteral = l.ast->getType(expr);
const std::vector<string> fieldsFormal = (tyStructLiteral.get().__operator == TypeOperator::CUSTOM)?
l.layerExtern->getStructFields(l.layerExtern->lookupType(tyStructLiteral.get().__valueCustom))
: tyStructLiteral.get().fields;
std::map<std::string, size_t> indexFields;
for(size_t i=0, size = fieldsFormal.size(); i<size; ++i){
indexFields.emplace(fieldsFormal[i], i);
}
llvm::StructType* tyLiteralRaw = llvm::cast<llvm::StructType>(l.toLLVMType(tyStructLiteral));
llvm::Value* record = llvm::UndefValue::get(tyLiteralRaw);
for (size_t i=0; i<expr.operands.size(); ++i){
const Expression& operand = expr.operands.at(i);
unsigned int fieldId = indexFields.at(expr.bindings.at(i));
llvm::Value* result = 0;
//TODO Null ad hoc llvm implementation (related code: operators/StructUpdate/add)
// if (operand.isNone()){
// llvm::Type* tyNullField = tyRecord->getElementType(fieldId);
// result = llvm::UndefValue::get(tyNullField);
//
// } else {
result = process(operand);
// }
assert (result);
record = l.builder.CreateInsertValue(record, result, llvm::ArrayRef<unsigned>({fieldId}));
}
return record;
};
case Operator::MAP:
{
assert(expr.blocks.size());
return instructions.compileMapSolidOutput(expr, DEFAULT("map"));
};
case Operator::FOLD:
{
return instructions.compileFold(expr, DEFAULT("fold"));
};
case Operator::FOLD_INF:
{
return instructions.compileFoldInf(expr, DEFAULT("fold"));
};
case Operator::INDEX:
{
//TODO allow multiindex
assert(expr.operands.size()==2);
assert(expr.operands[0].__state == Expression::IDENT);
const std::string& hintIdent= expr.operands[0].getValueString();
Symbol s = Attachments::get<Symbol>(expr.operands[0]);
const ExpandedType& t2 = pass->man->root->getType(expr.operands[0]);
llvm::Value* aggr = processSymbol(s, hintIdent);
switch (t2.get().__operator)
{
case TypeOperator::STRUCT: case TypeOperator::CUSTOM:
{
std::string idxField;
const Expression& idx = expr.operands.at(1);
switch (idx.__state) {
//named struct field
case Expression::STRING:
idxField = idx.getValueString();
break;
//anonymous struct field
case Expression::NUMBER:
idxField = to_string((int)idx.getValueDouble());
break;
default:
assert(false&& "Wrong index for a struct");
}
return instructions.compileStructIndex(aggr, t2, idxField);
};
case TypeOperator::ARRAY: {
std::vector<llvm::Value*> indexes;
std::transform(++expr.operands.begin(), expr.operands.end(), std::inserter(indexes, indexes.end()),
[this] (const Expression& op){
return process(op);
}
);
return instructions.compileArrayIndex(aggr, indexes, DEFAULT(string("el_") + hintIdent));
};
default:
assert(false);
}
};
//SECTIONTAG adhoc actual compilation
//TODO a) make sure that it's correct: function->adhocImplementation built for Entry scope and used in another scope
case Operator::ADHOC: {
DefaultFunctionUnit* function = dynamic_cast<DefaultFunctionUnit*>(this->function);
assert(function->adhocImplementation && "Adhoc implementation not found");
const Expression& comm = adhoc::AdhocExpression(expr).getCommand();
CodeScope* scope = function->adhocImplementation->getCommandImplementation(comm);
AbstractCodeScopeUnit* unitScope = function->getScopeUnit(scope);
//SECTIONTAG types/convert ADHOC ret convertation
llvm::Type* resultTy = l.toLLVMType( pass->man->root->expandType(function->adhocImplementation->getResultType()));
- return analysis::typeinference::doAutomaticTypeConversion(unitScope->compile(), resultTy, l.builder);
+ return typeinference::doAutomaticTypeConversion(unitScope->compile(), resultTy, l.builder);
};
case Operator::CALL_INTRINSIC:{
const std::string op = expr.getValueString();
if (op == "copy") {
llvm::Value* result = process(expr.getOperands().at(0));
auto decoratorVersions = Decorators<VersionsScopeDecoratorTag>::getInterface(this);
llvm::Value* storage = decoratorVersions->processIntrinsicInit(result->getType());
decoratorVersions->processIntrinsicCopy(result, storage);
return l.builder.CreateLoad(storage, hintVarDecl);
}
assert(false && "undefined intrinsic");
}
case Operator::NONE:
assert(expr.__state != Expression::COMPOUND);
switch (expr.__state) {
case Expression::IDENT: {
Symbol s = Attachments::get<Symbol>(expr);
return processSymbol(s, expr.getValueString());
}
case Expression::NUMBER: {
llvm::Type* typConst;
if (expr.type.isValid()){
typConst = l.toLLVMType(pass->man->root->getType(expr));
} else {
typConst = llvm::Type::getInt32Ty(llvm::getGlobalContext());
}
int literal = expr.getValueDouble();
return llvm::ConstantInt::get(typConst, literal);
}
case Expression::STRING: {
return instructions.compileConstantStringAsPChar(expr.getValueString(), DEFAULT("tmp_str"));
};
case Expression::VARIANT: {
const ExpandedType& typVariant = pass->man->root->getType(expr);
llvm::Type* typRaw = l.toLLVMType(typVariant);
int value = expr.getValueDouble();
return llvm::ConstantInt::get(typRaw, value);
}
default: {
break;
}
};
break;
default: break;
}
assert(false);
return 0;
}
llvm::Value*
BasicCodeScopeUnit::compile(const std::string& hintBlockDecl){
if (!hintBlockDecl.empty()) {
llvm::BasicBlock *block = llvm::BasicBlock::Create(llvm::getGlobalContext(), hintBlockDecl, function->raw);
pass->man->llvm->builder.SetInsertPoint(block);
}
Symbol symbScope = Symbol{ScopedSymbol::RetSymbol, scope};
return processSymbol(symbScope);
}
AbstractCodeScopeUnit::~AbstractCodeScopeUnit()
{}
FunctionUnit::~FunctionUnit()
{}
llvm::Function*
FunctionUnit::compile(){
if (raw != nullptr) return raw;
LLVMLayer* llvm = pass->man->llvm;
llvm::IRBuilder<>& builder = llvm->builder;
string&& functionName = prepareName();
std::vector<llvm::Type*>&& types = prepareArguments();
llvm::Type* expectedResultType = prepareResult();
llvm::FunctionType *ft = llvm::FunctionType::get(expectedResultType, types, false);
raw = llvm::cast<llvm::Function>(llvm->module->getOrInsertFunction(functionName, ft));
prepareBindings();
const std::string&blockName = "entry";
llvm::BasicBlock* blockCurrent = builder.GetInsertBlock();
llvm::Value* result =getScopeUnit(function->__entry)->compile(blockName);
assert(result);
//SECTIONTAG types/convert function ret value
- builder.CreateRet(analysis::typeinference::doAutomaticTypeConversion(result, expectedResultType, llvm->builder));
+ builder.CreateRet(typeinference::doAutomaticTypeConversion(result, expectedResultType, llvm->builder));
if (blockCurrent){
builder.SetInsertPoint(blockCurrent);
}
llvm->moveToGarbage(ft);
return raw;
}
AbstractCodeScopeUnit*
FunctionUnit::getScopeUnit(CodeScope* scope){
if (__scopes.count(scope)) {
auto result = __scopes.at(scope).lock();
if (result){
return result.get();
}
}
std::shared_ptr<AbstractCodeScopeUnit> unit(new DefaultScopeUnit(scope, this, pass));
if (scope->__parent != nullptr){
auto parentUnit = Decorators<CachedScopeDecoratorTag>::getInterface(getScopeUnit(scope->__parent));
parentUnit->registerChildScope(unit);
} else {
__orphanedScopes.push_back(unit);
}
if (!__scopes.emplace(scope, unit).second){
__scopes[scope] = unit;
}
return unit.get();
}
AbstractCodeScopeUnit*
FunctionUnit::getScopeUnit(ManagedScpPtr scope){
return getScopeUnit(&*scope);
}
AbstractCodeScopeUnit*
FunctionUnit::getEntry(){
return getScopeUnit(function->getEntryScope());
}
FunctionUnit*
CompilePass::getFunctionUnit(const ManagedFnPtr& function){
unsigned int id = function.id();
if (!functions.count(id)){
FunctionUnit* unit = new DefaultFunctionUnit(function, this);
functions.emplace(id, unit);
return unit;
}
return functions.at(id);
}
void
CompilePass::run(){
managerTransformations = new TransformationsManager();
targetInterpretation = new interpretation::TargetInterpretation(this->man->root, this);
queryContext = reinterpret_cast<context::ContextQuery*> (man->clasp->getQuery(QueryId::ContextQuery));
//Find out main function;
ClaspLayer::ModelFragment model = man->clasp->query(Config::get("function-entry"));
assert(model && "Error: No entry function found");
assert(model->first != model->second && "Error: Ambiguous entry function");
string nameMain = std::get<0>(ClaspLayer::parse<std::string>(model->first->second));
FunctionUnit* unitMain = getFunctionUnit(man->root->findFunction(nameMain));
entry = unitMain->compile();
}
llvm::Function*
CompilePass::getEntryFunction(){
assert(entry);
return entry;
}
void
CompilePass::prepareQueries(ClaspLayer* clasp){
clasp->registerQuery(new containers::Query(), QueryId::ContainersQuery);
clasp->registerQuery(new context::ContextQuery(), QueryId::ContextQuery);
}
} //end of namespace xreate
Event Timeline
Log In to Comment