No OneTemporary

File Metadata

Created
Sun, Feb 15, 11:40 PM
diff --git a/cpp/src/analysis/typeinference.cpp b/cpp/src/analysis/typeinference.cpp
index 564650c..53888e3 100644
--- a/cpp/src/analysis/typeinference.cpp
+++ b/cpp/src/analysis/typeinference.cpp
@@ -1,55 +1,55 @@
/*
* typeinference.cpp
*
* Author: pgess <v.melnychenko@xreate.org>
* Created on April 16, 2017, 10:13 AM
*/
#include "typeinference.h"
#include "llvmlayer.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/DerivedTypes.h"
-namespace xreate {namespace analysis {namespace typeinference {
+namespace xreate {namespace typeinference {
llvm::Value*
doAutomaticTypeConversion(llvm::Value* source, llvm::Type* tyTarget, llvm::IRBuilder<>& builder){
if (tyTarget->isIntegerTy() && source->getType()->isIntegerTy())
{
llvm::IntegerType* tyTargetInt = llvm::dyn_cast<llvm::IntegerType>(tyTarget);
llvm::IntegerType* tySourceInt = llvm::dyn_cast<llvm::IntegerType>(source->getType());
if (tyTargetInt->getBitWidth() < tySourceInt->getBitWidth()){
return builder.CreateCast(llvm::Instruction::Trunc, source, tyTarget);
}
if (tyTargetInt->getBitWidth() > tySourceInt->getBitWidth()){
return builder.CreateCast(llvm::Instruction::SExt, source, tyTarget);
}
}
if (source->getType()->isIntegerTy() && tyTarget->isFloatingPointTy()){
return builder.CreateCast(llvm::Instruction::SIToFP, source, tyTarget);
}
return source;
}
ExpandedType
getType(const Expression& expression, const AST& ast){
if (expression.type.isValid()){
return ast.expandType(expression.type);
}
if (expression.__state == Expression::IDENT){
Symbol s = Attachments::get<Symbol>(expression);
return getType(CodeScope::getDeclaration(s), ast);
}
assert(false && "Type can't be determined for an expression");
}
-} } }
\ No newline at end of file
+} } //end of namespace xreate::typeinference
\ No newline at end of file
diff --git a/cpp/src/analysis/typeinference.h b/cpp/src/analysis/typeinference.h
index 621a5a7..a35e33e 100644
--- a/cpp/src/analysis/typeinference.h
+++ b/cpp/src/analysis/typeinference.h
@@ -1,27 +1,27 @@
/*
* File: typeinference.h
* Author: pgess <v.melnychenko@xreate.org>
*
* Created on April 16, 2017, 10:17 AM
*/
#ifndef TYPEINFERENCE_H
#define TYPEINFERENCE_H
#include "ast.h"
#include "llvm/IR/IRBuilder.h"
namespace llvm {
class Value;
class Type;
};
-namespace xreate {namespace analysis {namespace typeinference {
+namespace xreate { namespace typeinference {
llvm::Value* doAutomaticTypeConversion(llvm::Value* source, llvm::Type* tyTarget, llvm::IRBuilder<>& builder);
ExpandedType getType(const Expression& expression, const AST& ast);
-} } } //namespace xreate
+} }//namespace xreate::typeinference
#endif /* TYPEINFERENCE_H */
diff --git a/cpp/src/ast.cpp b/cpp/src/ast.cpp
index d11b636..01b0842 100644
--- a/cpp/src/ast.cpp
+++ b/cpp/src/ast.cpp
@@ -1,926 +1,926 @@
#include "ast.h"
#include "ExternLayer.h"
#include "analysis/typeinference.h"
#include <stdexcept>
#include <iostream>
namespace std{
std::size_t
hash<xreate::ScopedSymbol>::operator()(xreate::ScopedSymbol const& s) const
{return s.id ^ (s.version << 2);}
bool
equal_to<xreate::ScopedSymbol>::operator()(const xreate::ScopedSymbol& __x, const xreate::ScopedSymbol& __y) const
{ return __x.id == __y.id && __x.version == __y.version; }
size_t
hash<xreate::Symbol>::operator()(xreate::Symbol const& s) const{
return hash<xreate::ScopedSymbol>()(s.identifier) ^ ((long int) s.scope << 1);
}
bool
equal_to<xreate::Symbol>::operator()(const xreate::Symbol& __x, const xreate::Symbol& __y) const{
return __x == __y;
};
}
using namespace std;
namespace xreate {
Atom<Identifier_t>::Atom(const std::wstring& value) {
__value = wstring_to_utf8(value);
}
Atom<Identifier_t>::Atom(std::string && name) : __value(name)
{}
const std::string&
Atom<Identifier_t>::get() const {
return __value;
}
Atom<Number_t>::Atom(wchar_t* value) {
//DEBT reconsider number literal recognition
__value = wcstol(value, 0, 10);
}
Atom<Number_t>::Atom(int value)
: __value(value) {
}
double
Atom<Number_t>::get()const {
return __value;
}
Atom<String_t>::Atom(const std::wstring& value) {
assert(value.size() >=2);
__value = wstring_to_utf8(value.substr(1, value.size() -2));
}
const std::string&
Atom<String_t>::get() const {
return __value;
}
class ExpressionHints {
public:
static bool
isStringValueValid(const Expression& e) {
switch (e.__state) {
case Expression::INVALID:
assert(false);
case Expression::IDENT:
case Expression::STRING:
return true;
case Expression::NUMBER:
case Expression::BINDING:
case Expression::VARIANT:
return false;
case Expression::COMPOUND:
{
switch (e.op) {
case Operator::CALL:
return true;
default: return false;
}
}
}
return false;
}
static bool
isDoubleValueValid(const Expression& e) {
switch (e.__state) {
case Expression::NUMBER:
case Expression::VARIANT:
return true;
case Expression::INVALID:
assert(false);
case Expression::IDENT:
case Expression::STRING:
case Expression::COMPOUND:
case Expression::BINDING:
return false;
}
return false;
}
};
class TypesResolver {
private:
const AST* ast;
std::map<std::string, TypeAnnotation> scope;
std::map<TypeAnnotation, int> signatures;
ExpandedType expandType(const TypeAnnotation &t, const std::vector<TypeAnnotation> &args = std::vector<TypeAnnotation>()) {
return TypesResolver(ast, scope, signatures)(t, args);
}
std::vector<TypeAnnotation>
expandOperands(const std::vector<TypeAnnotation>& operands) {
std::vector<TypeAnnotation> pack;
pack.reserve(operands.size());
std::transform(operands.begin(), operands.end(), std::inserter(pack, pack.end()),
[this](const TypeAnnotation & t) {
return expandType(t);
});
return pack;
}
public:
TypesResolver(const AST* root, const std::map<std::string, TypeAnnotation>& scopeOuter = std::map<std::string, TypeAnnotation>(),
std::map<TypeAnnotation, int> signaturesOuter = std::map<TypeAnnotation, int>())
: ast(root), scope(scopeOuter), signatures(signaturesOuter) {
}
ExpandedType
operator()(const TypeAnnotation &t, const std::vector<TypeAnnotation> &args = std::vector<TypeAnnotation>()) {
//assert(args.size() == t.bindings.size()); // invalid number of arguments
for (size_t i = 0; i < args.size(); ++i) {
scope[t.bindings.at(i)] = args.at(i);
}
switch (t.__operator) {
case TypeOperator::ARRAY:
{
assert(t.__operands.size() == 1);
Expanded<TypeAnnotation> elTy = expandType(t.__operands.at(0));
return ExpandedType(TypeAnnotation(tag_array, elTy, 0));
}
case TypeOperator::STRUCT:
{
assert(t.__operands.size());
std::vector<TypeAnnotation>&& packOperands = expandOperands(t.__operands);
auto typNew = TypeAnnotation(TypeOperator::STRUCT, move(packOperands));
typNew.fields = t.fields;
return ExpandedType(move(typNew));
};
case TypeOperator::CALL:
{
std::string alias = t.__valueCustom;
//find in local scope:
TypeAnnotation ty;
if (scope.count(alias)) {
ty = scope.at(alias);
} else if (ast->__indexTypeAliases.count(alias)) {
ty = ast->__indexTypeAliases.at(alias);
} else {
assert(false && "Undefined or external type");
}
std::vector<TypeAnnotation>&& operands = expandOperands(t.__operands);
TypeAnnotation signature(TypeOperator::CALL, move(operands));
signature.__valueCustom = alias;
if (signatures.count(signature)) {
auto link = TypeAnnotation(TypeOperator::LINK,{});
link.conjuctionId = signatures.at(signature);
return ExpandedType(move(link));
}
int cid = signatures.size();
signatures[signature] = cid;
TypeAnnotation tyResult = expandType(ty, operands);
tyResult.conjuctionId = cid;
return ExpandedType(move(tyResult));
};
case TypeOperator::CUSTOM:
{
std::string alias = t.__valueCustom;
/*
if (signatures.count(alias)) {
return ExpandedType(TypeAnnotation(TypeOperator::LINK, {t}));
}
signatures[alias].emplace(t);
*/
//find in local scope:
if (scope.count(alias)) {
return expandType(scope.at(alias));
}
// find in general scope:
if (ast->__indexTypeAliases.count(alias)) {
return expandType(ast->__indexTypeAliases.at(t.__valueCustom));
}
//if type is unknown keep it as is.
return ExpandedType(TypeAnnotation(t));
};
case TypeOperator::ACCESS:
{
std::string alias = t.__valueCustom;
ExpandedType tyAlias = ExpandedType(TypeAnnotation());
//find in local scope:
if (scope.count(alias)) {
tyAlias = expandType(scope.at(alias));
//find in global scope:
} else if ((ast->__indexTypeAliases.count(alias))) {
tyAlias = expandType(ast->__indexTypeAliases.at(alias));
} else {
assert(false && "Undefined or external type");
}
assert(tyAlias->__operator == TypeOperator::STRUCT);
for (const string& field : t.fields) {
auto fieldIt = std::find(tyAlias->fields.begin(), tyAlias->fields.end(), field);
assert(fieldIt != tyAlias->fields.end() && "unknown field");
int fieldId = fieldIt - tyAlias->fields.begin();
tyAlias = expandType(tyAlias->__operands.at(fieldId));
}
return tyAlias;
}
case TypeOperator::VARIANT:
{
return ExpandedType(TypeAnnotation(t));
}
case TypeOperator::NONE:
{
return ExpandedType(TypeAnnotation(t));
}
default:
assert(false);
}
assert(false);
return ExpandedType(TypeAnnotation());
}
};
TypeAnnotation::TypeAnnotation()
: __operator(TypeOperator::NONE), __value(TypePrimitive::Invalid)
{}
TypeAnnotation::TypeAnnotation(TypePrimitive typ)
: __value(typ) {
}
TypeAnnotation::TypeAnnotation(TypeOperator op, std::initializer_list<TypeAnnotation> operands)
: __operator(op), __operands(operands) {
}
TypeAnnotation::TypeAnnotation(TypeOperator op, std::vector<TypeAnnotation>&& operands)
: __operator(op), __operands(operands) {
}
TypeAnnotation::TypeAnnotation(llvm_array_tag, TypeAnnotation typ, int size)
: TypeAnnotation(TypeOperator::ARRAY,{typ}) {
__size = size;
}
bool
TypeAnnotation::isValid() const{
return !(__value == TypePrimitive::Invalid && __operator == TypeOperator::NONE);
}
bool
TypeAnnotation::operator<(const TypeAnnotation& t) const {
if (__operator != t.__operator) return __operator < t.__operator;
if (__operator == TypeOperator::NONE)
return __value < t.__value;
if (__operator == TypeOperator::CALL || __operator == TypeOperator::CUSTOM || __operator == TypeOperator::ACCESS) {
if (__valueCustom != t.__valueCustom)
return __valueCustom < t.__valueCustom;
}
return __operands < t.__operands;
}
/*
TypeAnnotation (struct_tag, std::initializer_list<TypeAnnotation>)
{}
*/
void
TypeAnnotation::addBindings(std::vector<Atom<Identifier_t>>&& params) {
bindings.reserve(bindings.size() + params.size());
std::transform(params.begin(), params.end(), std::inserter(bindings, bindings.end()),
[](const Atom<Identifier_t>& ident) {
return ident.get(); });
}
void
TypeAnnotation::addFields(std::vector<Atom<Identifier_t>>&& listFields) {
fields.reserve(fields.size() + listFields.size());
std::transform(listFields.begin(), listFields.end(), std::inserter(fields, fields.end()),
[](const Atom<Identifier_t>& ident) {
return ident.get(); });
}
unsigned int Expression::nextVacantId = 0;
Expression::Expression(const Atom<Number_t>& number)
: Expression() {
__state=NUMBER; op=Operator::NONE; __valueD=number.get();
}
Expression::Expression(const Atom<String_t>& a)
: Expression(){
__state=STRING; op=Operator::NONE; __valueS=a.get();
}
Expression::Expression(const Atom<Identifier_t> &ident)
: Expression() {
__state=IDENT; op=Operator::NONE; __valueS=ident.get();
}
Expression::Expression(const Operator &oprt, std::initializer_list<Expression> params)
: Expression() {
__state=COMPOUND; op=oprt;
if (op == Operator::CALL) {
assert(params.size() > 0);
Expression arg = *params.begin();
assert(arg.__state == Expression::IDENT);
__valueS = std::move(arg.__valueS);
operands.insert(operands.end(), params.begin() + 1, params.end());
return;
}
operands.insert(operands.end(), params.begin(), params.end());
}
void
Expression::setOp(Operator oprt) {
op = oprt;
switch (op) {
case Operator::NONE:
__state = INVALID;
break;
default:
__state = COMPOUND;
break;
}
}
void
Expression::addArg(Expression &&arg) {
operands.push_back(arg);
}
void
Expression::addTags(const std::list<Expression> tags) const{
std::transform(tags.begin(), tags.end(), std::inserter(this->tags, this->tags.end()),
[](const Expression& tag){
return make_pair(tag.getValueString(), tag);
});
}
void
Expression::addBindings(std::initializer_list<Atom<Identifier_t>> params) {
addBindings(params.begin(), params.end());
}
void
Expression::bindType(TypeAnnotation t) {
type = move(t);
}
void
Expression::addBlock(ManagedScpPtr scope) {
blocks.push_back(scope.operator->());
}
const std::vector<Expression>&
Expression::getOperands() const {
return operands;
}
double
Expression::getValueDouble() const {
return __valueD;
}
const std::string&
Expression::getValueString() const {
return __valueS;
}
void
Expression::setValue(const Atom<Identifier_t>&& v) {
__valueS = v.get();
}
void Expression::setValueDouble(double value) {
__valueD = value;
}
bool
Expression::isValid() const {
return (__state != INVALID);
}
bool
Expression::isDefined() const {
return (__state != BINDING);
}
Expression::Expression()
: __state(INVALID), op(Operator::NONE), id(nextVacantId++)
{ }
namespace details { namespace incomplete {
AST::AST() {
Attachments::init<VariableVersion>();
Attachments::init<Symbol>();
}
void
AST::addInterfaceData(const ASTInterface& interface, Expression&& data) {
__interfacesData.emplace(interface, move(data));
}
void
AST::addDFAData(Expression &&data) {
__dfadata.push_back(data);
}
void
AST::addExternData(ExternData &&data) {
__externdata.insert(__externdata.end(), data.entries.begin(), data.entries.end());
}
void
AST::add(Function* f) {
__functions.push_back(f);
__indexFunctions.emplace(f->getName(), __functions.size() - 1);
}
void
AST::add(MetaRuleAbstract *r) {
__rules.push_back(r);
}
void
AST::add(TypeAnnotation t, Atom<Identifier_t> alias) {
if (t.__operator == TypeOperator::VARIANT) {
for (int i = 0, size = t.fields.size(); i < size; ++i) {
__dictVariants.emplace(t.fields[i], make_pair(t, i));
}
}
__indexTypeAliases.emplace(alias.get(), move(t));
}
ManagedScpPtr
AST::add(CodeScope* scope) {
this->__scopes.push_back(scope);
return ManagedScpPtr(this->__scopes.size() - 1, &this->__scopes);
}
std::string
AST::getModuleName() {
const std::string name = "moduleTest";
return name;
}
ManagedPtr<Function>
AST::findFunction(const std::string& name) {
int count = __indexFunctions.count(name);
if (!count) {
return ManagedFnPtr::Invalid();
}
assert(count == 1);
auto range = __indexFunctions.equal_range(name);
return ManagedPtr<Function>(range.first->second, &this->__functions);
}
std::list<ManagedFnPtr>
AST::getAllFunctions() const {
const size_t size = __functions.size();
std::list<ManagedFnPtr> result;
for (size_t i = 0; i < size; ++i) {
result.push_back(ManagedFnPtr(i, &this->__functions));
}
return result;
}
//TASK select default specializations
std::list<ManagedFnPtr>
AST::getFunctionVariants(const std::string& name) const {
auto functions = __indexFunctions.equal_range(name);
std::list<ManagedFnPtr> result;
std::transform(functions.first, functions.second, inserter(result, result.end()),
[this](auto f) {
return ManagedFnPtr(f.second, &this->__functions);
});
return result;
}
template<>
ManagedPtr<Function>
AST::begin<Function>() {
return ManagedPtr<Function>(0, &this->__functions);
}
template<>
ManagedPtr<CodeScope>
AST::begin<CodeScope>() {
return ManagedPtr<CodeScope>(0, &this->__scopes);
}
template<>
ManagedPtr<MetaRuleAbstract>
AST::begin<MetaRuleAbstract>() {
return ManagedPtr<MetaRuleAbstract>(0, &this->__rules);
}
bool
AST::recognizeVariantIdentifier(Expression& identifier) {
assert(identifier.__state == Expression::IDENT);
std::string variant = identifier.getValueString();
if (!__dictVariants.count(variant)) {
return false;
}
auto record = __dictVariants.at(variant);
const TypeAnnotation& typ = record.first;
identifier.__state = Expression::VARIANT;
identifier.setValueDouble(record.second);
identifier.type = typ;
return true;
}
void
AST::postponeIdentifier(CodeScope* scope, const Expression& id) {
bucketUnrecognizedIdentifiers.emplace(scope, id);
}
void
AST::recognizePostponedIdentifiers() {
for(const auto& identifier: bucketUnrecognizedIdentifiers){
if (!identifier.first->recognizeIdentifier(identifier.second)){
//exception: Ident not found
std::cout << "Unknown symbol: "<< identifier.second.getValueString() << std::endl;
assert(false && "Symbol not found");
}
}
}
xreate::AST*
AST::finalize() {
//all finalization steps:
recognizePostponedIdentifiers();
return reinterpret_cast<xreate::AST*>(this);
}
}} //namespace details::incomplete
Expanded<TypeAnnotation>
AST::findType(const std::string& name) {
// find in general scope:
if (__indexTypeAliases.count(name))
return expandType(__indexTypeAliases.at(name));
//if type is unknown keep it as is.
TypeAnnotation t(TypeOperator::CUSTOM,{});
t.__valueCustom = name;
return ExpandedType(move(t));
}
Expanded<TypeAnnotation>
AST::expandType(const TypeAnnotation &t) const {
return TypesResolver(this)(t);
}
ExpandedType
AST::getType(const Expression& expression){
- return analysis::typeinference::getType(expression, *this);
+ return typeinference::getType(expression, *this);
}
Function::Function(const Atom<Identifier_t>& name)
: __entry(new CodeScope(0)) {
__name = name.get();
}
void
Function::addTag(Expression&& tag, const TagModifier mod) {
string name = tag.getValueString();
__tags.emplace(move(name), move(tag));
}
const std::map<std::string, Expression>&
Function::getTags() const {
return __tags;
}
CodeScope*
Function::getEntryScope() const {
return __entry;
}
void
Function::addBinding(Atom <Identifier_t>&& name, Expression&& argument) {
__entry->addBinding(move(name), move(argument));
}
const std::string&
Function::getName() const {
return __name;
}
ScopedSymbol
CodeScope::registerIdentifier(const Expression& identifier) {
VariableVersion version = Attachments::get<VariableVersion>(identifier, VERSION_NONE);
auto result = __identifiers.emplace(identifier.getValueString(), __vCounter);
if (result.second){
++__vCounter;
return {__vCounter-1, version};
}
return {result.first->second, version};
}
bool
CodeScope::recognizeIdentifier(const Expression& identifier) const{
VariableVersion version = Attachments::get<VariableVersion>(identifier, VERSION_NONE);
const std::string& name = identifier.getValueString();
//search identifier in the current block
if (__identifiers.count(name)){
VNameId id = __identifiers.at(name);
Symbol s;
s.identifier = ScopedSymbol{id, version};
s.scope = const_cast<CodeScope*>(this);
Attachments::put<Symbol>(identifier, s);
return true;
}
//search in the parent scope
if (__parent)
{
return __parent->recognizeIdentifier(identifier);
}
return false;
}
ScopedSymbol
CodeScope::getSymbol(const std::string& alias){
assert(__identifiers.count(alias));
VNameId id = __identifiers.at(alias);
return {id, VERSION_NONE};
}
void
CodeScope::addBinding(Expression&& var, Expression&& argument) {
argument.__state = Expression::BINDING;
__bindings.push_back(var.getValueString());
ScopedSymbol binding = registerIdentifier(var);
__declarations[binding] = move(argument);
}
void
CodeScope::addDeclaration(Expression&& var, Expression&& body) {
ScopedSymbol s = registerIdentifier(var);
__declarations[s] = move(body);
}
CodeScope::CodeScope(CodeScope* parent)
: __parent(parent) {
}
CodeScope::~CodeScope() {
}
void
CodeScope::setBody(const Expression &body) {
__declarations[ScopedSymbol::RetSymbol] = body;
}
Expression&
CodeScope::getBody() {
return __declarations[ScopedSymbol::RetSymbol];
}
const Expression&
CodeScope::getDeclaration(const Symbol& symbol) {
CodeScope* self = symbol.scope;
return self->getDeclaration(symbol.identifier);
}
const Expression&
CodeScope::getDeclaration(const ScopedSymbol& symbol){
assert(__declarations.count(symbol) && "Symbol's declaration not found");
return __declarations.at(symbol);
}
void
RuleArguments::add(const Atom<Identifier_t> &arg, DomainAnnotation typ) {
emplace_back(arg.get(), typ);
}
void
RuleGuards::add(Expression&& e) {
push_back(e);
}
MetaRuleAbstract::
MetaRuleAbstract(RuleArguments&& args, RuleGuards&& guards)
: __args(std::move(args)), __guards(std::move(guards)) {
}
MetaRuleAbstract::~MetaRuleAbstract() {
}
RuleWarning::
RuleWarning(RuleArguments&& args, RuleGuards&& guards, Expression&& condition, Atom<String_t>&& message)
: MetaRuleAbstract(std::move(args), std::move(guards)), __message(message.get()), __condition(condition) {
}
RuleWarning::~RuleWarning() {
}
void
RuleWarning::compile(ClaspLayer& layer) {
//TODO restore addRuleWarning
//layer.addRuleWarning(*this);
}
bool operator<(const ScopedSymbol& s1, const ScopedSymbol& s2) {
return (s1.id < s2.id) || (s1.id==s2.id && s1.version < s2.version);
}
bool operator==(const ScopedSymbol& s1, const ScopedSymbol& s2) {
return (s1.id == s2.id) && (s1.version == s2.version);
}
bool operator<(const Symbol& s1, const Symbol& s2) {
return (s1.scope < s2.scope) || (s1.scope == s2.scope && s1.identifier < s2.identifier);
}
bool operator==(const Symbol& s1, const Symbol& s2) {
return (s1.scope == s2.scope) && (s1.identifier == s2.identifier);
}
bool operator<(const Expression&a, const Expression&b) {
if (a.__state != b.__state) return a.__state < b.__state;
assert(a.__state != Expression::INVALID);
switch (a.__state) {
case Expression::IDENT:
case Expression::STRING:
case Expression::VARIANT:
return a.getValueString() < b.getValueString();
case Expression::NUMBER:
return a.getValueDouble() < b.getValueDouble();
case Expression::COMPOUND:
{
assert(a.blocks.size() == 0);
assert(b.blocks.size() == 0);
if (a.op != b.op){
return a.op < b.op;
}
bool flagAValid = ExpressionHints::isStringValueValid(a);
bool flagBValid = ExpressionHints::isStringValueValid(b);
if (flagAValid != flagBValid) {
return flagAValid < flagBValid;
}
if (flagAValid){
if (a.getValueString() != b.getValueString()) {
return a.getValueString() < b.getValueString();
}
}
flagAValid = ExpressionHints::isDoubleValueValid(a);
flagBValid = ExpressionHints::isDoubleValueValid(b);
if (flagAValid != flagBValid) {
return flagAValid < flagBValid;
}
if (flagAValid){
if (a.getValueDouble() != b.getValueDouble()) {
return a.getValueDouble() < b.getValueDouble();
}
}
if (a.operands.size() != b.operands.size()) {
return (a.operands.size() < b.operands.size());
}
for (size_t i = 0; i < a.operands.size(); ++i) {
bool result = a.operands[i] < b.operands[i];
if (result) return true;
}
return false;
}
case Expression::BINDING:
case Expression::INVALID:
assert(false);
}
return false;
}
bool
Expression::operator==(const Expression& other) const {
if (this->__state != other.__state) return false;
if (ExpressionHints::isStringValueValid(*this)) {
if (this->__valueS != other.__valueS) return false;
}
if (ExpressionHints::isDoubleValueValid(*this)) {
if (this->__valueD != other.__valueD) return false;
}
if (this->__state != Expression::COMPOUND) {
return true;
}
if (this->op != other.op) {
return false;
}
if (this->operands.size() != other.operands.size()) {
return false;
}
for (size_t i = 0; i<this->operands.size(); ++i) {
if (!(this->operands[i] == other.operands[i])) return false;
}
assert(!this->blocks.size());
assert(!other.blocks.size());
return true;
}
const ScopedSymbol
ScopedSymbol::RetSymbol = ScopedSymbol{0, VERSION_NONE};
}
diff --git a/cpp/src/pass/compilepass.cpp b/cpp/src/pass/compilepass.cpp
index b402cb2..c1655de 100644
--- a/cpp/src/pass/compilepass.cpp
+++ b/cpp/src/pass/compilepass.cpp
@@ -1,769 +1,769 @@
#include "compilepass.h"
#include "clasplayer.h"
#include <ast.h>
#include "llvmlayer.h"
#include "query/containers.h"
#include "query/context.h"
#include "compilation/containers.h"
#include "compilation/latecontextcompiler2.h"
#include "ExternLayer.h"
#include "pass/adhocpass.h"
#include "compilation/targetinterpretation.h"
#include "pass/versionspass.h"
#include "compilation/scopedecorators.h"
#include "compilation/adhocfunctiondecorator.h"
#include "compilation/operators.h"
#include "analysis/typeinference.h"
#include <boost/optional.hpp>
#include <memory>
#include <iostream>
using namespace std;
using namespace llvm;
//TODO use Scope<TargetLlvm>
//SECTIONTAG types/convert implementation
//TODO type conversion:
//a) automatically expand types int -> bigger int; int -> floating
//b) detect exact type of `num` based on max used numeral / function type
//c) warning if need to truncate (allow/dissalow based on annotations)
namespace xreate {
std::string
BasicFunctionDecorator::prepareName(){
AST* ast = FunctionUnit::pass->man->root;
string name = ast->getFunctionVariants(FunctionUnit::function->__name).size() > 1?
FunctionUnit::function->__name + std::to_string(FunctionUnit::function.id()) :
FunctionUnit::function->__name;
return name;
}
std::vector<llvm::Type*>
BasicFunctionDecorator::prepareArguments(){
LLVMLayer* llvm = FunctionUnit::pass->man->llvm;
AST* ast = FunctionUnit::pass->man->root;
CodeScope* entry = FunctionUnit::function->__entry;
std::vector<llvm::Type*> signature;
std::transform(entry->__bindings.begin(), entry->__bindings.end(), std::inserter(signature, signature.end()),
[llvm, ast, entry](const std::string &arg)->llvm::Type* {
assert(entry->__identifiers.count(arg));
ScopedSymbol argid{entry->__identifiers.at(arg), VERSION_NONE};
return llvm->toLLVMType(ast->expandType(entry->__declarations.at(argid).type));
});
return signature;
}
llvm::Type*
BasicFunctionDecorator::prepareResult(){
LLVMLayer* llvm = FunctionUnit::pass->man->llvm;
AST* ast = FunctionUnit::pass->man->root;
CodeScope* entry = FunctionUnit::function->__entry;
return llvm->toLLVMType(ast->expandType(entry->__declarations.at(ScopedSymbol::RetSymbol).type));
}
llvm::Function::arg_iterator
BasicFunctionDecorator::prepareBindings(){
CodeScope* entry = FunctionUnit::function->__entry;
AbstractCodeScopeUnit* entryCompilation = FunctionUnit::getScopeUnit(entry);
llvm::Function::arg_iterator fargsI = FunctionUnit::raw->arg_begin();
for (std::string &arg : entry->__bindings) {
ScopedSymbol argid{entry->__identifiers[arg], VERSION_NONE};
entryCompilation->bindArg(&*fargsI, argid);
fargsI->setName(arg);
++fargsI;
}
return fargsI;
}
//SECTIONTAG late-context FunctionDecorator
template<class Parent>
class LateContextFunctionDecorator: public Parent{
public:
LateContextFunctionDecorator(ManagedFnPtr f, CompilePass* p)
: Parent(f, p), contextCompiler(this, p)
{}
protected:
std::vector<llvm::Type*> prepareArguments(){
std::vector<llvm::Type*>&& arguments = Parent::prepareArguments();
size_t sizeLateContextDemand = contextCompiler.getFunctionDemandSize();
if (sizeLateContextDemand) {
llvm::Type* ty32 = llvm::Type::getInt32Ty(llvm::getGlobalContext());
llvm::Type* tyDemand = llvm::ArrayType::get(ty32, sizeLateContextDemand);
arguments.push_back(tyDemand);
}
return arguments;
}
llvm::Function::arg_iterator prepareBindings(){
llvm::Function::arg_iterator fargsI = Parent::prepareBindings();
size_t sizeLateContextDemand = contextCompiler.getFunctionDemandSize();
if (sizeLateContextDemand){
fargsI->setName("latecontext");
contextCompiler.rawContextArgument = &*fargsI;
++fargsI;
}
return fargsI;
}
public:
context::LateContextCompiler2 contextCompiler;
};
//DEBT compiler rigidly depends on exact definition of DefaultFunctionUnit
typedef LateContextFunctionDecorator<
adhoc::AdhocFunctionDecorator<
BasicFunctionDecorator>> DefaultFunctionUnit;
AbstractCodeScopeUnit::AbstractCodeScopeUnit(CodeScope* codeScope, FunctionUnit* f, CompilePass* compilePass)
: pass(compilePass), function(f), scope(codeScope)
{}
llvm::Value*
CallStatementRaw::operator() (std::vector<llvm::Value *>&& args, const std::string& hintDecl) {
llvm::Function* calleeInfo = dyn_cast<llvm::Function>(__callee);
if (calleeInfo){
auto argsFormal = calleeInfo->args();
int pos=0;
//SECTIONTAG types/convert function ret value
for (auto argFormal = argsFormal.begin(); argFormal!=argsFormal.end(); ++argFormal, ++pos){
- args[pos] = analysis::typeinference::doAutomaticTypeConversion(args[pos], argFormal->getType(), llvm->builder);
+ args[pos] = typeinference::doAutomaticTypeConversion(args[pos], argFormal->getType(), llvm->builder);
}
}
return llvm->builder.CreateCall(__calleeTy, __callee, args, hintDecl);
}
//DESABLEDFEATURE implement inlining
class CallStatementInline: public CallStatement{
public:
CallStatementInline(FunctionUnit* caller, FunctionUnit* callee, LLVMLayer* l)
: __caller(caller), __callee(callee), llvm(l) {}
llvm::Value* operator() (std::vector<llvm::Value *>&& args, const std::string& hintDecl) {
//TOTEST inlining
// CodeScopeUnit* entryCompilation = outer->getScopeUnit(function->__entry);
// for(int i=0, size = args.size(); i<size; ++i) {
// entryCompilation->bindArg(args.at(i), string(entryCompilation->scope->__bindings.at(i)));
// }
//
//
// return entryCompilation->compile();
return nullptr;
}
private:
FunctionUnit* __caller;
FunctionUnit* __callee;
LLVMLayer* llvm;
bool isInline(){
// Symbol ret = Symbol{0, function->__entry};
// bool flagOnTheFly = SymbolAttachments::get<IsImplementationOnTheFly>(ret, false);
//TODO consider inlining
return false;
}
};
BasicCodeScopeUnit::BasicCodeScopeUnit(CodeScope* codeScope, FunctionUnit* f, CompilePass* compilePass)
: AbstractCodeScopeUnit(codeScope, f, compilePass)
{}
llvm::Value*
BasicCodeScopeUnit::processSymbol(const Symbol& s, std::string hintRetVar){
Expression declaration = CodeScope::getDeclaration(s);
CodeScope* scope = s.scope;
AbstractCodeScopeUnit* self = AbstractCodeScopeUnit::function->getScopeUnit(scope);
return self->process(declaration, hintRetVar);
}
//SECTIONTAG late-context find callee function
//TOTEST static late context decisions
//TOTEST dynamic late context decisions
CallStatement*
BasicCodeScopeUnit::findFunction(const std::string& calleeName){
LLVMLayer* llvm = pass->man->llvm;
ClaspLayer* clasp = pass->man->clasp;
DefaultFunctionUnit* function = dynamic_cast<DefaultFunctionUnit*>(this->function);
context::ContextQuery* queryContext = pass->queryContext;
const std::list<ManagedFnPtr>& specializations = pass->man->root->getFunctionVariants(calleeName);
//if no specializations registered - check external function
if (specializations.size()==0){
llvm::Function* external = llvm->layerExtern->lookupFunction(calleeName);
llvm::outs() << "Debug/External function: " << calleeName;
external->getType()->print(llvm::outs(), true);
llvm::outs() << "\n";
return new CallStatementRaw(external, llvm);
}
//no decisions required
if (specializations.size()==1){
if (!specializations.front()->guardContext.isValid()) {
return new CallStatementRaw( pass->getFunctionUnit(specializations.front())->compile(), llvm);
}
}
//TODO move dictSpecialization over to a separate function in order to perform cache, etc.
//prepare specializations dictionary
std::map<Expression, ManagedFnPtr> dictSpecializations;
boost::optional<ManagedFnPtr> variantDefault;
boost::optional<ManagedFnPtr> variant;
for(const ManagedFnPtr& f: specializations){
const Expression& guard = f->guardContext;
//default case:
if (!guard.isValid()){
variantDefault = f;
continue;
}
assert(dictSpecializations.emplace(guard, f).second && "Found several identical specializations");
}
//check static context
ScopePacked scopeCaller = clasp->pack(this->scope);
const string atomSpecialization = "specialization";
const Expression topicSpecialization(Operator::CALL, {(Atom<Identifier_t>(string(atomSpecialization))), (Atom<Identifier_t>(string(calleeName))), (Atom<Number_t>(scopeCaller))});
const context::Decisions& decisions = queryContext->getFinalDecisions(scopeCaller);
if (decisions.count(topicSpecialization)){
variant = dictSpecializations.at(decisions.at(topicSpecialization));
}
//TODO check only demand for this particular topic.
size_t sizeDemand = function->contextCompiler.getFunctionDemandSize();
//decision made if static context found or no late context exists(and there is default variant)
bool flagHasStaticDecision = variant || (variantDefault && !sizeDemand);
//if no late context exists
if (flagHasStaticDecision) {
FunctionUnit* calleeUnit = pass->getFunctionUnit(variant? *variant: *variantDefault);
//inlining possible based on static decision only
// if (calleeUnit->isInline()) {
// return new CallStatementInline(function, calleeUnit);
// }
return new CallStatementRaw(calleeUnit->compile(), llvm);
}
//require default variant if no static decision made
assert(variantDefault);
llvm::Function* functionVariantDefault = this->pass->getFunctionUnit(*variantDefault)->compile();
llvm::Value* resultFn = function->contextCompiler.findFunction(calleeName, functionVariantDefault, scopeCaller);
llvm::PointerType *resultPTy = cast<llvm::PointerType>(resultFn->getType());
llvm::FunctionType *resultFTy = cast<llvm::FunctionType>(resultPTy->getElementType());
return new CallStatementRaw(resultFn, resultFTy, llvm);
}
//DISABLEDFEATURE transformations
// if (pass->transformations->isAcceptable(expr)){
// return pass->transformations->transform(expr, result, ctx);
// }
llvm::Value*
BasicCodeScopeUnit::process(const Expression& expr, const std::string& hintVarDecl){
#define DEFAULT(x) (hintVarDecl.empty()? x: hintVarDecl)
llvm::Value *left; llvm::Value *right;
LLVMLayer& l = *pass->man->llvm;
xreate::compilation::Advanced instructions = xreate::compilation::Advanced({this, function, pass});
switch (expr.op) {
case Operator::SUB: case Operator::MUL:
case Operator::DIV: case Operator::EQU: case Operator::LSS:
case Operator::GTR: case Operator::NE: case Operator::LSE:
case Operator::GTE:
assert(expr.__state == Expression::COMPOUND);
assert(expr.operands.size() == 2);
left = process(expr.operands[0]);
right = process(expr.operands[1]);
//SECTIONTAG types/convert binary operation
- right = analysis::typeinference::doAutomaticTypeConversion(right, left->getType(), l.builder);
+ right = typeinference::doAutomaticTypeConversion(right, left->getType(), l.builder);
break;
default:;
}
switch (expr.op) {
case Operator::ADD:{
left = process(expr.operands[0]);
Context context{this, function, pass};
llvm::Value* resultSU = StructUpdate::add(expr.operands[0], left, expr.operands[1], context, DEFAULT("tmp_add"));
if (resultSU) return resultSU;
right = process(expr.operands[1]);
llvm::Value* resultAddPA = pointerarithmetic::PointerArithmetic::add(left, right, context,DEFAULT("tmp_add"));
if (resultAddPA) {return resultAddPA;}
return l.builder.CreateAdd(left, right, DEFAULT("tmp_add"));
break;
}
case Operator::SUB:
return l.builder.CreateSub(left, right, DEFAULT("tmp_sub"));
break;
case Operator::MUL:
return l.builder.CreateMul(left, right, DEFAULT("tmp_mul"));
break;
case Operator::DIV:
return l.builder.CreateSDiv(left, right, DEFAULT("tmp_div"));
break;
case Operator::EQU:
if (left->getType()->isIntegerTy()) return l.builder.CreateICmpEQ(left, right, DEFAULT("tmp_equ"));
if (left->getType()->isFloatingPointTy()) return l.builder.CreateFCmpOEQ(left, right, DEFAULT("tmp_equ"));
break;
case Operator::NE:
return l.builder.CreateICmpNE(left, right, DEFAULT("tmp_ne"));
break;
case Operator::LSS:
return l.builder.CreateICmpSLT(left, right, DEFAULT("tmp_lss"));
break;
case Operator::LSE:
return l.builder.CreateICmpSLE(left, right, DEFAULT("tmp_lse"));
break;
case Operator::GTR:
return l.builder.CreateICmpSGT(left, right, DEFAULT("tmp_gtr"));
break;
case Operator::GTE:
return l.builder.CreateICmpSGE(left, right, DEFAULT("tmp_gte"));
break;
case Operator::NEG:
left = process(expr.operands[0]);
return l.builder.CreateNeg(left, DEFAULT("tmp_neg"));
break;
case Operator::CALL: {
assert(expr.__state == Expression::COMPOUND);
std::string nameCallee = expr.getValueString();
shared_ptr<CallStatement> callee(findFunction(nameCallee));
//prepare arguments
std::vector<llvm::Value *> args;
args.reserve(expr.operands.size());
std::transform(expr.operands.begin(), expr.operands.end(), std::inserter(args, args.end()),
[this](const Expression &operand) {
return process(operand);
}
);
ScopePacked outerScopeId = pass->man->clasp->pack(this->scope);
//TASK a) refactor CALL/ADHOC/find function
//SECTIONTAG late-context propagation arg
size_t calleeDemandSize = pass->queryContext->getFunctionDemand(nameCallee).size();
if (calleeDemandSize){
DefaultFunctionUnit* function = dynamic_cast<DefaultFunctionUnit*>(this->function);
llvm::Value* argLateContext = function->contextCompiler.compileContextArgument(nameCallee, outerScopeId);
args.push_back(argLateContext);
}
return (*callee)(move(args), DEFAULT("res_"+nameCallee));
}
case Operator::IF:
{
return instructions.compileIf(expr, DEFAULT("tmp_if"));
}
case Operator::SWITCH:
{
return instructions.compileSwitch(expr, DEFAULT("tmp_switch"));
}
case Operator::LOOP_CONTEXT:
{
assert(false);
return nullptr;
//return instructions.compileLoopContext(expr, DEFAULT("tmp_loop"));
}
case Operator::LOGIC_AND: {
assert(expr.operands.size() == 1);
return process (expr.operands[0]);
}
case Operator::LIST:
{
return instructions.compileListAsSolidArray(expr, DEFAULT("tmp_list"));
};
case Operator::LIST_RANGE:
{
assert(false); //no compilation phase for a range list
// return InstructionList(this).compileConstantArray(expr, l, hintRetVar);
};
case Operator::LIST_NAMED:
{
typedef Expanded<TypeAnnotation> ExpandedType;
ExpandedType tyStructLiteral = l.ast->getType(expr);
const std::vector<string> fieldsFormal = (tyStructLiteral.get().__operator == TypeOperator::CUSTOM)?
l.layerExtern->getStructFields(l.layerExtern->lookupType(tyStructLiteral.get().__valueCustom))
: tyStructLiteral.get().fields;
std::map<std::string, size_t> indexFields;
for(size_t i=0, size = fieldsFormal.size(); i<size; ++i){
indexFields.emplace(fieldsFormal[i], i);
}
llvm::StructType* tyLiteralRaw = llvm::cast<llvm::StructType>(l.toLLVMType(tyStructLiteral));
llvm::Value* record = llvm::UndefValue::get(tyLiteralRaw);
for (size_t i=0; i<expr.operands.size(); ++i){
const Expression& operand = expr.operands.at(i);
unsigned int fieldId = indexFields.at(expr.bindings.at(i));
llvm::Value* result = 0;
//TODO Null ad hoc llvm implementation (related code: operators/StructUpdate/add)
// if (operand.isNone()){
// llvm::Type* tyNullField = tyRecord->getElementType(fieldId);
// result = llvm::UndefValue::get(tyNullField);
//
// } else {
result = process(operand);
// }
assert (result);
record = l.builder.CreateInsertValue(record, result, llvm::ArrayRef<unsigned>({fieldId}));
}
return record;
};
case Operator::MAP:
{
assert(expr.blocks.size());
return instructions.compileMapSolidOutput(expr, DEFAULT("map"));
};
case Operator::FOLD:
{
return instructions.compileFold(expr, DEFAULT("fold"));
};
case Operator::FOLD_INF:
{
return instructions.compileFoldInf(expr, DEFAULT("fold"));
};
case Operator::INDEX:
{
//TODO allow multiindex
assert(expr.operands.size()==2);
assert(expr.operands[0].__state == Expression::IDENT);
const std::string& hintIdent= expr.operands[0].getValueString();
Symbol s = Attachments::get<Symbol>(expr.operands[0]);
const ExpandedType& t2 = pass->man->root->getType(expr.operands[0]);
llvm::Value* aggr = processSymbol(s, hintIdent);
switch (t2.get().__operator)
{
case TypeOperator::STRUCT: case TypeOperator::CUSTOM:
{
std::string idxField;
const Expression& idx = expr.operands.at(1);
switch (idx.__state) {
//named struct field
case Expression::STRING:
idxField = idx.getValueString();
break;
//anonymous struct field
case Expression::NUMBER:
idxField = to_string((int)idx.getValueDouble());
break;
default:
assert(false&& "Wrong index for a struct");
}
return instructions.compileStructIndex(aggr, t2, idxField);
};
case TypeOperator::ARRAY: {
std::vector<llvm::Value*> indexes;
std::transform(++expr.operands.begin(), expr.operands.end(), std::inserter(indexes, indexes.end()),
[this] (const Expression& op){
return process(op);
}
);
return instructions.compileArrayIndex(aggr, indexes, DEFAULT(string("el_") + hintIdent));
};
default:
assert(false);
}
};
//SECTIONTAG adhoc actual compilation
//TODO a) make sure that it's correct: function->adhocImplementation built for Entry scope and used in another scope
case Operator::ADHOC: {
DefaultFunctionUnit* function = dynamic_cast<DefaultFunctionUnit*>(this->function);
assert(function->adhocImplementation && "Adhoc implementation not found");
const Expression& comm = adhoc::AdhocExpression(expr).getCommand();
CodeScope* scope = function->adhocImplementation->getCommandImplementation(comm);
AbstractCodeScopeUnit* unitScope = function->getScopeUnit(scope);
//SECTIONTAG types/convert ADHOC ret convertation
llvm::Type* resultTy = l.toLLVMType( pass->man->root->expandType(function->adhocImplementation->getResultType()));
- return analysis::typeinference::doAutomaticTypeConversion(unitScope->compile(), resultTy, l.builder);
+ return typeinference::doAutomaticTypeConversion(unitScope->compile(), resultTy, l.builder);
};
case Operator::CALL_INTRINSIC:{
const std::string op = expr.getValueString();
if (op == "copy") {
llvm::Value* result = process(expr.getOperands().at(0));
auto decoratorVersions = Decorators<VersionsScopeDecoratorTag>::getInterface(this);
llvm::Value* storage = decoratorVersions->processIntrinsicInit(result->getType());
decoratorVersions->processIntrinsicCopy(result, storage);
return l.builder.CreateLoad(storage, hintVarDecl);
}
assert(false && "undefined intrinsic");
}
case Operator::NONE:
assert(expr.__state != Expression::COMPOUND);
switch (expr.__state) {
case Expression::IDENT: {
Symbol s = Attachments::get<Symbol>(expr);
return processSymbol(s, expr.getValueString());
}
case Expression::NUMBER: {
llvm::Type* typConst;
if (expr.type.isValid()){
typConst = l.toLLVMType(pass->man->root->getType(expr));
} else {
typConst = llvm::Type::getInt32Ty(llvm::getGlobalContext());
}
int literal = expr.getValueDouble();
return llvm::ConstantInt::get(typConst, literal);
}
case Expression::STRING: {
return instructions.compileConstantStringAsPChar(expr.getValueString(), DEFAULT("tmp_str"));
};
case Expression::VARIANT: {
const ExpandedType& typVariant = pass->man->root->getType(expr);
llvm::Type* typRaw = l.toLLVMType(typVariant);
int value = expr.getValueDouble();
return llvm::ConstantInt::get(typRaw, value);
}
default: {
break;
}
};
break;
default: break;
}
assert(false);
return 0;
}
llvm::Value*
BasicCodeScopeUnit::compile(const std::string& hintBlockDecl){
if (!hintBlockDecl.empty()) {
llvm::BasicBlock *block = llvm::BasicBlock::Create(llvm::getGlobalContext(), hintBlockDecl, function->raw);
pass->man->llvm->builder.SetInsertPoint(block);
}
Symbol symbScope = Symbol{ScopedSymbol::RetSymbol, scope};
return processSymbol(symbScope);
}
AbstractCodeScopeUnit::~AbstractCodeScopeUnit()
{}
FunctionUnit::~FunctionUnit()
{}
llvm::Function*
FunctionUnit::compile(){
if (raw != nullptr) return raw;
LLVMLayer* llvm = pass->man->llvm;
llvm::IRBuilder<>& builder = llvm->builder;
string&& functionName = prepareName();
std::vector<llvm::Type*>&& types = prepareArguments();
llvm::Type* expectedResultType = prepareResult();
llvm::FunctionType *ft = llvm::FunctionType::get(expectedResultType, types, false);
raw = llvm::cast<llvm::Function>(llvm->module->getOrInsertFunction(functionName, ft));
prepareBindings();
const std::string&blockName = "entry";
llvm::BasicBlock* blockCurrent = builder.GetInsertBlock();
llvm::Value* result =getScopeUnit(function->__entry)->compile(blockName);
assert(result);
//SECTIONTAG types/convert function ret value
- builder.CreateRet(analysis::typeinference::doAutomaticTypeConversion(result, expectedResultType, llvm->builder));
+ builder.CreateRet(typeinference::doAutomaticTypeConversion(result, expectedResultType, llvm->builder));
if (blockCurrent){
builder.SetInsertPoint(blockCurrent);
}
llvm->moveToGarbage(ft);
return raw;
}
AbstractCodeScopeUnit*
FunctionUnit::getScopeUnit(CodeScope* scope){
if (__scopes.count(scope)) {
auto result = __scopes.at(scope).lock();
if (result){
return result.get();
}
}
std::shared_ptr<AbstractCodeScopeUnit> unit(new DefaultScopeUnit(scope, this, pass));
if (scope->__parent != nullptr){
auto parentUnit = Decorators<CachedScopeDecoratorTag>::getInterface(getScopeUnit(scope->__parent));
parentUnit->registerChildScope(unit);
} else {
__orphanedScopes.push_back(unit);
}
if (!__scopes.emplace(scope, unit).second){
__scopes[scope] = unit;
}
return unit.get();
}
AbstractCodeScopeUnit*
FunctionUnit::getScopeUnit(ManagedScpPtr scope){
return getScopeUnit(&*scope);
}
AbstractCodeScopeUnit*
FunctionUnit::getEntry(){
return getScopeUnit(function->getEntryScope());
}
FunctionUnit*
CompilePass::getFunctionUnit(const ManagedFnPtr& function){
unsigned int id = function.id();
if (!functions.count(id)){
FunctionUnit* unit = new DefaultFunctionUnit(function, this);
functions.emplace(id, unit);
return unit;
}
return functions.at(id);
}
void
CompilePass::run(){
managerTransformations = new TransformationsManager();
targetInterpretation = new interpretation::TargetInterpretation(this->man->root, this);
queryContext = reinterpret_cast<context::ContextQuery*> (man->clasp->getQuery(QueryId::ContextQuery));
//Find out main function;
ClaspLayer::ModelFragment model = man->clasp->query(Config::get("function-entry"));
assert(model && "Error: No entry function found");
assert(model->first != model->second && "Error: Ambiguous entry function");
string nameMain = std::get<0>(ClaspLayer::parse<std::string>(model->first->second));
FunctionUnit* unitMain = getFunctionUnit(man->root->findFunction(nameMain));
entry = unitMain->compile();
}
llvm::Function*
CompilePass::getEntryFunction(){
assert(entry);
return entry;
}
void
CompilePass::prepareQueries(ClaspLayer* clasp){
clasp->registerQuery(new containers::Query(), QueryId::ContainersQuery);
clasp->registerQuery(new context::ContextQuery(), QueryId::ContextQuery);
}
} //end of namespace xreate

Event Timeline